Notes on Number Theory and Discrete Mathematics Print ISSN 1310-5132, Online ISSN 2367-8275

2023, Volume 29, Number 4, 813–819

DOI: 10.7546/nntdm.2023.29.4.813-819

On a modification of $\underline{\operatorname{Set}}(n)$

Krassimir T. Atanassov¹ and József Sándor²

Dept. of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

e-mail: krat@bas.bg

² Department of Mathematics, Babeṣ-Bolyai University Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania e-mail: jsandor@math.ubbcluj.ro

To Tony Shannon for his 85th anniversary!

Received: 13 July 2023 **Revised:** 30 October 2023 **Accepted:** 13 November 2023 **Online First:** 2 December 2023

Abstract: A modification of the set $\underline{\operatorname{Set}}(n)$ for a fixed natural number n is introduced in the form: $\underline{\operatorname{Set}}(n,f)$, where f is an arithmetic function. The sets $\underline{\operatorname{Set}}(n,\varphi),\underline{\operatorname{Set}}(n,\psi),\underline{\operatorname{Set}}(n,\sigma)$ are discussed, where φ,ψ and σ are Euler's function, Dedekind's function and the sum of the positive divisors of n, respectively.

Keywords: Arithmetic function, Functions φ , ψ and σ , $\underline{\operatorname{Set}}(n)$.

2020 Mathematics Subject Classification: 11A25.

1 Introduction

Let us, following [1], for a fixed natural number $n \geq 2$ having the canonical form

$$n = \prod_{i=1}^{k} p_i^{\alpha_i},$$

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

where k, α_1 , α_2 ,..., $\alpha_k \ge 1$ are natural numbers and $p_1 < p_2 < \cdots < p_k$ are different prime numbers, define:

$$\underline{\operatorname{set}}(n) = \{p_1, p_2, \dots, p_k\}$$

$$\underline{\operatorname{Set}}(n) = \{m \mid m = \prod_{i=1}^k p_i^{\beta_i} \& \delta(n) \le \beta_i \le \Delta(n)\},$$

where1

$$\delta(n) = \min(\alpha_1, \dots, \alpha_k),$$

$$\Delta(n) = \max(\alpha_1, \dots, \alpha_k).$$

Now, we can define a new set, subset of Set, with the form

$$\underline{\operatorname{Set}}(n,f) = \{ m \mid m \in \underline{\operatorname{Set}}(n) \& f(m) \in \underline{\operatorname{Set}}(n) \}. \tag{1}$$

Here, we will show the conditions for an element $m \in \underline{\operatorname{Set}}(n)$ to also satisfy $m \in \underline{\operatorname{Set}}(n,f)$, where f is the Euler's totient function φ and the Dedekind's function ψ .

2 The case of Euler's totient function

Let f be the Euler's totient function φ . Therefore, below, 2 must be a divisor of n, because in $\underline{\operatorname{Set}}(n,\varphi)$ for $n\geq 3$, all numbers must be even, i.e.,

$$n = 2^{\alpha} \cdot \prod_{i=1}^{k} p_i^{\alpha_i},\tag{2}$$

where $k, \alpha, \alpha_1, \alpha_2, \ldots, \alpha_k \ge 1$ are natural numbers and $3 \le p_1 < p_2 < \cdots < p_k$ are different prime numbers. Let

$$m = 2^a \cdot \prod_{i=1}^k p_i^{\beta_i} \in \underline{\operatorname{Set}}(n, f).$$

Therefore,

$$\varphi(m) = 2^{a-1} \cdot \prod_{i=1}^{k} p_i^{\beta_i - 1} \cdot (p_i - 1) \in \underline{Set}(n).$$

Hence, $p_1 - 1 = 2^{b_1}$, because if $p_1 - 1$ has a divisor different of 2, it must be a divisor of n, while $p_1 \ge 3$ is the minimal one. By the same reason, for each $i \ (2 \le i \le k)$

$$p_i - 1 = 2^{b_i} \cdot \prod_{i=1}^{i-1} p_j^{\gamma_{i,j}},$$

where $\gamma_{i,j} \geq 0$, i.e., p_j cannot be a divisor of $p_i - 1$.

Therefore,

$$\varphi(m) = 2^{a-1 + \sum_{i=1}^{k} b_i} \cdot \prod_{i=1}^{k} \left(p_i^{\beta_i - 1} \prod_{j=1}^{i-1} p_i^{\gamma_{i,j}} \right) = 2^{a-1 + \sum_{i=1}^{k} b_i} \cdot \prod_{i=1}^{k} p_i^{\beta_i - 1 + \sum_{j=1}^{i-1} \gamma_{i,j}}.$$

Other authors (see, e.g. [2]) denote the functions δ and Δ by h and H, respectively.

