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1 Introduction

The Fibonacci and Lucas sequences are famous sequences of numbers. These sequences have
intrigued scientists for a long time. Fibonacci and Lucas sequences have been applied in various
fields such as algebraic coding theory, phylotaxis, biomathematics, computer science, and so on.
For n>0, Fibonacci numbers F, and Lucas numbers L,, are defined by the recurrence relations,
respectively,

Fn+2 =F

n+1

+F,,with F;,=0and F, =1,
L.,=L,,+L, , with L,=2 and L, =1.

For F, and L, the Binet formulas are given by the following relations, respectively,

n n
F =2 7% and L =¢"+a"
p—w
where ¢ = 1+f and o= # are the roots of the characteristic equation r>—r—1=0. Here the

number ¢ is the known golden ratio. In [10, 11, 16, 18], are many studies on Fibonacci and Lucas
sequences related to this present paper.

‘Discatenation’, the opposite of concatenation, deals with gaps in Fibonacci and Lucas
sequences and their generalizations. It belongs to the category of lacunary recurrence relations
[5, 6, 13, 19], though we shall distinguish them arbitrarily. We begin with a ratio of Fibonacci

numbers:

nk+k nk+k
_kn+k  — _IB

N Fk ak_ﬂk

f,  k>1n>0, (1.1)

in which F, is an ordinary Fibonacci number, and where «, £ are the roots, assumed distinct, of
x® — px+q =0, in which p, q are arbitrary integers. We start to see the discatenated sequences
{Ffen} S{Finuc } in Table 1.

Table 1. Examples of discatenated Fibonacci sequences

Fkfkn | Gaps | n=1 2 3 4 5 6 Sloane [10]
Ff, 0 1 2 3 5 8 13 A000045
Ff. 1 3 8 21 55 144 377 A001906
Ffs, 2 8 34 144 610 2584 | 10946 A014445
Ff. 3 21 144 987 6765 | 46368 | 317811 | A033888
SloaneA...... 001906 | 014445 | 033888 | 102312 | 134492 | 134498

We notice the initial terms 1x1, 3x1, 4x2, 7x3, and so on, and that the horizontal and vertical
sequences have the same number of gaps. These are artifacts of their construction, and they are
related to sequences found in Sloane for different reasons. The initial idea for expressing these
sequences came from Section 3 of Craveiro et al [4]. Although some parts of the notation in the
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latter are somewhat similar, the focus here is quite different. For reasons which will become
obvious we also define a companion sequence for { f,  }, namely,

~ Fn+k _ an+k _ﬂn+k

Gin = Fk - ak_ﬂk
so that the gin are also ordinary Fibonacci numbers, which are open to extensions to Lucas
analogues, such as [7], as we shall see in one case in Section 4.

In [1], Aistleitner et al, the analysis of lacunary sequences and their applications in probability
and number theory were studied. In addition, Sharma identified a new lacunary sequences and
found many features of this sequence [15]. In [9], studies were carried out on lacunary type
polynomials, and interesting properties of these polynomials were obtained.

 k>1n>0, (1.2)

2 Lacunary numbers

Lucas [8] studied the second order primordial sequence {Uézn)} and one of the basic fundamental

sequences {ngg} which satisfy the linear recurrence with arbitrary integers p, q

=p 40 Se Lt .
u?=pul?, —qu®? {0,2} (2.1)

n s,n-21

with initial values U{%) =0,U) =1,U{%) =2,U? =&+ 8, where «,f8 are the roots, assumed
distinct, of the auxiliary equation associated with (2.1). For ease of subsequent notation, we shall
represent {U élzn)ﬂ} by {ur(]z)} and {U ézo)} by{vﬁz)} which are more akin to Lucas’ original notation.

The superscripts are there to encourage interested readers to extend the results to higher orders.
In terms of their relations with the Lucas sequences, we have

fk+1,n+l = VlEZ) fk+1,n - qk fk+1,n—l (2.2)
Oxi1nit = PYian —A9kina- (2.3)
We call these numbers, { fn } , ‘lacunary’ to distinguish them from the corresponding ‘discatenated’

numbers, {F, f,.}.

