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1 Introduction

Fibonacci sequence and its generalization ¢-Fibonacci sequence are famous sequences in mathem-
atics. Many authors studied on these sequences (for example [1,2,5,6,9,12,18,19]). Fort > 2,

the t-Fibonacci number sequence, { F:}°° , is defined by

F£:F£—1+F£—2+"'+F£—t’ n 2>t
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and we seed the sequence with F} =0, F{ =0,..., F/ , =0, F}_, = 1. Let K;(m) denote the
minimal lenght of the period of the series { F):(mod m)}>2,. We call it wall number of m with
respective to ¢t-Fibonacci number sequence (see [20]).

Definition 1.1. A ¢-Fibonacci sequence in a finite group G = (X) is a sequence of group

elements 1, s, ..., Ty, ..., for which, given an intial (seed) set X = {a1, ..., a;}, each element
is definted by
Gy, for n <7,
Ty =1 T1Ty...(Tp_1), for j<mn<t,

Tpp - (Tpo1), for m>t.

The t-Fibonacci sequence of the group G = (X) and its period are denoted by F(G; X) and
L(G; X), respectively (see [17]).

By [3], for the 2-generator p-groups of nilpotency class 2 where p is an odd prime, we have:

o Gy = (a) x (b) where [a,b] = a?" ", |a| = p*, |b| = p°,|[a,b]] = p",a, 8,7 € N,a =2y
and 8 = 7.

« Gy = ({¢) x {(a)) x (b) where [a,b] = c,[a,c] = [b,c] = 1,]a] = p* |b] = p° || =
p’,o, B8,y € Nanda > 5 > v.

e Gy = ({¢) x (a)) x (b) where [a,b] = a?" "¢, [c,b] = a7 Ja| = p*, |b| =
P2, lel =7, ][a,b]| =p",a,8,7,0 eNya> B3>0 >1anda+ o > 2.

Note that x is simidirect product in groups. In group theory, a semidirect product is a
generalization of the direct product which expresses a group as a product of subgroups.
From the above, we have the following lemmas.

Lemma 1.1. (i) Every element of G can be written uniquely in the form a’b*, where 1 < j < p®
and 1 < k < pP. Then, |G| = p**7.

(ii) Every element of G5 may be uniquely presented by calbk, where 1 < i <p?, 1< g <p“
and 1 < k < pP. So that |G| = p**+F+.

(iii) Every element of G'3 may be uniquely presented by c'a’bt, where 1 < i < p° 1< j < p®
and 1 < k < pP. Hence, |G3| = p*+F+.

Lemma 1.2. For every integer n and m > 2, if

(

F!' = (mod m),
F!,y=0 (modm),

F'rtz—i-t—Q =0 (mOd m)7
| Fiyior =0 (mod m).

Then Ki(m) | n (see [14]).

Sections 2, 3 and 4 are devoted to studying the ¢-Fibonacci sequence in the groups G, Go,
and (73, respectively.
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2 The t-Fibonacci sequence in the group G,

In this section, we discuss the ¢-Fibonacci sequence in Gy = (a) x (b) where [a,b] = a?” |
la] = p*,|b] = % |[a,b]] = p",a, 8,7 € Nya = 2y, B = 7 and get the period of G; with
respect to X = {a, b}. First, we find a standard form of 3-Fibonacci sequence z3, 24, ... of G;.
For this, we need the following sequence:

h1(3) = 1, h2(3) = O, h3(3) = p7 + 1,

Pn(3) = hp3(3) + hpo(3) + hn_1(3) + " (hy_3(3)(F> 5 + F> )+ hy 2(3)F2 ), n>4.

Lemma 2.1. Every element of F5(Gy; X) may be presented by x,, = b*a"® n > 4.

