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Abstract: In this paper, we define generalized hyperharmonic numbers of order r, H;, , (o), for
m € Z" and give some applications by using generating functions of these numbers. For example,
forn,r,s € Z* suchthat 1 < s <,

—~(n—k+s—1
(" )H;;f<o—>:H;m<a>,
. , ,
k=1

and i
" H’"+1 Drk—z’—l—r
Sy Mg ML e
(n—Fk)l(k—i+r)! ’

k=1 i=1

where D,.(n) is an r-derangement number.
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1 Introduction

The harmonic numbers, denoted by H,,, are defined by
"1
Hy=0and Hn:;Efornz 1,

and their generating function is

—In(1 —
Zann _ 111( z)
n=0 -z
In [10], it is known that
n Hk ,
Z n—k+1 Hypr = Hnpr2,

k=0
where H, 5 =Y} 5.

Harmonic numbers are interesting research objects. Recently, these numbers have been
generalized by several authors. There are a lot of works involving harmonic numbers and their
generalizations ([3,5-9]).

Guo and Cha [5] defined the generalized harmonic numbers by

n ok
Hy(o) =0 and H,(0) = Z - forn > 1,

k=1

where o is an appropriate parameter, and their generating function is

. —In(1—
Y Hy(o)2" = —in(-oz)
—~ 1—=x

When o = 1/a for € RY, H,(1/cr) := >_)_| 55 are called the generalized harmonic numbers
by Gencev [4].
The exponential generating function is

xr . :L,n
e _ZE' (1.1)
n=0

The derangement numbers d,, are given by the closed form formula

(1)
=nl ~ 7
d, = n! Z o
k=0
These numbers satisfy the recursive formula given by
d,=(n—1)(dy_1+d,_2) forn > 2,

with dy = 1, d; = 0. The generating function of d,, is given by

o0 n 1
3 4, = . (1.2)
— n!

e
1—2z

In [11], for 0 < r < n, D,(n) denotes the number of derangements on n + r elements under the
restriction that the first r elements are in disjoint cycles. A closed form formula for D,.(n) is also
given by
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D) =3 (1)t (’“) (nﬁ—'k),

k=r
The r-derangement numbers D, (n) satisfy the recursive formula

D.(n)=rD,_1(n—1)+(n—1)D,(n—2)+(n+r—1)D,(n—1), n> 2,7 >0,
with initial conditions
Di(n)=dpi1, Do(r)=r!(r>1)and D,.(r + 1) =r(r+ 1!, r > 2.

The generating function of the r-derangement numbers D,.(n) is given by

r

x
= —F7—e " 1.3
nfa T (1.3)
Note that for » = 0, we have DO( ) = d,,. Itis known that for r > 1,
—1 1
— n (1—2)

In [1,2], for m € Z, the polylogarithm is defined by

o0

Lim(z) =Y z—m (1.5)
n=1

Note that Lii(z) = Z Z = —log(1 — x).
The Stirling num l; ers of the second kind Sy(n, k) are defined by

" = Z So(n, k)x
k=0

where 2™ stands for the falling factorial defined by 2° = 1 and 2% = z(z — 1)...(x — n + 1).
The generating function of the Stirling numbers of the second kind Sy(n, k) is given by

ZSQ n, k) = ; (e —1)" for k > 0. (1.6)

2 Some results

In this section, we will define generalized harmonic numbers, H, ,, (c) and then give some
applications of them.

Definition 2.1. For n,m € Z*, the generalized harmonic numbers, H, ,, (c) , are defined by

n k
Hom (0) = 0 and Hy o (0) = ,:—m 2.1)

where o is an appropriate parameter.

When m = 1in (2.1), we get H,,1 (0) = H,, (0).



It is clearly seen that for m > 0, we have

N Hop ()2 = Lim (o)
o 11—z

(2.2)

Definition 2.2. Forr < 0orn <0, Hy,, (o) = 0 and for n > 1, the generalized hyperharmonic

numbers of order v, H}, . (o) , are defined by

n

H;, (o)=Y H '(0) forr>1,

k=1

where H,), (0) = 2.
Note that for 7 = 1, H, . (0) = Hym (0) .

Theorem 2.1. Form € Z* andr € " U {0} , we have

= . an_Lz'm(ax)

Proof. By (2.2) and (2.3), we have

Liy, (02) _ 1 Li,, (ox) _ 1 > g
(1—2) (1—a)™ 1-=z (1—:5)7”‘1;[{"”( )

1 1 = s
— WZZHk’m(U)xn:man’m(a)x

x)
o

= - Z Hy ., (o) 2",
n=1

as claimed.

From Theorem 2.1, it is clearly seen that
H),,(0)=H; . (0) + H;_y,,(0).

Theorem 2.2. For n,m,r € Z*, we have

H,,, (o)

Il
3
/7~
3
|
=
I+
— =
|
[a—
~
E S
5%

Proof. By (1.4) and (2.4), we have

= Liy (07) = (n+r—1 = o
H' I "y "
; n,m (0>$ (1 _ x)r — ( n )37 Z nmx

Thus, by comparing the coeflicients on both sides, the proof is complete.
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Theorem 2.3. Let 1, s be positive integers such that 1 < s < r. For n,m € Z*, we have

i(n—k—l—s—l
s—1
k=1

and

5> ()

k=1

Proof. By (1.4) and (2.4), we have

S 1 () =
n=1

and by (2.4),

Liy(ox) =

Vi o) = Hinlo),

)k

HE, (0) =

Thus, by comparing the coefficients on both sides, we have the proof.