Proof of (2.2):
s, LN ) e )
+Ln k+1L,n-1 (ak _lBk)
(@ =" @) (@ = )= (@) (™ - )|
COv

_ (ank+2k _ﬂnk+2k)
("= 5")

k+1,n+1"

=f

We can now see the lacunary sequences { f, .} <{F f, .} = {F.} in Table 2.
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Table 2. Lacunary numbers with their linear recurrence relations

fkn n=1 n=2 n=3 n=4 | n=5 | n=6 | Recurrence relations
i, 1 2 3 5 8 13 fro=1f 1+ f
fon 3 8 21 55 144 377 fon=3%n1—Tonz-
fy 4 17 72 305 1292 | 5473 fo,=4f,,+1f.
fin 7 48 329 2255 | 15456 | 105937 | f,, =71, . -1,
A.... 000032 | 261876 | 083564 | 103326 | - | 028412 — Sloane [10]

From the inductive argument on k by considering definition of the sequence { fk,n}, we also
write the following general recurrence relations:

I PINPIE if kis odd,

f =
b s if kis even,

where the sequences {a, } and {b, } are as follows, respectively:

a=la,=44a=33,-a , k>3
and
b=3b,=7;b =30 ,-b ,, k>3.

Theorem 2.1. (Binet Formulas) Let ne N. Then, the Binet formulas of the Uézn) and ngn)
sequences are as follows:
(). v =25
: a—p
(i). U =a"+ 5"
Proof. (i). The Binet form of a sequence is as follows

U =xa" +yp".
Here, the scalars x and y can be obtained by substituting the initial conditions and solving the
given system of equations. For n=0, Uézo) =0 and n=1, Uéj) =1. So, X :ﬁ and y = —ﬁ.
Thus, we obtain

Uézn) _ an _ﬂn
) a _ﬂ
The proof of the other may be found similarly. L]

Theorem 2.2. Let ne N . The following equations are true:

(i). u? %U¥>+%Uﬁ$

n+l
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U}
(iii). (p*—4q)ul) =
(iv). p? —4qUi? +U? = 20",
(V). p? —4quf ~Ul = 2"

Proof. (i). If the Binet formulas are used for proof, we obtain:
+1 n+1 n-1 n-1
-p a —-p
n+ qU n -0
0 1 0, 1= p(a—ﬂ) p(OC— )

The proofs of the others may be found similarly.

Theorem 2.3. Let m,ne N and m> n. The following equations are satisfied:

(i)- Ué2r21+n+l = Ué,zn)wl 0, n+1 qU o n )

(”) U2m+n+l U£2r1)+1 0m+1 qUZn Or21'

Proof. If the Binet formulas are used for proof, we obtain:
a +1_ﬁm+1 an+l_ﬁn+l _q am _ﬂm an _ﬂn
a-pf a-pf a-f a—-pf

am+n+2 _am+lIBn+1_an+1ﬂm+1+ﬁm+n+2 qa m-+n +0ga IB + (o ﬂ

(). U2 U8 —quiuld =

ﬂl’TH—I’]

(a=p)(a=P)

: amnﬂ(a_gjwmm(ﬂ_g]
B)(a-p)

m+n+1 ,Bm+n+l
p

o —

U(grr)1+n+l
m+l m+1 m
- n+ n+ _ﬂ ﬂ
(ii). U£?2+1Ué,2%+1—qU ZU zn)l (05 +p 1)7 (05 +p" ) iy

am+n+2 ﬂ +a lﬂn ﬂm+n+2 m+n + qanﬁ _qa ﬂ + qﬂm-m

m+n+1 m+n+1 g
o ( 2) [ﬁ /J
a-p
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Theorem 2.4. Let ne N . The following equations are true:
). u?, =20,
: q

(i). UL, =q—1HU£2)-

n

Proof. (i). If the Binet formulas are used for proof, we obtain:

g e =p7 1 = 10

0,-n o — anﬁn o — qn 0,n

.. 1 1 1 1
(ii). U =a " +p" =+ =———(a"+ ") = UL

B B q

Theorem 2.5. Let m,ne N and m>n. We obtain

(i). 209, =(p* -4q)URUP +ULLE),

,m

(ii). 2q'0{)_, =UUL) —(p*—4q)U AU

-n

). 26081, ~USUE, UL

0,m-n 0,m 2,m

Proof. If the Binet formulas are used for proof, we obtain:

(i). (P*-4q)UU i +URUY = (p? 4q)an_'6mam_ﬂm+(a”+ﬂ")(am+ﬂm)

a-f a—-pf
anﬂm _amﬁn +ﬁm+n +am+n +anﬂm +amﬁn +ﬁm+n
=2am+n+2ﬂm+n
_2U2m+n
m m 2 an_ﬁn am_ﬂm
(ii). USUE) —(p* —4q)USu =(a"+ ") (a" +B")—(p* - 4q) o R
= +n+anﬂm+amﬂn+ﬂm+n_am+n+anﬂm+amﬂn_ﬂm+n
=2a"B" +2a" B"
:Zanﬂn(am—n+ﬂm—n)
_zanZm n-
(iii). USUE) U200 =(a" + B" ) ol —(a"+p" ) -/
o = a-p iy
_a+n_anﬂm+amﬁn_ﬂm+n_am+n_anﬁm+amﬂ +ﬁm+n
a-p
2a ﬂn(a ﬂm n)
a-p
= 29"Vt
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Theorem 2.6. (Cassini Identity) Let ne N . We obtain
(). UghUgn, ~Ugug =—a",

(D). Ug UL, ~USus =™ (p* ~4q).

Proof. If the Binet formulas are used for proof, we obtain:

i) U U ey @ T
0,n+1~0,n-1 o,n~0,n a_ﬂ a_ﬂ a_ﬂ a_ﬂ

ool

(ii). UV, -URU = (o™ + ™) (" = ) =(a" = B")(a" - B")

Theorem 2.7. (Catalan Identity) Let n,m e N . We obtain
i). Uéz) u® —U(()Z)Uéz) =—q""U (2)y @

0,n-m om~0,m?

(ii). u® y®

2,n+m~"2,n—-m

LURUE = g (- aq) UL

n om*

Proof. If the Binet formulas are used for proof, we obtain:

n+m n+m n—-m n-m n n n
y_a = a = a - -

B B
" a-pf a-p a-f a-p

). U U Ul

,n—m

:<a-Z;<;-ﬂ>(‘Z—: & +2J

:_an—m n—mOCm_ﬂm am ﬂm
a-p a-p
_ qn—muéz U((Jz)
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Theorem 2.8. (D’Ocagne Identity) Let n,me N and n>m. We obtain
(). Ugn Ut ~Us Vg0 ==a"Ug o
(if). US55 ~UEUE, . =a" (p* ~4a)Ui.,.
Proof. If the Binet formulas are used for proof, we obtain:
(I) USZr])JrlU(()Z% _USZH)U(SZH)]H _ 0[“+1—ﬂn+1 am _ﬂm ~ an _,Bn am+1_ﬂm+l
T C a-p a-p a-p a-p
—a™Bm _amﬂn+l+anﬂm+l+am+lﬂn
(a=p)(a-P)
_a'p"(B-a)+a"p"(a-p)
) (@=p)(a-P)
—(a—ﬁ)amﬁm (an—m _ﬁn—m)
(a—ﬂ)(a -5)

(i) UV - UﬁUﬁm=@f“+ﬂMXam+ﬂ) (" +p") (@™ + ™)
=0£n+1,b'm +amﬂn+l_anﬂm+l_am+lﬂ
=a"p" (a-B)+a"B"(B-a)
(a=p)(a=p)a"p" (a"" - 5"")

— qu

Theorem 2.9. (Vajda Identity) Let n,m, pe N . We obtain
(I) UO n+m 0 n+p _U((),zn)U(()zn)erer an U ) ’

(). U3.,U50, ~UsaU30 . = =07 (P* —4a) U5,

Proof. If the Binet formulas are used for proof, we obtain:

2

O/—\
—

o

n+m n+m _ n+p n+p _n n n+m+p n+m+p
U Y@ _yeye e - a
(I) On+m 0n+p 0,n~0,n+m+p o — ,B a—ﬂ a—ﬂ a—ﬁ
anﬁn(ap ﬁp)(am_ﬁm)
(a=pB)(a-p)

_an Z)Uéz)
U£n)+p —Ué‘zn)Uézn)+m+p :(an+m +ﬂn+m)<an+p +ﬂn+p)_(an _ﬂn)(an+m+p +ﬂn+m+p)
_anﬁn (ap _ﬂp)(am —ﬂm)(a_ﬂ)(“‘ﬂ)
(a—ﬂxa—ﬂ)
- (540U