Proof. By the relation [a,b] = a”” of Gy, we get ab = ba®?'*Y. Forn = 3,n = 4 and n = 5,
we have 13 = ab = ba®' ™V, x4 = ab(ba® V) = b2a¥") and x5 = bbaP V2P =

b*a3+%7") Then by induction method on n, we get

Tp = Tp—3Tp—2Tp—-1 = ng_sahnig’(B)b 2CLhn 2(3)[) h" 1(3)
— pFa st ER L s (B) (I FE_pp™) 3)pEa_1 ghn-1(3)
— st ot F g hn—3(3)thn—2(3)+hn—1(3)+07 (hn—3(3)(F}_p+F_1)+hn-2(3)F_,)
— pFE hn(3)
Then the assertion holds. ]

Example 2.1. For integers o = 2, f = v =1, p = 3, by Lemma 2.1 and the relations of G, we

have

T =a, T3=>0, x3=ab=0ba®"Y =pbq'= b3 s ) = ba', x4 = ab(ba*) = b*a'l = b*a?,
x5 =b =0, ...z =a, x4 =b, x40 =bal. ...

Consequently,

L40 = L3941 = L1, L41 = T39+2 = L2, T42 = L3943 = 3.
Then L3(G1; X) = 30.
Lemma 2.2. If L3(Gy; X) = t then t is the Least integer such that all of the equations

(

her1(3) =1 (mod p®),
his2(3) =0 (mod p®),
hi+3(3) =1 (mod p®),
=0 (mod p?),
Fi,=1  (modp?),
Fﬁm =1 (mod p?),

hold. Moreover, K3(m) divides Lg(Gl, X).

bFia" ) On the other hand, 2,1 = a, T1o = b and

Proof. By Lemma 2.1, we get x,, =
Tirg = ab.
Every element of G; can be written uniquely in the form a’ bk, where 1 < J<p*and1 <

k < p®. So we have
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he1(3) =1 (mod p®),
hia(3) =0 (mod p*),
hi+3(3) =1 (mod p),
=0 (mod p?),
Flp=1  (modp),
| PP =1 (mod p?).
So, Lemma 1.2 yield that K3(m) | t. O

In Table 1, by using the software Maple 18, we calculate K3(n), A, nm2)+1(3), Piym2)+2(3)
and h,(n2)43(3) forn =p < 50.

Table 1. th(TL), th(nz)_H (3), th(n2)+2(3) and hK3(n2)+3(3)

’ n=p ‘ K3(n) ‘ hky(n2)11(3) (mod p?) ‘ hky(n2)1+2(3)(mod p?) ‘ h gy () +3(3) (mod p?) ‘

3 13 hgor1(3) = 1 higg12(3) = 0 higo3(3) = 4
5 31 hiss41(3) =1 hiss542(3) = hiss543(3) =6
7 48 hassy1(3) =1 h32642(3) = 0 haoe43(3) = 8
11 110 hi21041(3) = 1 hi21042(3) =0 hi21043(3) = 12
13 | 168 horsir (3) = 1 horsara(3) = 0 horsars(3) = 14
17 96 higs241(3) = 1 Rigs242(3) =0 Rigs243(3) = 18
19 | 360 hosto11(3) = 1 hestora(3) = 0 hestors(3) = 20
23 553 hi271941(3) =1 hi279142(3) =0 hi2ro143(3) = 24
29 280 hs120+1(3) = 1 hg1204+2(3) =0 hs120+3(3) = 30
31 331 h10261+1(3) =1 h10261+2(3) =0 h10261+3(3) =32
37 469 hizss3+1(3) =1 hi735342(3) =0 hi735343(3) = 38
41 560 ha2g6o+1(3) = 1 ha2960+2(3) = 0 ha2gso+3(3) = 42
43 1232 hszgr6+1(3) = 1 hs2976+2(3) = 0 hsgr6+3(3) = 44
47 46 ha162+1 (3) =1 h2162+2(3) =0 h2162+3(3) =48

We are now in a position to state the following important Theorem

Theorem 2.1. For integert > 1 and p is a prime. If B = v =1 and o = 2, Then

Lg(Gl,X) =

Proof. Let p < 50 and m = p. Then,

= pKs(p), p <50.