For example, when r = s in (2.5), we obtained Theorem 2.2.

Theorem 2.4. For n,m,r € Z", we have

n

> (=) RH],, (0) S (n, k)

k=1

k=1 i=1

D!

Proof. Inserting 1 — e~ in the place of x in (2.4), by (1.6), we have

1—6 “”)k =

Zszm

and from (1.1) and (1.6),
Liy, (o0 (1 —e™™))

6—7‘3}

k prr (e — 1)
(1) 1}, (o) W

Z+k< ) — Sy (ki) ilr™ .

(2.5)
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rT 7 o' Z
= Y (SN ity (1) S (nd)
i=1 n=i
e’} r . 0 n i | .
= mez (—1) - S2(n,1) =
n=0 n=1 i=1
n k kO il Tn_k
= ) —S k, —x". 2.8
Z 2 ( ) k" (n _ k)'x ( )
n=1 k=1 i=1
Thus, by comparing the coeflicients on right sides of (2.7) and (2.8), we have the proof. [

Theorem 2.5. Forr,s,m,t € Z* andn € 7\ {1}, we have

n—1 n—1 k . .
s k—it+r+s—1\ oitn*
k=1 k=1 i=1 i (n— k)

Proof. By (1.4), (1.5) and (2.4), we have

> > > Liy, (o) Liy (02)
S n T n s n m t
ZZHkm Hn lct( ) - ZHn,m(J)‘T ZHn,t(g)x = r+s
n=2 k=1 n=1 (1 — JZ)
“/n+r+s—1 - n o"
- > ) > St T
n=0 n=1
= (n—itr+s—1\o . o"
- (Z. ( - )?)(Z#)
n=1 i=1 n=1
oo n—1 k k . i+n—k
—i+r+s—1 o n
=D 35 M Ut e
n=2 k=1 i=1 -t " (n — k)
Thus, by comparing the coeflicients on both sides, we obtain the proof. ]

Theorem 2.6. For n,m,r € Z*, we have

Z Z HT“ Dy (k—i+r) — H2+2(g)
P n—ka—er nm \7);

and e .
= (=1)" " Hy,, (0) = dniHy, (0)
Z ! =0.
— (n—k)!
Proof. From (1.1), (1.3) and (2.4), we have
> 1 e ® 1
H> "2 (5)s" = ——Li,, (0x) —————*—
R e i
o0 n 1
o r+1
:ZZWJ—liﬁMiﬁ
n=1 i=1 (n—i+7)! nzon!
ok —i+47r)
ZZZ k;)!(k—iJrr)!x

n=1 k=1 i=1
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By comparing the coeflicients on both sides, the first equality is obtained.
For the second equality, by (1.1) and (2.4), we have

I s g s ED
mLzm(J:p)e = ;Hn,m(a)x Z v

_ — n—k H]:,m (U) n
= 2;(—1) TR 2.9)

n=

and by (1.2) and (2.4)

_ ZZH 1 dn- Z)!:c". (2.10)

n=1 k=1

Thus, by comparing the coefficients on right sides of (2.9) and (2.10), we have the second
equality. ]

Theorem 2.7. For n,m,r € Z*, we have

n k n
Z ( Z)H;m(a)sz(n,m = > (- —52n k)
:1 =1 k=1
n—1 k . n 1
= (g ),
:012_; (1+1)m= ( k ) 2
Proof. Inserting 2=<— in the place of x in (2.6), by (1.6), then
00 k
, 3 ; r (e7® — 1)*
Li,(1—¢e%) = —1 'H —_
=) = S0 (" Je, )
> & ; r k = :U
k=1 i=1 n==k

== ‘ (—1)"* (kr .)LH( (0) Sa(n, k)™,  (2.11)

and inserting 1 — e~ * in the place of x in (1.5), by (1.6), we have

. B oo 1 — )i o0 ; 1 -z _ 1)t
Li,(1—e™) = Z—( i’i ) :Z(—l) Z_m%
i=1 i=1 ’
- P "
= LU S
- > (~)" ——Ss(n, i)a". (2.12)
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By comparing the coefficients on right sides of (2.11) and (2.12), we obtain the first equality.
For the second equality, we have

d d [
—Lip(l—e™™) = —
dx Zm( ¢ ) dx (

n=1

WE

Zk: (—1)" (k g Z) nf—;k}[zm (0) Sa(n, k)x”)

1 =1

T o
I

o0 n

= >33 (=" (k r_ 2) ﬁH[’m (o) Sa(n, k)z" !

n=1 k=1 =1
oo n+l k r k!
_ n+i+1 : T n
— ;;;(_1) (k_i>WHLm(a)Sg(n+l,k)x , (2.13)

and from (1.1) and (1.6)

Li (1 —e® e 1 — —z\k—1
4 pin(1—er) = Limald=c ):Z—< )

dx er —1 km—1
k=1
_ i (—1)* k! (e — 1)k6—33
— (k? + 1)m71 k!
> k! s n S2(n,k) = (—1)"
= (_1)k 1 (—1) x" "
kz% (k+1)"" Zk n! E:; n!
o (PR = (-1
T D) i ALY e
m—1
i (k+ 1)m=1n! — n!
o n k n il
= —1)Htn S (k,i)z". 2.14
By comparing the coefficients on right sides of (2.13) and (2.14), the second equality is given.
Thus, we have the proof. [
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