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Abstract: In this note, based on a certain functional equation of the dilogarithm function, we
establish nontrivial lower bounds for the p-adic valuation (where p is a given prime number) of
some type of rational numbers involving harmonic numbers. Then we use our estimate to derive
the integrality of some sequences of rational numbers, which cannot be seen directly from their
definitions.
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1 Introduction and notation

Throughout this paper, we let N denote the set of positive integers and N0 := N ∪ {0} the set of
nonnegative integers. For x ∈ R, we let ⌊x⌋ denote the integer part of x. For a given prime number
p and a given nonzero rational number r, we let ϑp(r) denote the usual p-adic valuation of r; if in
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addition r is positive then we let logp(r) denote its logarithm to the base p (i.e., logp(r) :=
log r

log p
).

For a given prime number p and a given positive integer n, we let sp(n) denote the sum of base-p
digits of n. Next, the least common multiple of given positive integers u1, u2, . . . , un (n ∈ N)
is denoted by lcm(u1, u2, . . . , un). At some places of this paper, we need to use the well-known
formulas:

ϑp (lcm(1, 2, . . . , n)) =
⌊
logp(n)

⌋
, (1.1)

ϑp(n!) =
n− sp(n)

p− 1
(1.2)

(which are valid for any prime p and any positive integer n). Note that only the second one is
nontrivial; it is known as the Legendre formula, a proof of which can be found in [6, Theorem
2.6.4, page 77]). Furthermore, we let (Hn)n∈N0

denote the sequence of harmonic numbers,
defined by H0 = 0 and Hn := 1

1
+ 1

2
+ · · ·+ 1

n
(∀n ∈ N). We let also Li2 denote the dilogarithm

function, defined by:

Li2(X) :=
+∞∑
n=1

Xn

n2
(∀X ∈ C, |X| ≤ 1).

It is known (see e.g., [5]) that Li2 satisfies the functional equation:

Li2(X) + Li2

(
X

X − 1

)
= −1

2
log2(1−X) (1.3)

(for X in the neighborhood of 0). If f is an analytic function at 0 (or simply a formal power
series), we define the order of f , which we denote by Ord(f), the multiplicity of 0 in f . Actually,
the map f 7→ Ord(f) constitutes a discrete valuation on the ring C[[X]] of formal power series
(see e.g., [7, Chap VII]); namely, it satisfies

Ord(f + g) ≥ min (Ord(f),Ord(g)) ,

Ord(fg) = Ord(f) + Ord(g)
(∀f, g ∈ C[[X]]).

Besides, if f, g ∈ C[[X]] with g(0) = 0, then it is easily checked that f ◦ g ∈ C[[X]] and that

Ord(f ◦ g) = Ord(f) ·Ord(g).

Using this concept of order, the n-th degree Taylor polynomial of f ∈ C[[X]] (where n ∈ N0) is
the unique complex polynomial fn of degree ≤ n, satisfying Ord(f − fn) > n. Consequently,
for n ∈ N0, two analytic functions f and g at zero have the same n-th degree Taylor polynomial
if and only if Ord(f − g) > n.

Very recently, the author [4] has obtained, by different methods, a lower bound for the p-adic
valuations of the rational numbers of the form

∑n
k=1

(
1
ak

+ 1
(p−a)k

)
pk

k
(n ∈ N, p a prime, a ∈ Z

with a ̸≡ 0 (mod p)) (generalizing the earlier results of [1–3] which uniquely concern the case
p = 2). One of these methods exploits the functional equation (analogous to (1.3)): Li1(X) +

Li1
(

X
X−1

)
= 0 (where Li1(X) :=

∑+∞
n=1

Xn

n
= − log(1 − X), for all X ∈ C with |X| < 1).
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Following the same method, that we adapt to the function Li2 and its functional equation (1.3),
we will establish nontrivial lower bounds for the p-adic valuations of the rational numbers of the
form

n∑
k=1

(
1

ak
+

1

(p− a)k
+

kHk−1

ak

)
pk

k2

(n ∈ N, p a prime, a ∈ Z with a ̸≡ 0 (mod p)). Then by specializing (p, a) to (2, 1), we derive
the integrality of the sequence of general term

n!2

4n

n∑
k=1

(2 + kHk−1)
2k

k2
(n ∈ N \ {3, 5, 7})

(a fact which cannot be seen directly from the last expression). We conclude the note by deducing
the integrality of another sequence of rational numbers (related to the preceding) and by some
general remarks.