Hence, $\varphi(m) \in \operatorname{Set}(n,\varphi)$ only if

$$\delta(n) \le a - 1 + \sum_{i=1}^{k} b_i \le \Delta(n),$$

i.e., $\Delta(n) \geq a+k-1$ or $a \leq \Delta(n)-k+1$, and for each $i \ (1 \leq i \leq k-1)$

$$\delta(n) \le \beta_i - 1 + \sum_{i=1}^{i-1} \gamma_{i,j} \le \Delta(n),$$

and

$$\delta(n) \le \beta_k - 1,$$

i.e., $\beta_k \geq 2$. Also, if for p_i there is no $p_s > p_i$ for which p_i is a divisor of $p_s - 1$, then β_i must be greater than 1.

For example, when $n = 24 = 2^3.3$, then

$$\underline{Set}(24) = \{2 \cdot 3, 2^2 \cdot 3, 2^3 \cdot 3, 2 \cdot 3^2, 2^2 \cdot 3^2, 2^3 \cdot 3^2, 2 \cdot 3^3, 2^2 \cdot 3^3, 2^3 \cdot 3^3\}$$

and

$$\underline{Set}(24,\varphi) = \{2 \cdot 3^2, 2^2 \cdot 3^2, 2^3 \cdot 3^2, 2 \cdot 3^3, 2^2 \cdot 3^3, 2^3 \cdot 3^3\}.$$

When $n = 50 = 2 \cdot 5^2$, then

$$\underline{Set}(50) = \{2 \cdot 5, 2^2 \cdot 5, 2 \cdot 5^2, 2^2 \cdot 5^2\}$$

and

$$\underline{\text{Set}}(50,\varphi) = \{2^2 \cdot 5\}.$$

But when $n = 242 = 2 \cdot 11^2$, then

$$\underline{Set}(242) = \{2 \cdot 11, 2^2 \cdot 11, 2 \cdot 11^2, 2^2 \cdot 11^2\}$$

and

$$\underline{\operatorname{Set}}(242, \varphi) = \varnothing,$$

because $\varphi(22)=2\cdot 5, \varphi(44)=2^2\cdot 5, \varphi(242)=2\cdot 5\cdot 11, \varphi(484)=2^2\cdot 5\cdot 11,$ i.e., none of these numbers can be an element of $\underline{\operatorname{Set}}(242,\varphi)$.

Now, on the basis of (1), we can define another set, subset of $\underline{\text{Set}}(n, f)$, with the form

$$\underline{\operatorname{Set}}(n,f^2) = \{m \mid m \in \underline{\operatorname{Set}}(n) \ \& \ f(m) \in \underline{\operatorname{Set}}(n) \ \& \ f(f(m)) \in \underline{\operatorname{Set}}(n) \}.$$

In this case,

$$\underline{Set}(24, \varphi^2) = \{2 \cdot 3^3, 2^2 \cdot 3^3, 2^3 \cdot 3^3\},$$

but

$$\underline{\mathrm{Set}}(50, \varphi^2) = \varnothing.$$

Of course, we can give also the definition for each natural number $s \ge 1$

$$\underline{\operatorname{Set}}(n,f^{s+1}) = \{m \mid m \in \underline{\operatorname{Set}}(n) \ \& \ m \in \underline{\operatorname{Set}}(n,f^s) \ \& \ f(f(m)) \in \underline{\operatorname{Set}}(n,f^s)\}.$$

We see directly that

$$\underline{\mathrm{Set}}(24, \varphi^3) = \varnothing.$$

More general, we see that

$$s \leq \Delta(n)$$
.

Proposition 2.1. Let p_1, \ldots, p_k be the prime factors of n. If there exists a prime $p \notin \underline{\operatorname{set}}(n)$ such that

$$p \mid \prod_{i=1}^k (p_i - 1),$$

then

$$\underline{\operatorname{Set}}(n,\varphi) = \varnothing.$$

Proof. The proof follows from the definition (1).

For example, if $n = 2^a \cdot 3^b \cdot 11^c$, then $5|(2-1) \cdot (3-1) \cdot (11-1)$ and $5 \neq 2, 3, 11$, so $\underline{\operatorname{Set}}(n, \varphi) = \varnothing$.

We will discuss some particular cases.

