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Abstract: Recursive sequences with gaps have been studied previously.  This paper considers 

some elementary properties of such sequences where the gaps have been created on a regular basis 

from sequence to sequence – ‘discatenated’ (systematic gaps) and ‘lacunary’ (general gaps). In 

particular, their generating functions are developed in order to open up their general terms and 

relations with other properties. 
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1 Introduction 

The Fibonacci and Lucas sequences are famous sequences of numbers. These sequences have 

intrigued scientists for a long time. Fibonacci and Lucas sequences have been applied in various 

fields such as algebraic coding theory, phylotaxis, biomathematics, computer science, and so on. 

For 0n , Fibonacci numbers 𝐹𝑛 and Lucas numbers 𝐿𝑛 are defined by the recurrence relations, 

respectively, 

2 1  n n nF F F , with  0 0F  and 1 1F , 

 2 1  n n nL L L , with 0 2L  and 1 1L . 

For nF  and nL  the Binet formulas are given by the following relations, respectively, 

 

 






n n

nF  and   n n

nL  

where 
1 5

2



  and 

1 5

2



  are the roots of the characteristic equation 2 1 0  r r . Here the 

number    is the known golden ratio. In [10, 11, 16, 18], are many studies on Fibonacci and Lucas 

sequences related to this present paper. 

‘Discatenation’, the opposite of concatenation, deals with gaps in Fibonacci and Lucas 

sequences and their generalizations. It belongs to the category of lacunary recurrence relations 

[5, 6, 13, 19], though we shall distinguish them arbitrarily. We begin with a ratio of Fibonacci 

numbers: 

 ,      kn k
k n

k

F
f

F
 = 

 

 

 



nk k nk k

k k
, 1,  0, k n  (1.1) 

in which 𝐹𝑛 is an ordinary Fibonacci number, and where ,   are the roots, assumed distinct, of 

2 0,   x px q in which p, q are arbitrary integers. We start to see the discatenated sequences 

   ,  k k n kn kF f F in Table 1. 

Table 1. Examples of discatenated Fibonacci sequences  
 

Fkfk,n Gaps n = 1 2 3 4 5 6 Sloane [10] 

1 1,nF f  0 1 2 3 5 8 13 A000045 

2 2,nF f  1 3 8 21 55 144 377 A001906 

3 3,nF f  2 8 34 144 610 2584 10946 A014445 

4 4,nF f  3 21 144 987 6765 46368 317811 A033888 

Sloane A…… 001906 014445 033888 102312 134492 134498  
 

 

 

We notice the initial terms 1 1x , 3 1x , 4 2x , 7 3x , and so on, and that the horizontal and vertical 

sequences have the same number of gaps. These are artifacts of their construction, and they are 

related to sequences found in Sloane for different reasons. The initial idea for expressing these 

sequences came from Section 3 of Craveiro et al [4]. Although some parts of the notation in the 
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latter are somewhat similar, the focus here is quite different. For reasons which will become 

obvious we also define a companion sequence for { ,k nf }, namely, 

 ,    n k
k n

k

F
g

F
 = 

 

 

 



n k n k

k k
, 1,  0, k n  (1.2) 

so that the g1,n are also ordinary Fibonacci numbers, which are open to extensions to Lucas 

analogues, such as [7], as we shall see in one case in Section 4. 

In [1], Aistleitner et al, the analysis of lacunary sequences and their applications in probability 

and number theory were studied. In addition, Sharma identified a new lacunary sequences and 

found many features of this sequence [15]. In [9], studies were carried out on lacunary type 

polynomials, and interesting properties of these polynomials were obtained. 

2 Lacunary numbers 

Lucas [8] studied the second order primordial sequence   2

0,nU  and one of the basic fundamental 

sequences   2

2,nU  which satisfy the linear recurrence with arbitrary integers p, q 

      2 2 2

, , 1 , 2  s n s n s nU pU qU , s {0,2},   (2.1) 

with initial values 
       2 2 2 2

2,0 2,1 0,0 0,10,  1,  2, ,      U U U U where ,    are the roots, assumed 

distinct, of the auxiliary equation associated with (2.1). For ease of subsequent notation, we shall 

represent {
 2

2, 2}nU  by   2

nu  and {  2

2,0 }U  by {  2
}nv  which are more akin to Lucas’ original notation. 