3
TE(m)+1 = b stm+1 gresmn ) = ¢

xKg(m)+2

xKg(m)+3

3
— bFKS (m)+3 alth(m)+3 (3)

F3 a2 g (myo(3
= b Kgm+2 gl m+2(3) —
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By Lemma 1.2 and Table 1, we have

FI;S(S(m)+1 = F? = 0(mod m), F§3(m)+2 = F} = 1(mod m) and F;;S(m)% = F? = 1(mod m).
hicymy+1(3) = 1(mod m?), hicy(my+2(3) = 0(mod m?) and Ay, (m)13(3) = 1 + m(mod m").
Therefore, 2,11 = a, Tpyo = b, Tz = baP™, ie. L3(Gy; X) | Ks(p?).
Let | = L3(Gy, X) then we get

(

hi(3) =1 (mod m?),
hi2(3) =0 (mod m?),
hi3(3) =1+ m (mod m?),
Fa=0 (mod m),
a=1 (mod m),
Fa=1 (1mod m)

Hence, suppose | = s x K3(m). By Lemma 1.2 and Table 1, we have

hi1(3) =1 ( mod m?),
hiy2(3) =0 ( mod m?),
hl+3(3) =1+ ( mod m2).
So, K3(m?) is a divisor of L3(G1; X). Then we obtain L3(Gy; X) = Lz(p?). O

Here, we discuss the period of ¢-Fibonacci sequence in the group G;. First, we need the
following sequnces:

hi(t) = hy(t—1), ho(t) = ho(t—1),..., h(t) = he(t—1), hyy1(t) = her (E—1)+(1 4+ p7 ) nri-a
B (t) = Bt (t) 4 B—a(t) + Bz (t) ++ -4 By (£) + D (hoet ) (F o+ EL 44+ FL oy )
+ hn*t+1(t)(Frifl + Faﬁ +eeet F£+t—4) A by (t )(Fri+t y) forn >4, t>3.

Lemma 2.3. Every element of F,(Gy; X) may be represented by x,,(t) = b™+i-3a"®) forn > 4,
t >3

Proof. We use two dimensional induction method on £ and n. Indeed, by Lemma 2.1, we have
2,(3) = bFia"®) when x,(s) = bFra(®) (4 < s < t), it is sufficient to show that

T (t+ 1) = b5 w2 ghn (D),

For this, we use the induction method on n:
If 3 < s < t, from definitions of F! and h,(t), we get F/™! = F! and hy(t + 1) = hy(t), then
xs(t + 1) = x4(t). By this and the induction hypothesis on ¢, we obtain

2o(t 4 1) = BT aghetee)

Now we suppose that the hypothesis of induction holds for all s < n — 1, by definition of
xp(t+1),if F, := F! and x,, := x,,(t), then
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Tp = Tn—tTln—t4+1Tn—t4+2TLn—t4+3 " * xn—Q(xn—l)
— bFn—Sahn—tbFn—2a/hn—t+l bFn—lahn—t+2 bFnahn—t+3 X oo X bFn+t—4ahn—1

— bFn73+Fn72 ahn7t+hn7t+1+p’y(Fn72)ahn7t+1 banlahnftJﬁQ bFn ahn7t+3 X oo X bFn+t74a/hn71

— bFn—3+Fn—2+"'+Fn+t—4ahn—l(t)+hn—2(t)+h7z—3(t)+"'+hn—t(t)
P Bt O (Fy o HFy gt Py ) et O (F y +FittFp )+ thn1 (O(F i g)

— bFn+t73ahn(t)'

This completes the proof. ]

Theorem 2.2. Let p be a prime and let t > 1 be a positive integer. Then
Ki(p)|Li(Gr; X).
Proof. Similar to the proof of Lemma 2.2, it can be easily proved. [
In Table 2, we obtain L,(G1; X) where « = 2,3 = = 1 and p < 50.

Table 2. The period of the ¢-Fibonacci sequences of group G.

