On generalized hyperharmonic numbers of order $r, H_{n, m}^{r}(\sigma)$

Sibel Koparal ${ }^{1}$, Neşe Ömür ${ }^{2}$, and Laid Elkhiri ${ }^{3}$

${ }^{1}$ Department of Mathematics, University of Bursa Uludağ 16059 Nilufer, Bursa, Turkey
e-mail: sibelkoparal@uludag.edu.tr
${ }^{2}$ Department of Mathematics, University of Kocaeli 41380 İzmit, Kocaeli, Turkey
e-mail: neseomur@gmail.com
${ }^{3}$ Faculty of Material and Sciences, University of Tiaret Algeria
e-mail: laid@univ-tiaret.dz

Received: 26 February 2023
Revised: 13 November 2023
Accepted: 23 November 2023
Online First: 30 November 2023
Abstract: In this paper, we define generalized hyperharmonic numbers of order $r, H_{n, m}^{r}(\sigma)$, for $m \in \mathbb{Z}^{+}$and give some applications by using generating functions of these numbers. For example, for $n, r, s \in \mathbb{Z}^{+}$such that $1 \leq s \leq r$,

$$
\sum_{k=1}^{n}\binom{n-k+s-1}{s-1} H_{k, m}^{r-s}(\sigma)=H_{n, m}^{r}(\sigma),
$$

and

$$
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{H_{k-i, m}^{r+1}(\sigma) D_{r}(k-i+r)}{(n-k)!(k-i+r)!}=H_{n, m}^{2 r+2}(\sigma),
$$

where $D_{r}(n)$ is an r-derangement number.
Keywords: Sums, Generalized harmonic numbers, Generating function.
2020 Mathematics Subject Classification: 05A15, 05A19, 11B73.

| | Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
 (c) ©
 terms and conditions of the Creative Commons Attribution 4.0 International License
 (CC BY 4.0). https: //creat ivecommons.org/licenses/by/4.0/ |
| :--- | :--- | :--- |

1 Introduction

The harmonic numbers, denoted by H_{n}, are defined by

$$
H_{0}=0 \text { and } H_{n}=\sum_{k=1}^{n} \frac{1}{k} \text { for } n \geq 1,
$$

and their generating function is

$$
\sum_{n=0}^{\infty} H_{n} x^{n}=\frac{-\ln (1-x)}{1-x} .
$$

In [10], it is known that

$$
\sum_{k=0}^{n} \frac{H_{k}}{n-k+1}=H_{n+1}^{2}-H_{n+1,2}
$$

where $H_{n, 2}=\sum_{k=1}^{n} \frac{1}{k^{2}}$.
Harmonic numbers are interesting research objects. Recently, these numbers have been generalized by several authors. There are a lot of works involving harmonic numbers and their generalizations ([3,5-9]).

Guo and Cha [5] defined the generalized harmonic numbers by

$$
H_{0}(\sigma)=0 \text { and } H_{n}(\sigma)=\sum_{k=1}^{n} \frac{\sigma^{k}}{k} \text { for } n \geq 1
$$

where σ is an appropriate parameter, and their generating function is

$$
\sum_{n=0}^{\infty} H_{n}(\sigma) x^{n}=\frac{-\ln (1-\sigma x)}{1-x}
$$

When $\sigma=1 / \alpha$ for $\alpha \in \mathbb{R}^{+}, H_{n}(1 / \alpha):=\sum_{k=1}^{n} \frac{1}{k \alpha^{k}}$ are called the generalized harmonic numbers by Genčev [4].

The exponential generating function is

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{1.1}
\end{equation*}
$$

The derangement numbers d_{n} are given by the closed form formula

$$
d_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

These numbers satisfy the recursive formula given by

$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right) \text { for } n \geq 2,
$$

with $d_{0}=1, d_{1}=0$. The generating function of d_{n} is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} d_{n} \frac{x^{n}}{n!}=\frac{1}{1-x} e^{-x} \tag{1.2}
\end{equation*}
$$