The superscripts are there to encourage interested readers to extend the results to higher orders. 

In terms of their relations with the Lucas sequences, we have 

     2

1, 1 1, 1, 1       k

k n k k n k nf v f q f  (2.2) 

 1, 1 1, 1, 1 .     k n k n k ng pg qg  (2.3) 

We call these numbers,  , , k nf ‘lacunary’ to distinguish them from the corresponding ‘discatenated’ 

numbers,  , .k k nF f  
 

Proof of (2.2):  

 
      

 

    
 

 
 

2

1, 1, 1 

2 2

2 2

1, 1.

(( ) )
 

      

 

       

 

 

 

 

  

 

 

 

    
 



     
 












kk k nk k nk k nk nk

k

k k n k n k k

nk k nk k k nk nk k nk nk

k k

nk k nk k

k k

k n

v f q f

f

 

We can now see the lacunary sequences      , ,   k n k k n kn kf F f F in Table 2. 
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Table 2. Lacunary numbers with their linear recurrence relations 

fk,n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 Recurrence relations 

1,  nf  1 2 3 5 8 13 1, 1, 1 1, 2 1   n n nf f f  

2,  nf  3 8 21 55 144 377 2, 2, 1 2, 2 3   n n nf f f . 

3,  nf  4 17 72 305 1292 5473 3, 3,4 2  3, 2 4   n nf f f  

4,  nf  7 48 329 2255 15456 105937 4, 4, 1 4, 2 7   n n nf f f  

A…… 000032 261876 083564 103326 --- 028412 ↔   Sloane [10] 

From the inductive argument on k  by considering definition of the sequence  ,k nf , we also 

write the following general recurrence relations: 

 
1

2

2

, 1 , 2

,

, 1 , 2

           if    is odd,

 
             if    is even,

  

 




 


k

k

k n k n

k n

k n k n

a f f k

f
b f f k

 

where the sequences  ka  and  kb  are as follows, respectively: 

 1 2 1 21,  4;   3 ,   3     k k ka a a a a k  

and 

1 2 1 23,  7;   3 ,   3     k k kb b b b b k . 

Theorem 2.1. (Binet Formulas) Let n N . Then, the Binet formulas of the 
 2

0,nU , and 
 2

2,nU   

sequences are as follows: 

(i).  2

0,

 

 






n n

nU , 

(ii). 
 2

2,   n n

nU . 

Proof. (i). The Binet form of a sequence is as follows 

 2

0,   n n

nU x y . 

Here, the scalars x  and y  can be obtained by substituting the initial conditions and solving the 

given system of equations. For 0n , 
 2

0,0 0U  and 1n , 
 2

0,1 1U . So, 
1

 
x  and 

1

 
 y . 

Thus, we obtain  

 2

0,

 

 






n n

nU .  

The proof of the other may be found similarly.                                                                                 

 

Theorem 2.2. Let n N . The following equations are true: 

(i). 
     2 2 2

2, 0, 1 0, 1

1
  n n n

q
U U U

p p
, 
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(ii). 
     2 2 2

0, 2, 0,2n n nU U U , 

(iii).        2 2 22

0, 2, 1 2, 14    n n np q U U U , 

(iv).    2 22

0, 2,4 2   n

n np qU U , 

(v). 
   2 22

0, 2,4 2    n

n np qU U . 

Proof. (i). If the Binet formulas are used for proof, we obtain: 

   

   

1 1 1 1
2 2

0, 1 0, 1

   

   

   

 

 
  

 

n n n n

n nU qU q
p p

 

                               
 

   
 

 

  
     

   


n nq q

p
 

                                 n n  

                               
 2

2, nU . 

The proofs of the others may be found similarly.                                                                          
 

Theorem 2.3. Let , m n N  and m n . The following equations are satisfied: 

(i). 
         2 2 2 2 2

0, 1 0, 1 0, 1 0, 0,    m n m n m nU U U qU U , 

(ii). 
         2 2 2 2 2

2, 1 2, 1 0, 1 2, 0,    m n n m n mU U U qU U . 