(). Ul

2,n+m
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3 Key properties

The ordinary generating functions for these sequences are represented formally by

= 1
g X' = ————, _
nZ::? T 1@k P (31)
and
© (1+(gk 11—p)x)
"= - : (3.2)
nzzogkﬂ,nx 1_ pX+QX2
Proofs: Let f(x):ifkﬂ’nx” and g(x):igmynx”, so that
n=0 n=0
(1_VI(<2)X+ X2) f (X) = fk+l,0 +( fk+l,l - fk+l,0vl(<2))x
= 1+(1-1)x
=1, as required for (3.1).
Similarly,
(1_ PX+ qxz)g (X) =00t (gk+1.1 - pgk+1.0)x
ak+k _ﬂk+k
= 1+(W—(6¥+ﬂ)]x
=1+(gy,,—P)X,  asrequired for (3.2).
As an analogue of Catalan’s Identity, we have
" (3.3)

glirl,n - gk+1,n—kgk+l,n+k =q".
Proof. The numerator of the left-hand side reduces to
n n n k n 2
(ap) a™ +(ap) p* ~2(ap) (ap)'= (ap) (" - ")
2
— qn (ak _ﬂk)
which is g times the denominator of the left-hand side.
When p =-q =R, say, we are able to relate the f, ,  toordinary Lucas fundamental numbers,

ur(f), by means of a generalization of Barakat [2], who proved that
n—-m

u= > { - jp”‘z”‘(—q)”‘: 3 (”r_nmJR“-m.

0<2m<n 0<2m<n

For notational convenience, we further define formally
ul® =Rx, =Ry,

so that from (3.3), we have that
k—
X Y1 — Xk Y :(_R) g (3.4)

16



We are now in a position to assert a property which relates these lacunary Fibonacci numbers
to the ordinary Fibonacci numbers and which yields an iterative formula for the general terms

[12].

4  General terms
With the notation from the previous section, we have

Ry, .+ Rzyk—s
aZ _ﬁZ )

Lemma 4.1. v =

Proof. The numerator of the right-hand side is
(0[+,B)(C¥k+l —ﬂk+l)+(—aﬂ)(a+ﬂ)(akfl _ﬂk—l)
ak+2 ﬂkJrZ aﬁk+l+ak+lﬁ+a ﬁ akﬂZ +aﬂk+l_ak+lﬁ

=(a"+f")(a* A7)

=v(a* - 8).
Cnmasz e 3 (T e
0<m+s<n
Proof.
if z" 1
S 1Py

-1

—(R*,, +Ry, 1) 2+ (- R)‘ 22)
= (1 (R X2 +RY, 1)Z+R3(Xk 2Yer ~ XeaYiz ) 2 2)71
((1_ szk—zz)(l_ RYi12) - Rsxk-1Yk—222)7l

((1_ szk—zz)(l_ RYHZ))iH (Xk-1Yk-2 R’z )S

M

s-1 s . m-s,,s S+2m ., s+m
j(l_ Ry, 1) X1 X Ve RTTZ
N m t+S m-s,,t S+2m+t o, s+m+t
=>>> X % Vi a Vi RT Mz
S S
% miyn—-m
- m-s,,N-m—s n+mon
= z [Sj[ s jxk X Yea Ve RTTZ.

So, by equating coefficients of z", we find that
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O

(4.2)

from (3.1)

from Lemma 4.1

from (3.4)



fln= (mj(“—mj(uﬁ)s(ufz)”"‘s(um"'m*(ug)s o

S+M—S+n—-m—s+S
0<m+s<n S S R

N 4 o TSV P :

0<m+s<n

as required. For example, when k =1,

as in Barakat [2].

5 Conclusion

Other identities can be readily developed to relate these discatenated and lacunary Fibonacci
sequnces to other recursive properties. We shall conclude here with one such example.

k
n n a
fk+1,nz = fk+1,n :ak [(Ej J (51)
——/n+l

in which x, represents the n-th reduced Fermatian of index X, defined formally by
X =14+ X+ X2+ X" (5.2)

as used by Whitney [17] and extended by Shannon [14].
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