[ Ls(G1; X) [ Ks(p) | Lu(Gi; X) [ Ku(p) |

P

3 39 13 78 26

) 155 31 1560 312
7 326 48 2394 342
11 1210 110 1320 120
13 2184 168 1092 84
17 1632 96 43504 4912
19 6840 360 130302 6858
23 12719 953 279818 12166
29 8120 280 812 280
31 10261 331 868620 28020
37 17353 496 20616 1368
41 22960 560 9840 240
43 52976 1232 7000400 162800
47 2162 46 4879634 103822

We finish this section with an open question as follows: Prove or disprove whether for the

group G and B = v and o = 2, we have
L(Gy; X) = K,(p*) = pKi(p)-
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3 The t-Fibonacci length of the group G-
We consider the group G2 as follows:
Ga = ({c) x (a)) x (b),

where [aab] =G [CL,C] = [bv C] - ]-a |CL| :pa’ |b| :pﬁa |C| :pwaaaﬁav € N,CY > /B > -

In this section, we find the ¢-Fibonacci sequence in G5 with respect to to X = {¢, a, b}. First,
we study the 4-Fibonacci sequence of these group.

F4 1+F§—2+F3—3
Up—g(4) + Up_3(4) + Up_o(4) + Up_1(4) — (FF , X up_3(4)
+(Fy g4 Fyg) X un—a(4) + (Fy_y + Fy_s+ Fy_y) X tp_1(4)).

gn(4)
Unp (4)

By using the relation [a, b] = ¢ in Gy, we can write [b', a’] = ¢™%, where 4, j € N. Hence, by the
relations of [a, c| = [b, ] = 1 and Lemma 1.2, for every = € G5, we have [z,¢] = 1.

Lemma 3.1. Every element of F,(Gy; X ) may be presented by x,, = ¢! q9n(4) bin, n > 4.

Proof. Wehave 14 = cab, x5 = c*a®b*, 1 = ab(cab)(c*a®h?) = ¢ 3a*b* and 27 = ¢=?2a"1®. Then

by induction on n, we get

xn — xn—4xn—3xn—2xn—1 — Cun74(4)ajtn74(4)bFn 4Cun 3(4) tn 3(4)b n— 3cun72(4 tn— 2 b

c“"*1(4)at"*1(4)bFs—1
— un—a(®)tun—3@)Fun—2(4)Fun—1(4) gta-a() pFu_q gtn-s(4) pFn_s gtn—2(H) pFa_o gtn—1(4) pFa_s
— cun—a(@)tun—3@)tun—2(4)tun—1(4)=F;_yxXtun—3(4) ytn-a(@)+tn—s()pFr 4+ F g5 tn2(@)pFr s gtn1(9pFr
_ Cun,4(4)+un,3(4)+un 2(4)tun—1(4)—F1_ xup—3(4) _ (F4 + Jais ) « un_3(4)at"*4( )+tn—3(4)+tn—2(4)

b I Jedl 2qtn— 1(4)bFff—1
— un—a(@)Hun—3(4)Fun—2(4)tun—1(4) = (F;_y Xtn-3()+(F_y+F; g)Xtun—2(4)+(F_4+F; 3+F; o) xun—1(4))
aFﬁ—l"‘Fn 2+ 3b +FL gt Py o+ F
— cun(4) atn(4)bF;f.
Thus the result holds. ]

Example 3.1. For the group G5 and integers o = =~ = 1, p = 5, by Lemma 3.1, we have

Ty =, Ty =a,x3 =b, x4 = cab, r5 = abcab = ¢'a?b? = P a5 ¢ a3t xr = Aad®b? .

_ 1010
T313 = T31241 = C A b = C, X314 = T31242 = @, T315 = T31243 = b, . ...

Consequently, 313 = T31241 = L1, T314 = T31242 = L2, T315 = T31243 = L3.

Therefore, L(G2; X) = K4(5).

In Table 3, using the software Maple 18, we calculate K, upi,1(4), upiio(4) and upai3(4)
forn =p < 50.
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Table 3. Ky(n), ups1(4), upsio(4), upsis(4) and upai4(4) forn = p < 50.

n=p| Kp |up(4)(modp) | upsis(4)(mod p) | upss(4)(mod p) | ups4(4)(modp) |
26 uzg1(4) =1 Uzg2(4) =0 uzg3(4) =0 urg14(4) =1