Proof. If the Binet formulas are used for proof, we obtain:  

(i).        
1 1 1 1

2 2 2 2

0, 1 0, 1 0, 0,

       

       

   

 

   
  

   

m m n n m m n n

m n m nU U qU U q  

                    
  

2 1 1 1 1 2           

   

               


 

m n m n n m m n m n m n n m m nq q q q
 

                    
  

1 1   
 

   

      
     

   
 

m n m nq q

 

                    
1 1 

 

   




m n m n

 

                    
 2

0, 1  m nU . 

(ii).            
1 1

2 2 2 2 1 1

2, 1 0, 1 2, 0,

   
   

   

 
 

 

 
    

 

m m m m
n n n n

n m n mU U qU U q  

                    
2 1 1 1 1 2           

 

               




m n n m m n m n m n n m m n m nq q q q
 

                    

1 1   
 

 

      
     

   


m n m nq q

 

                    1 1     m n m n  

                    
 2

2, 1  m nU .                                                                                                                   
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Theorem 2.4. Let n N . The following equations are true: 

(i).    2 2

0, 0,

1
  n nn

U U
q

, 

(ii).    2 2

2, 2,

1
 n nn

U U
q

. 

Proof. (i). If the Binet formulas are used for proof, we obtain: 

 2

0,

1   

     

 



 
  

 

n n n n

n n n
U

 2

0,

1
  nn

U
q

. 

(ii).     2

2,

1 1 1
   

   

 

      n n n n

n n n n n
U

 2

2,

1
 nn

U
q

.  

 

Theorem 2.5. Let , m n N  and m n . We obtain 

(i). 
           2 2 2 2 22

2, 0, 0, 2, 2,2 4   m n n m n mU p q U U U U , 

(ii). 
           2 2 2 2 22

2, 2, 2, 0, 0,2 4   n

m n n m n mq U U U p q U U , 

(iii). 
         2 2 2 2 2

0, 2, 0, 2, 0,2   n

m n n m m nq U U U U U . 

Proof. If the Binet formulas are used for proof, we obtain: 

(i).               2 2 2 22 2

0, 0, 2, 2,4 4
   

   
   

 
      

 

n n m m
n n m m

n m n mp q U U U U p q  

                               m n n m m n m n m n n m m n m n  

          2 2   m n m n  

          
 2

2,2  m nU . 

(ii).               2 2 2 22 2

2, 2, 0, 0,4 4
   

   
   

 
      

 

n n m m
n n m m

n m n mU U p q U U p q       

                               m n n m m n m n m n n m m n m n  

          2 2    n m m n  

           2     n n m n m n
 

          
 2

2,2  n

m nq U . 

(iii).            2 2 2 2

2, 0, 2, 0,

   
   

   

 
    

 

m m n n
n n m m

n m m nU U U U  

         
           

 

         




m n n m m n m n m n n m m n m n

 

         
 2   

 

 




n n m n m n

 

         
 2

0,2  n

m nq U .                                                                                                                         
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Theorem 2.6. (Cassini Identity) Let n N . We obtain 

(i). 
       2 2 2 2 1

0, 1 0, 1 0, 0,



     n

n n n nU U U U q ,  

(ii). 
         2 2 2 2 1 2

2, 1 2, 1 2, 2, 4

    n

n n n nU U U U q p q . 

Proof. If the Binet formulas are used for proof, we obtain: 

(i).        
1 1 1 1

2 2 2 2

0, 1 0, 1 0, 0,

       

       

   

 

   
  

   

n n n n n n n n

n n n nU U U U  

                                              
 

2

2
 

 
 

 

 
   
 



n n

 

                                              1  nq . 

(ii). 
             2 2 2 2 1 1 1 1

2, 1 2, 1 2, 2,           

        n n n n n n n n

n n n nU U U U  

                                                2
 

 
 

 
   

 

n n  

                                                 1 2 4 nq p q .                                                                             

 

Theorem 2.7. (Catalan Identity) Let , n m N . We obtain 

(i). 
           2 2 2 2 2 2

0, 0, 0, 0, 0, 0,



     n m

n m n m n n m mU U U U q U U ,     

(ii). 
             2 2 2 2 2 22

2, 2, 2, 2, 0, 0,4

    n m

n m n m n n m mU U U U q p q U U . 