2 The results and the proofs

Our main result is the following:

Theorem 2.1. Let p be a prime number and a be an integer not multiple of p. Then we have for
all positive integer n:

ϑp

(
n∑

k=1

(
1

ak
+

1

(p− a)k
+

kHk−1

ak

)
pk

k2

)
≥ n+ 1− 2

⌊
logp(n)

⌋
.

To prove Theorem 2.1, we need the following lemma:

Lemma 2.2. Let n ∈ N0 and f and g be two analytic functions at 0 with g(0) = 0. Let also fn
denote the n-th degree Taylor polynomial of f . Then the n-th degree Taylor polynomial of (f ◦ g)
is the same with the n-th degree Taylor polynomial of (fn ◦ g).

Proof. We have to show that Ord(f ◦ g − fn ◦ g) > n. We have

Ord (f ◦ g − fn ◦ g) = Ord ((f − fn) ◦ g) = Ord(f − fn) ·Ord(g) > n

(since Ord(f − fn) > n and Ord(g) ≥ 1). The lemma is proved.

Proof of Theorem 2.1. By substituting into Equation (1.3) X by X
a

, we get

Li2

(
X

a

)
+ Li2

(
X

X − a

)
+

1

2
log2

(
1− X

a

)
= 0. (2.1)

Now, let n ∈ N. Since the n-th degree Taylor polynomials of the two functions t 7→ Li2(t) and
t 7→ 1

2
log2(1− t) at 0 are, respectively,

∑n
k=1

tk

k2
and

∑n
k=1

Hk−1

k
tk and since the functions t 7→ t

a

and t 7→ t
t−a

both vanish at 0, then (according to Lemma 2.2) the n-th degree Taylor polynomial
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of the function X
g7−→ Li2

(
X
a

)
+ Li2

(
X

X−a

)
+ 1

2
log2

(
1− X

a

)
is the same as the n-th degree

Taylor polynomial of the rational function

Rn(X) :=
n∑

k=1

(X
a
)k

k2
+

n∑
k=1

( X
X−a

)k

k2
+

n∑
k=1

Hk−1

k

(
X

a

)k

.

But on the other hand, in view of (2.1), the n-th degree Taylor polynomial of g at 0 is zero.
Comparing these two results, we deduce that the multiplicity of 0 in Rn is at least (n + 1).
Consequently, Rn(X) can be written as:

Rn(X) = Xn+1 · Un(X)

an(X − a)nlcm(1, 2, . . . , n)2
,

where Un ∈ Z[X]. In particular, we have

Rn(p) = pn+1 · Un(p)

an(p− a)nlcm(1, 2, . . . , n)2
.

Next, because Un(p) ∈ Z (since Un ∈ Z[X]) and a is not a multiple of p, then by taking the p-adic
valuations in the two sides of the last identity, we derive that:

ϑp (Rn(p)) ≥ n+ 1− 2ϑp (lcm(1, 2, . . . , n))

= n+ 1− 2
⌊
logp(n)

⌋
,

as required. This achieves the proof.

By taking (p, a) = (2, 1) in Theorem 2.1, we derive the following important corollary from
which we will deduce the integrality of a certain rational sequence.

Corollary 2.3. For all positive integer n, we have

ϑ2

(
n∑

k=1

(2 + kHk−1)
2k

k2

)
≥ n+ 1− 2 ⌊log2(n)⌋ . □

As an application of Corollary 2.3, we obtain the integrality of a particular rational sequence,
which cannot be seen directly from its original expression.

Theorem 2.4. For every n ∈ N \ {3, 5, 7}, the rational number

n!2

4n

n∑
k=1

(2 + kHk−1)
2k

k2

is in fact a positive integer.