5 312 ugr2+1(4) =1 ug1242(4) =0 ug1243(4) = ug1244(4) =

7 342 ugsni1(4) =1 Ugq242(4) =0 ugs2+3(4) =0 ugsora(4) =1
11 120 u12041(4) =1 U12042(4) =0 U120+3(4) =0 uig044(4) =1
13 84 ugsr1(4) =1 Uga2(4) =0 ugsr3(4) =0 ugqra(4) =1
17 4912 Ugo1241(4) = 1 Ug91242(4) =0 Ugo1243(4) =0 Ugo1244(4) = 1
19 6858 ugsss+1(4) = 1 ugssst2(4) =0 ugsss+3(4) =0 ugsssra(4) = 1
23 12166 U12166+1(4) =1 U12166+2(4) =0 U12166+3(4) =0 u12166+4(4> =1
29 280 usgor1(4) =1 Usgos2(4) =0 Usgo+3(4) =0 usgora(4) =1
31 28020 | uggo20+1(4) =1 Ugg020+2(4) = 0 Ugg020+3(4) =0 | Uggo2044(4) =1
37 13688 u13es+1(4) = 1 U136s42(4) =0 U136s+3(4) =0 U3es+4(4) = 1
41 240 ugg041(4) =1 Ugg042(4) =0 Uag0+3(4) =0 Uggora(4) =1
43 | 162800 | wigoso0+1(4) =1 | wigesoo+2(4) =0 | uig2s00+3(4) =0 | uig2s004+4(4) =1
47 103822 U103822+1(4) =1 U103822+2(4) =0 U103822+3(4) =0 U103822+4(4) =1

Lemma 3.2. If L3(Gy; X) = [, then | is the Least integer such that all of the following equations
hold.

gi+1(4) =0 (mod p®),
91+2(4) =1 (mod p%),
giys(4) =0 (mod ),
gi+4(4) =1 (mod p%),
w1(4) =1 (mod p?),
u2(4) =0 (mod p?),
tir3(4) =0 (mod p7),
fead) =1 (mod p),
FL, =0 (mod p?),
Fiyy =0 (mod p?),
Fiis=1 (mod p”),
FL, = (mod p”)

\

Moreover;, K,(m) where m = p? divides Ly(Go; X).

Proof. By Lemma 3.1, we get z,, = ¢*»®a®WpFe Since 2,41 = ¢, Zyp0 = a, Ty3 = b, Typq =
cab and from Lemma 1.1 and 1.2, the results are obtained immediately. ]

Theorem 3.1. For the group G, a = f =~ = 1and 5 < p < 50, we have Ly(Go; X) = K4(p).
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Proof. For 5 < p < 50, we have

4
$K4(p)+l — CuK4<p)+1(4)agK4<p)+l(4)bFK4(p)+1 _ C7

F4
TRa(p)+2 = a2 g2 Ky m+2 = g

F4
TR y(p)e3 = Uk (p)+3(4) g9k () +3D) pr R, )43 — b,

4
TKy(p)+4 = c“K4(p)+4(4)a9K4(p)+4(4)bFK4(P)+4 = cab.

By Lemma 1.2 and Table 3, we may write

Frpa1 =F1=0 (mod p),  Fy,).p =F>=0 (mod p),
Fiypes = F3=1 (modp),  Fi,pypa = Fi=1 (mod p),

IKap+1(4) =0 (mod p), gri(p+2(4) =1 (mod p),
9xi(p+3(4) =0 (mod p), IKa(p)+4(4) =1 (mod p),
Uky(p)+1(4) =1 (mod p), Uk, (p)+2(4) =0 (mod p),
Uk, (p)+3(4) = 0 (mod p), Uk, (p)+3(4) =1 (mod p).

Therefore, L4(G2; X) | K4(p). Using Lemma 3.2, shows that K4(p) is a divisor of Ly(Go; X).
According to these results, it is seen that

Ly(G2; X) = Ku(p).

This completes the proof. []

gu(t) = Fy_g + Fo g+ + Foyy s,

ur(t) =ui(t—1),. ., ue(t) = w(t — 1), w1 (¢) = Floy s+ wpa (= 1).