Proof. If the Binet formulas are used for proof, we obtain: 

(i).        2 2 2 2

0, 0, 0, 0,

       

       

   

 

   
  

   

n m n m n m n m n n n n

n m n m n nU U U U  

                                                 
  

2
   

     

 
    

   

n n m m

m m
 

                                                 
   

 
   

   
 

 

m m m m
n m n m  

                                                 
   2 2

0, 0,

  n m

m mq U U . 

(ii). 
             2 2 2 2

2, 2, 2, 2,           

        n m n m n m n m n n n n

n m n m n nU U U U   

                                                  2
 

 
 

 
   

 

m m
n n

m m
 

                                                   2 4
   

 
   

   
  

 

m m m m
n m n m p q  

                                                       2 22

0, 0,4 n m

m mq p q U U .                                                       
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Theorem 2.8. (D’Ocagne Identity) Let , n m N  and n m . We obtain 

(i). 
         2 2 2 2 2

0, 1 0, 0, 0, 1 0,     m

n m n m n mU U U U q U ,     

(ii). 
           2 2 2 2 22

2, 1 2, 2, 2, 1 0,4    m

n m n m n mU U U U q p q U . 

Proof. If the Binet formulas are used for proof, we obtain: 

(i).         
1 1 1 1

2 2 2 2

0, 1 0, 0, 0, 1

       

       

   

 

   
  

   

n n m m n n m m

n m n mU U U U  

   

  

   

  

   
  

 

1 1 1 1

2

0, .

       

   

       

   

     

   

   

 



   


 

  


 

  


 

 

n m m n n m m n

n m m n

m m n m n m

m

n mq U

 

 (ii).  
             2 2 2 2 1 1 1 1

2, 1 2, 2, 2, 1           

       n n m m n n m m

n m n mU U U U   

                                                  

    

1 1 1 1       

       

       

 

   

 

   

   

  




n m m n n m m n

n m m n

m m n m n m

                                             

   22

0,4  m

n mq p q U .                                                                        

Theorem 2.9. (Vajda Identity) Let , , n m p N . We obtain 

(i). 
           2 2 2 2 2 2

0, 0, 0, 0, 0, 0,     n

n m n p n n m p m pU U U U q U U ,     

(ii). 
             2 2 2 2 2 22

2, 2, 2, 2, 0, 0,4      n

n m n p n n m p m pU U U U q p q U U . 

Proof. If the Binet formulas are used for proof, we obtain: 

(i).        2 2 2 2

0, 0, 0, 0,

       

       

       

   

   
 

   

n m n m n p n p n n n m p n m p

n m n p n n m pU U U U  

                                                   
  
  

     

   

 


 

n n p p m m

 

                                                   
   2 2

0, 0, n

m pq U U . 

(ii).  
             2 2 2 2

2, 2, 2, 2,               

         n m n m n p n p n n n m p n m p

n m n p n n m pU U U U  

  
    

  

         

   

   
 

 

n n p p m m

 

       2 22

0, 0,4  n

m pq p q U U .                                                            
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3 Key properties 

The ordinary generating functions for these sequences are represented formally by 

1,

0








n

k n

n

f x  = 
 2 2

1

1 kv x x
, (3.1) 

and 

     1,

0








n

k n

n

g x  = 
  1,1

2

1

1

 

 

kg p x

px qx
.   (3.2) 

Proofs: Let   1,

0

 







n

k n

n

f x f x  and   1,

0

 







n

k n

n

g x g x , so that 
 

(       2 22

1,0 1,1 1,01 )         k k k k kv x x f x f f f v x   

                                                                 1   1 1   x   

                               1 ,                            as required for (3.1).  

Similarly, 

      

     

 

 

2

1.0 1.1 1.0

1,1

1  

1 

1 , as required for (3.2).