I. Let $n=2^{\alpha}\cdot p^{\beta}$ and $m=2^{a}\cdot p^{b}$, where p is odd and

$$g = \max(\alpha, \beta) \ge a, b \ge \min(\alpha, \beta) = h \ge 1.$$

Then

$$\varphi(m) = 2^{a-1} \cdot p^{b-1} \cdot (p-1).$$

• Case 1. a = 1. Then $b \neq 1$ because (p - 1, p) = 1. Now,

$$\varphi(m) = p^{b-1} \cdot (p-1),$$

so we must have $p-1=2^s$ with $g \ge s \ge h$ and $p=2^s+1$ is a Fermat's prime. Thus,

$$\varphi(m) = 2^s \cdot p^{b-1} = 2^s \cdot (2^s + 1)^{b-1}.$$

• Case 2. a > 1 and $b \ne 1$. Then $p - 1 = 2^r$, i.e., $p = 2^r + 1$ is a Fermat's prime, and

$$\varphi(m) = 2^{a-1+r} \cdot p^{b-1}$$

with $g \ge a - 1 + r \ge h$. Thus $g - a + 1 \ge r \ge h - a + 1$ and

$$\varphi(m) = 2^{a-1+r} \cdot (2^r + 1)^{b-1}.$$

For example, if $\beta = 1$, then $h = 1, g = \alpha, \alpha \ge s \ge 1, a = 1, p = 2^s + 1$ and

$$m = 2 \cdot (2^s + 1)^b$$
.

$$\varphi(m) = 2^s \cdot (2^s + 1)^{b-1}.$$

If a > 1, h > 1, then $p = 2^r + 1, m = 2^a \cdot (2^r + 1)^b$ and

$$\varphi(m) = 2^{a-1+r} \cdot (2^r + 1)^{b-1}$$

with $\alpha - 1 \ge r \ge 2 - a$.

II. Let $n = 2^{\alpha} \cdot p^{\beta} \cdot q^{\gamma}, m = 2^{a} \cdot p^{b} \cdot q^{c}$ with

$$k = \max(\alpha, \beta, \gamma) \ge a, b, c \ge \min(\alpha, \beta, \gamma) = h.$$

Then

$$\varphi(m) = 2^{a-1} \cdot p^{b-1} \cdot q^{c-1} \cdot (p-1) \cdot (q-1).$$

If c=1, then since $q \not\mid q-1$ and p < q (we may select in such a way), we get a contradiction. Thus, c>1.

• Case 1. a = 1. Then

$$\varphi(m) = p^{b-1} \cdot q^{c-1} \cdot (p-1) \cdot (q-1).$$

If b = 1, then

$$\varphi(m) = q^{c-1} \cdot (p-1) \cdot (q-1).$$

So, we must have $q-1=2^x\cdot p^t, p-1=2^y$. Thus $p=2^y+1$ and $q=2^x\cdot p^t+1$ for $t\geq 1, x\geq 0$ and

$$q = 2^x \cdot (2^y + 1)^t + 1.$$

If b > 1, then

$$\varphi(m) = p^{b-1} \cdot q^{c-1} \cdot (p-1) \cdot (q-1)$$

and we must have $p-1=2^x, q-1=2^y$ for $y\geq 1$ or $q-1=2^y\cdot p^t$ for $y\geq 1, t\geq 1$. In the first case, $p=2^x+1, q=2^y+1$ are Fermat primes, and

$$\varphi(m) = 2^{x+y} \cdot p^{b-1} \cdot q^{c-1}.$$

In the second case $p-1=2^x$, $q-1=2^y\cdot p^t=2^y\cdot (2^x+1)^t$, so $p=2^x+1$ is a Fermat prime and q is a prime of the form $q=2^y\cdot (2^x+1)^t+1$.

• Case 2. a > 1(c > 1) and

$$\varphi(m) = 2^{a-1} \cdot q^{c-1} \cdot (p-1) \cdot (q-1).$$

If b = 1, then

$$\varphi(m) = 2^{a-1} \cdot q^{c-1} \cdot (p-1) \cdot (q-1).$$

Thus $p-1=2^x, q-1=2^y\cdot p^t$ for $y\geq 0, t\geq 1$ and

$$\varphi(m) = 2^{a-1+y} \cdot q^{c-1} \cdot p^t.$$

Thus $p = 2^x + 1$ is a Fermat prime and q is a prime of the form

$$q = 2^y \cdot (2^x + 1)^t + 1.$$

For example, if x = 1, p = 3, $q = 2^y \cdot 3^t + 1$ is prime if y = t = 1.

3 The case of Dedekind's arithmetical function

Let f be the Dedekind's function ψ . Therefore, again 2 must be a divisor of n, because in $\underline{\operatorname{Set}}(n,\psi)$ for $n \geq 3$, all numbers must be even, i.e., n again has the form of (2).