Un(t) = Un—t(t) + Un—t1(8) + -+ Uno1 (8) = (F_y X Unoe1 () +(Fy_y + Fy_g) X tneia(t))
ot (Fuog+ Fyg o+ Fryyg) X un—a (1)

Lemma 3.3. Every element of F,(Gy; X) may be represented by x,,(t) = c*»(")q9n®) pFr+i-a(t)
forn, k > 4.

Proof. We use two dimensional induction method on ¢ and n. Indeed, by Lemma 3.1, we have
Zn(4) = W agnMpFa and if z,,(s) = a9 )pF (5 < s < t), it is sufficient to show that

Ealt 4 1) = ) qonlH R

For this, we use the induction method on n:
If 3 < s < t, from definitions of F!, g, (t) and u,(t) we get FI*t = F! g, (t + 1) = g,(t)
and us(t 4 1) = hs(t), then z4(t + 1) = x4(t). By this and the induction hypothesis on ¢, we have

zs(t+1) = s+ g () P
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Now we suppose that the hypothesis of induction holds for all s < n — 1, by definition of
zo(t+1),if F, := F! and x,, :== x,(t), then,

Tp = ajnf(t)gjn—t+1l'n—t+2xn—t+3 Tt $n—2(xn—1)

— cun—kagn—kanf4cun—k+l agn—k+1 bF”’L*S X o0 X Cunfl a/gnfl bF'rH—k—S

— Un—ktTUn—kt1 ,9n—k HEFn—4 In—k+1Fn—3 . Un—1 ,9n—1 K Fnik—5

=c af kb b X X ' ta9nth

— Cun—k+un—k+l_(Fn—4Xgn—k+l)a9n—k+gn—k+1 bFn—4+Fn—3 X oee X Cun—lagn—le7z+k—5

— C“7L—t(t)+U'n7t+1(t)+"'+un71 (t)*(anél Xun7t+1(t))+(an4+Fn73) XUn—t4+2 (t))+"'+(Fn74+Fn73+'"+Fn+t76)Xunfl (t)

aFn—3+Fn—2+“'+Fn+t—5 bFn—4+Fn—5+“'+Fn+k—5

— cu" (t) agn (t) bFn+t74 '
This completes the proof. .

In Table 4, we obtain L,(Gy; X) where « = 2,3 = = 1 and p < 50.

Table 4. The period of ¢-Fibonacci sequence of the group Go.

’ p ‘ L4(G2; X) ‘ K4(p) H 14 ‘ L4(G2; X) ‘ K4(p) H

3 78 26 23 12166 12166
) 312 312 29 280 280
7 342 342 31 28020 28020
11 120 120 37 1368 1368
13 84 84 41 240 240
17 4912 4912 | 43 162800 162800
19 6858 6858 || 47 103822 103822

We finish this section with an open question as follows: For the group Gy and o = f = 7 =
1, we have
(1) Ifp|t—1 we have Li(Go; X) = pKi(p).
(17) Otherwise, we have Li(Go; X) = Ki(p).

4 The t-Fibonacci length of the group G5

Now, we consider G3 = ({c) x (a)) x (b) where [a,b] = a "c,|[c,b] a—p“ﬂ*”)c—p“”,
lal = p*, bl = p% el = p7, ][0, 0] = P, 8,70 € Na > 5 >0 > La+o > 2y
We define the sequences {e,, }$° and {g, }5° of integers as follows
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() = 1, ea(d) = es(d) = 0, ea(d) = Lgr(4) = 0, go(d) = 1, g5(4) = 0, gs(4) = 1,
en(4) = €n-1(4) + en- 2( )+ en—a(4) + ena(4) + P (F_yen—s(4) + en—a(Fy_y + Fy_3)
+ena(Fyy +Fyy)) = (gn-3(4) Fyy
+ n— 2(F:zl 4)+gn 1(Fﬁ_4+F43+F§_2))n25»
9n(4) = gn-1(4) + gn- 2( ) + gn-3(4) + gn-a(4) + P (Fy_sen—s(4) + ena(4)(F,_,
+ Fy g+ ena(8)(Foy+ Fug+ Fi)) = p™ 7 (gn-s(H) 0y
+gn2(Fy g+ Fy )+ gna(Fy s+ Fy 3+ F, ), n>5.