The proof of Theorem 2.4 needs the following lemma:

Lemma 2.5. For all integer n ≥ 8, we have

s2(n) + ⌊log2(n)⌋ ≤
n+ 1

2
.
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Proof. Let n ≥ 8 be an integer and let 1ak−1 . . . a1a0(2) = a0+2a1+22a2+ · · ·+2k−1ak−1+2k

be its representation in the binary system (with k ∈ N, k ≥ 3, and a0, a1, . . . , ak−1 ∈ {0, 1}).
Then, we have

s2(n) + ⌊log2(n)⌋ = a0 + a1 + · · ·+ ak−1 + 1 + k

=
1

2
(2a0 + 2a1 + · · ·+ 2ak−1 + 2(k + 1))

≤ 1

2

(
1 + a0 + 2a1 + 22a2 + · · ·+ 2k−1ak−1 + 2k

)
(since a0 ≤ 1 and 2(k + 1) ≤ 2k)

=
1

2
(n+ 1) ,

as required.

Proof of Theorem 2.4. For n ∈ {1, 2, 4, 6}, we verify the required result by hand. Take for the
sequel n ≥ 8. Since we have obviously

n!2
n∑

k=1

(2 + kHk−1)
2k

k2
∈ N,

then we have just to show that:

ϑ2

(
n!2

4n

n∑
k=1

(2 + kHk−1)
2k

k2

)
≥ 0.

By using Legendre’s formula (1.2) for p = 2 together with Corollary 2.3, we have that:

ϑ2

(
n!2

4n

n∑
k=1

(2 + kHk−1)
2k

k2

)
= 2 (n− s2(n))− 2n+ ϑ2

(
n∑

k=1

(2 + kHk−1)
2k

k2

)
≥ 2 (n− s2(n))− 2n+ n+ 1− 2 ⌊log2(n)⌋

= n+ 1− 2 (s2(n) + ⌊log2(n)⌋)

≥ 0 (according to Lemma 2.5),

as required. This completes the proof of Theorem 2.4.

From Theorem 2.4, we derive the following corollary:

Corollary 2.6. For every n ∈ N \ {3, 5, 7}, the rational number

(2n)!2

4n

n∑
k=1

2 + (n+ k)Hn+k−1

(n+ k)22n−k

is in fact a positive integer.
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Proof. Let n ∈ N \ {3, 5, 7} and set

un :=
n!2

4n

n∑
k=1

(2 + kHk−1)
2k

k2
.

Then we have

(2n)!2

4n

n∑
k=1

2 + (n+ k)Hn+k−1

(n+ k)22n−k
=

(2n)!2

42n

n∑
k=1

(2 + (n+ k)Hn+k−1)
2n+k

(n+ k)2

=
(2n)!2

42n

2n∑
k=n+1

(2 + kHk−1)
2k

k2

=
(2n)!2

42n

[
2n∑
k=1

(2 + kHk−1)
2k

k2
−

n∑
k=1

(2 + kHk−1)
2k

k2

]

=
(2n)!2

42n

2n∑
k=1

(2 + kHk−1)
2k

k2
− (2n)!2

4nn!2
· n!

2

4n

n∑
k=1

(2 + kHk−1)
2k

k2

= u2n −
(
(2n)!

2nn!

)2

un.

But since un, u2n ∈ Z (according to Theorem 2.4) and

(2n)!

2nn!
=

1× 2× · · · × (2n)

2× 4× · · · × (2n)
= 1× 3× 5× · · · × (2n− 1) ∈ Z,

we have that u2n −
(

(2n)!
2nn!

)2
un ∈ Z. The required result of the corollary then follows.

Remarks 2.7

1. Using Theorem 2.2 of [4], we can easily verify that the lower bound of Theorem 2.1 is
essentially optimal.

2. The rational sequence introduced in Theorem 2.4 can be alternatively defined by the
recurrence: {

u0 = 0

un = n2

4
un−1 +

(n−1)!2

2n
(2 + nHn−1) (∀n ≥ 1)

.

Similarly, the rational sequence introduced in Corollary 2.6 can be alternatively defined by
the recurrence: {

v0 = 0

vn = n2(2n−1)2

4
vn−1 +Kn (∀n ≥ 1)

,

where (Kn)n is a sequence of rational numbers having a closed form in terms of harmonic
numbers.
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3. Using some more complicated functional equations of polylogarithms (such as Equation
(6.108) of [5, page 178]), we can give other results similar to Theorem 2.1 and then
establish the integrality of some other rational sequences similar to those of Theorem 2.4
and Corollary 2.6.

4. It is also possible to prove Theorem 2.1 by means of the p-adic dilogarithm function
together with Theorem 2.2 of [4] (this non elementary method is detailed in [4] for the
p-adic logarithm function).
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