Therefore,

$$\psi(m) = 2^{a-1} \cdot \prod_{i=1}^{k} p_i^{\beta_i - 1} \cdot (p_i + 1) \in \underline{Set}(n).$$

Hence, as above, $p_1 + 1 = 2^{b_1}$, because if $p_1 + 1$ has a divisor different from 2, it must be a divisor of n, while $p_1 \ge 3$ is the minimal one. By the same reason, for each i $(2 \le i \le k)$

$$p_i + 1 = 2^{b_i} \cdot \prod_{j=1}^{i-1} p_j^{\gamma_{i,j}},$$

where $\gamma_{i,j} \geq 0$, i.e., p_j cannot be a divisor of $p_i - 1$. Obviously, $p_k + 1$ does not have a divisor greater than p_k .

Therefore, as above

$$\psi(m) = 2^{a-1 + \sum_{i=1}^{k} b_i} \cdot \prod_{i=1}^{k} p_i^{\beta_i - 1 + \sum_{j=1}^{i-1} \gamma_{i,j}}.$$

Hence, $\psi(m) \in \underline{\operatorname{Set}}(n, \psi)$ only if (exactly as above)

$$\delta(n) \le a - 1 + \sum_{i=1}^{k} b_i \le \Delta(n),$$

i.e., $\Delta(n) \ge a + k - 1$ or $a \le \Delta(n) - k + 1$, and for each $i \ (1 \le i \le k - 1)$

$$\delta(n) \le \beta_i - 1 + \sum_{j=1}^{i-1} \gamma_{i,j} \le \Delta(n),$$

and

$$\delta(n) < \beta_k - 1$$
,

i.e., $\beta_k \geq 2$. Also, if for p_i there is no $p_s > p_i$ for which p_i is a divisor of $p_s - 1$, then β_i must be greater than 1.

For example, when $n = 24 = 2^3 \cdot 3$, then

$$\underline{\mathrm{Set}}(24,\psi) = \{2 \cdot 3, 2^2 \cdot 3, 2 \cdot 3^2, 2^2 \cdot 3^2, 2 \cdot 3^3, 2^2 \cdot 3^3\},\,$$

because for $b \ge 3$ and $c \ge 1$

$$\psi(2^b \cdot 3^c) = 2^{b+1} \cdot 3^c,$$

i.e., it cannot be a member of $\underline{\operatorname{Set}}(24,\psi)$ for $b \geq 3$. Obviously, $\underline{\operatorname{Set}}(50,\psi) = \varnothing$.

4 A particular case for the sum of divisors function

Let $n=2^{\alpha}\cdot p$, where p is a prime number. Then $m=2^{a}\cdot p^{b}$ with $\alpha\geq a\geq 1, \alpha\geq b\geq 1$. Then

$$\sigma(m) = (2^{a+1} - 1) \cdot (p^b + p^{b-1} + \dots + p + 1).$$

As the expression $p^b + p^{b-1} + \cdots + p + 1$ must be even, then b must be odd.

Let
$$p^b + p^{b-1} + \dots + p + 1 = 2^s$$
 and $2^{a+1} - 1 = p^c$.

For example, if c=1, then $p=2^{a+1}-1$ is a Mersenne prime. If b=1, then $p=2^s-1=2^{a+1}-1$, i.e., s=a+1 and

$$m = 2^a \cdot p^1 = 2^a \cdot (2^{a+1} - 1)$$

for $\alpha-1\geq a\geq 1$. Thus $n=2^{\alpha}\cdot(2^{\alpha+1}-1), m=2^{a}\cdot(2^{a+1}-1)$ and

$$\sigma(m) = 2^{a+1} \cdot (2^{a+1} - 1).$$

If a=1, then $n=2^{\alpha}\cdot 3$ and $m=2\cdot 3, \sigma(m)=2^2\cdot 3$ for $\alpha\geq 2$. Therefore, we have here $\underline{\operatorname{Set}}(n,\sigma)\neq\varnothing$.

5 Conclusion

In the paper, the object $\underline{\operatorname{Set}}(n,f)$ was defined, where n is a natural number and f is an arithmetic function and we discussed the cases, when f is the functions φ , ψ and σ . At the moment, an **Open Problem** is to investigate the other cases for the last arithmetic function, as well as the case when f is another arithmetic function.

References

- [1] Atanassov, K. (2020). Objects generated by an arbitrary natural number. *Notes on Number Theory and Discrete Mathematics*, 26(4), 57–62.
- [2] Sándor, J., & Crstici, B. (2005) Handbook of Number Theory. II. Springer Verlag, Berlin.