We are in a position to find a standard form of the 4-Fibonacci sequence x4, x5, ... of G5, n

5. First, by the relations of (i3, we obtain ba = alb,alb = ¢ 'a'™" "b and bec = c[b,c]b =
(=) _p2(a=)
P ab b.

v

Lemma 4.1. Every element of F4(Gs; X) may be presented by x,,(4) = ¢"DamWpFa n > 4,

Proof. We have z4(4) = cab, x5(5) = cabcab = P g2 2

_ a—v 4 p2(a=y) 9_9n3(a—7) 2(a—v) _gpo—v
1.6(4) =c 4+5p +p CL2 2p +5p 3p +2b4 and

3(a— 2(a— - 3(a— 3(a— 2(a— - . .
wp(4) = MR OT T TP A2 ) ap O Tp T 1T T Then by induction

method on n, we get

In<4) = In,4(4)$n,3(4)1%,2(4)37”,1(4)
— on-a(®) g In-a(DpFr_y on—3(4) qon 3D pFr 5 en—2(4) qon—-2()pF 5 cen—1(4) ggn-1(4)pF,_
= Ce"*4(4)a9"*4(4)cen*3(4) [b7 C] Fé74en*3 bFn‘lfs a9n73(4)bF373 Cenf2(4) a9n72(4) banz Cen71(4)a9n71(4)bF371
— cen-1(@)ten—s(D)+p" 7 (F_sen—3(4) qgn-a()+n-3(H)+p* "V (F]_sen—3(4))
bFﬁfsa9n73(4)bF373cen—2(4)a9n—2(4)bFn 2 cen-1(4) ggn-1(4) pFi_,
— En-a(DFen—s(H)+p T (Fy_yen—3(4)—F,_sen— 3(4)agn—4(4)+gn—3(4)+p2(°‘*”(Fé74en—s(4))—p°"”(Fé74€n—3(4))
bF4 At 30fn— 2(4)a9n 2(4)b o2 ofn— 1(4)ag"*1(4)bF371
— en1(@)Fen—a(d)ten—s(4)ten—a(4)+p* 7 (F_yen—s(4)+en—a(F_4+F_g)ten1(F_y+F_s+F,_5))
cOn—s@F_ytgn-2(F_5+F_)tgn-1(F)_4+Fl_3+F )
91D +gn—2(4)+gn-3(4)+gn-a(4)+p* V) (F}_yen—s(d)+en—2()(Fl_y+F_sgten1(9(F)_4+F)_3+F] )
a*pafv(gn—3(4)fé74+9n—2(Fﬁ73+F374)+9n—1(fﬁ74+Fﬁ73+F372))bF374+F7%73+Fﬁ ot Fn g

= (4) adr (4) bFn4 .
Then, the result is as follows. O

Example 4.1. For integers f =y = 2,0 = 1,a = 3, p = 3, by Lemma 4.1 and the relations of
Gs, we have:

4
;El =c¢, Ty =a, T3 =>b, x4 = cab, x5 = abcab = *a®V? = W aBWpF | 1o = Sal®b!, 17 =

atb? _ A_1T10 _ T.672 _ 6,192 _ _ _ _
b2, x5 = cta'"b°, g = c"a®h?, z19 = Cal?b?, ..,x235fc,33236fa,:c237fb,x238f

cab... .
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Consequently, xa35 = X234+1 = T1,T236 = X23442 = T2, X237 = X23443 — T3, T238 — XL23444 —

24. Therefore,

In Table 5, we obtain L,(G3; X

L4(G3;

X)

= K,4(3%).

)wherea« =3, =7 =2,0 =1and p < 50.