 
 

 

  

 



    

 
    

 

  

k k k

k k k k

k k

k

px qx g x g g pg x

x

g p x

 

As an analogue of Catalan’s Identity, we have 

2

1, 1, 1,        n

k n k n k k n kg g g q . 
(3.3) 

Proof. The numerator of the left-hand side reduces to 

       2 2  2      
n n n kk k

=    
2

  
n k k  

 

                                                         =  
2

 n k kq  
 

which is q times the denominator of the left-hand side. 

When p =  q = R, say, we are able to relate the 1,k nf to ordinary Lucas fundamental numbers, 

 2
,nu  by means of a generalization of Barakat [2], who proved that 

   2 2

0 2



 

 
  

 


mn m

n

m n

n m
u p q

m
=

0 2

  .

 

 
 
 


n m

m n

n m
R

m
 

For notational convenience, we further define formally 

 2
 n n nu Rx Ry , 

so that from (3.3), we have that 

   
2

1 1    . 


   
k

k k k kx y x y R  (3.4) 
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We are now in a position to assert a property which relates these lacunary Fibonacci numbers 

to the ordinary Fibonacci numbers and which yields an iterative formula for the general terms 

[12]. 

4 General terms 

With the notation from the previous section, we have 
 

Lemma 4.1.  
2

2 1 3

2 2
   

 
 




k k
k

Ry R y
v .  (4.1) 

Proof. The numerator of the right-hand side is 

      1  1 1  1                 k k k k
 

2 2 1 1 2 2 1 1                        k k k k k k k k  

  2  2     k k  

 
   2 2  2  kv .    

 

Lemma 4.2. 1,

n

k nf z  = 
     

2
2 2

1

0

.
 



  

  
  
  


s n m s

m

k k

m s n

m n m
u u R

s s
 (4.2) 

Proof. 

 
 1, 2 2

0

1
 
1








 


n

k n

n k

f z
v x x

 
from (3.1) 

                         
1

2 2

2 11


     
k

k kR x Ry z R z  
from Lemma 4.1 

                     =     
1

2 3 2

2 1 2 1 1 2  1


        k k k k k kR x Ry z R x y x y z  
from (3.4) 

                     =    
1

2 3 2

2 1 1 2  1 1


     k k k kR x z Ry z R x y z  
 

                     =       
1

2 3 2

2 1 1 2

0

1 1
  

   



 
s s

k k k k

s

R x z Ry z x y R z  
 

                     =  
1 3 2 2

1 1 2 2

0 0

   1
 

   

   

 

 
 

 


s s m s s m s m

k k k k

s m

m s
Ry x x y R z

s
 

 

                     =  
1 2

1 1 2 2

0 0

   1


    

   

 

 
 

 


m
s s m s s s m s m

k k k k

m s

m
Ry x x y R z

s
 

 

                     =  2

1 2 1 2

0 0 0

 
    

   

  

  
  
  


m

s m s t s s m t s m t

k k k k

m s t

m t s
x x y y R z

s s
 

 

                     = 1 2 1 2

00

 


   

   

   

  
  
  

 
s m s n m s s n m n

k k k k

n m s n

m n m
x x y y R z

s s
. 

 

So, by equating coefficients of ,nz  we find that 
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           2 2 2 2

1 2 1

1,

0

  


  

      
  

  
   

  


s m s n m s s
n m

k k k k

k n s m s n m s s
m s n

u u u u Rm n m
f

s s R
 

 

                      =          
2

2 2 2

2 1

0

. 
  

 

  

  
  
  


m s n m s s

m

k k k

m s n

m n m
u u u R

s s
  

as required. For example, when k = 1, 

2,

0 2

                    
 

 
  

 


m

n

m n

n m
f R

m
= 

0 2



 

 
 
 


n m

m n

n m
R

m
 

as in Barakat [2]. 

5 Conclusion 

Other identities can be readily developed to relate these discatenated and lacunary Fibonacci 

sequnces to other recursive properties. We shall conclude here with one such example. 

 1,

n

k nf z  = 1,

1

 









  
      

k

kn

k n

n

f  (5.1) 

in which nx  represents the n-th reduced Fermatian of index x, defined formally by 

 
2 11     ,     n

nx x x x  (5.2) 

as used by Whitney [17] and extended by Shannon [14]. 
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