Table 5. The period of 4-Fibonacci sequence of the group G3.

p | Li(Gs; X) | Ka(@®) | p

| Li(G3;X) | Ku(p®) |

3 234 234 23 | 6435814 6435814
) 7800 7800 29 23548 23548

7 16758 16458 || 31 | 26927220 | 26927220
11 14520 14520 | 37 1872792 1872792
13 14196 14196 | 41 403440 403440
17 1419568 1419568 || 43 | 301017200 | 301017200
19 2475738 2475738 || 47 | 4879634 4879634

en(t) = en—e(t) + enyy1(t) + - +en1(t) +p* W(Fn nt41(t) + (Ft + Ft t+1)€n t+2

+o ot (B Foop o 4 Fapg)ena) = (Fugnvnn () + (Fug 4 Frig1)gnose2
o (B + F, —t41 T +Ft+t 3)9n—1)

9n(t) = gnt() + gamrr () + -+ gur () + 2" (Fyyenmin () + (Fry + Frypn)enieo
+ "+(Ft ‘l'Ft pp1 T +Ft+t 3)€n—1) — av(Ft tn— t+1()+(Ft ‘l'Ft t+1)gn t+2
o (B + B t+1 T +Ft+t 3)9n—1)

t
Fn+t—4 ,

Lemma 4.2. Every element of F;(G3; X
n, t > 4.

) may be represented by x,,(t) = a1}

Proof. We use two dimensional induction method on ¢ and n. Indeed, by Lemma 4.1, we have
2, (4) = r@am@pFsis and if 2, (s) = D9 GpFiri-a (5 < s < t), it is sufficient to show
that

I’n(t + 1) = cen(tJrl)agn(tJrl)bFni% 3

For this, we use an induction mehod on n:
If 4 < s < t, from definitions of F!, e, (t) and h,(t) we get FIt1 = F! e (t + 1) = e4(t) and

hs(t + 1) = hy(t), then z4(t + 1) = z4(¢). By this and the induction hypothesis on ¢, we have
r(t+1) = o (D) qgs (DI s

Now we suppose that the hypothesis of induction holds for all s < n — 1, by definition of
zp(t+1),if F, := F! and x,, := x,(t), then
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Tp = Tpn—tTn—t4+1Tn—t42TLn—t+4+3 " ° xn—Q(xn—l)

— en—tgn—thFn—1n—t+1 g Gn—t+1 -3 en—tt2 g n—t2pFr-2  cen-1,0n—1pFnti-5
= ¢ttt [b’ C]Fé%en_tﬂbFn_SCe”_t+2ag”_t+2bF"—2 o =1 gIn—1 s
= Cenit—i_enitﬂ+pa_w(F"74e"7t+1)ag”*t+9"*t+1+?’2(a_7)(Fn746n7t+1)bFn73Cen7t+2agn7t+2bFn72

- Cen—lagn—len+t—5
— en—tten—t+1 P (Fa—sen—t1) = Fu—sen—tr1 gn—ttgn—t1+p* ™ (Fusen—t41)=p* "7 (Fu—sen—ts1) pFns
Cen—t+2agn—t+2bFn—2 . Ce"_lag”—le"-*-t—5

— Ctl at2 bF7L7t+Fn7t+1+"'+Fn+t75 — Cen(t) agn(t) bF7tL+t—4 .
where,

th=eptt+enp1+ -+ en1+p* T (Folnip1 + (Fay + Fui1)eni42
ot (Bt + B+ 4+ Faes)en1) — (FoctGnir + (Pt + Frcg1) gtz + - +
(Foot + Foepr + -+ Foyt3)gn-1,
to = gnt+ Gnotr1 + -+ Goo1 + 77
(Fotln—t+1 + (Foet + Fyppr)enqo+ -4 (Foet + Frpr + -+ F—s)en—1)
— 0 (Fotnts1 + (Fpet + Frip1) Gn—ti2 + -+ (Face + Foceir + - + Fogi—3)gn—1),

the result is now immediate. []
Lemma 4.3. For every m = pP, we have K,(m)|L4(G3; X).
Proof. The proof is similar to that of Lemma 3.2. [

We end this section by an open question as follows: Prove or disprove whether for = v =
o+ 1land o > o + 2, we have

Li(Gs; X) = Ki(p®) = p*Ki(p).

5 Conclusion

Here, we study the lengths of the periods of the ¢-Fibonacci sequences in the 2-generator p-groups
of nilpotency class 2. We show that the minimal lenght of the period of ¢-Fibonacci divide the
lengths of the periods of the ¢-Fibonacci sequences in the 2-generator p-groups of nilpotency class

2.
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