In [11], for $0 \leq r \leq n, D_{r}(n)$ denotes the number of derangements on $n+r$ elements under the restriction that the first r elements are in disjoint cycles. A closed form formula for $D_{r}(n)$ is also given by

$$
D_{r}(n)=\sum_{k=r}^{n}(-1)^{n-k}\binom{k}{r} \frac{n!}{(n-k)!}
$$

The r-derangement numbers $D_{r}(n)$ satisfy the recursive formula

$$
D_{r}(n)=r D_{r-1}(n-1)+(n-1) D_{r}(n-2)+(n+r-1) D_{r}(n-1), n>2, r>0,
$$

with initial conditions

$$
D_{1}(n)=d_{n+1}, D_{r}(r)=r!(r \geq 1) \text { and } D_{r}(r+1)=r(r+1)!, r \geq 2 .
$$

The generating function of the r-derangement numbers $D_{r}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} D_{r}(n) \frac{x^{n}}{n!}=\frac{x^{r}}{(1-x)^{r+1}} e^{-x} . \tag{1.3}
\end{equation*}
$$

Note that for $r=0$, we have $D_{0}(n)=d_{n}$. It is known that for $r \geq 1$,

$$
\begin{equation*}
\sum_{n=0}^{\infty}\binom{n+r-1}{n} x^{n}=\frac{1}{(1-x)^{r}} \tag{1.4}
\end{equation*}
$$

In [1,2], for $m \in \mathbb{Z}$, the polylogarithm is defined by

$$
\begin{equation*}
L i_{m}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{m}} . \tag{1.5}
\end{equation*}
$$

Note that $L i_{1}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}=-\log (1-x)$.
The Stirling numbers of the second kind $S_{2}(n, k)$ are defined by

$$
x^{n}=\sum_{k=0}^{n} S_{2}(n, k) x^{\underline{k}},
$$

where $x^{\underline{n}}$ stands for the falling factorial defined by $x^{\underline{0}}=1$ and $x^{\underline{n}}=x(x-1) \ldots(x-n+1)$.
The generating function of the Stirling numbers of the second kind $S_{2}(n, k)$ is given by

$$
\begin{equation*}
\sum_{n=k}^{\infty} S_{2}(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k} \text { for } k \geq 0 \tag{1.6}
\end{equation*}
$$

2 Some results

In this section, we will define generalized harmonic numbers, $H_{n, m}(\sigma)$ and then give some applications of them.

Definition 2.1. For $n, m \in \mathbb{Z}^{+}$, the generalized harmonic numbers, $H_{n, m}(\sigma)$, are defined by

$$
\begin{equation*}
H_{0, m}(\sigma)=0 \text { and } H_{n, m}(\sigma)=\sum_{k=1}^{n} \frac{\sigma^{k}}{k^{m}}, \tag{2.1}
\end{equation*}
$$

where σ is an appropriate parameter.
When $m=1$ in (2.1), we get $H_{n, 1}(\sigma)=H_{n}(\sigma)$.

It is clearly seen that for $m>0$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} H_{n, m}(\sigma) x^{n}=\frac{L i_{m}(\sigma x)}{1-x} . \tag{2.2}
\end{equation*}
$$

Definition 2.2. For $r<0$ or $n \leq 0, H_{0, m}^{r}(\sigma)=0$ and for $n \geq 1$, the generalized hyperharmonic numbers of order $r, H_{n, m}^{r}(\sigma)$, are defined by

$$
\begin{equation*}
H_{n, m}^{r}(\sigma)=\sum_{k=1}^{n} H_{k, m}^{r-1}(\sigma) \text { for } r \geq 1 \tag{2.3}
\end{equation*}
$$

where $H_{n, m}^{0}(\sigma)=\frac{\sigma^{n}}{n^{m}}$.
Note that for $r=1, H_{n, m}^{1}(\sigma)=H_{n, m}(\sigma)$.
Theorem 2.1. For $m \in \mathbb{Z}^{+}$and $r \in \mathbb{Z}^{+} \cup\{0\}$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} H_{n, m}^{r}(\sigma) x^{n}=\frac{L i_{m}(\sigma x)}{(1-x)^{r}} . \tag{2.4}
\end{equation*}
$$

Proof. By (2.2) and (2.3), we have

$$
\begin{aligned}
\frac{L i_{m}(\sigma x)}{(1-x)^{r}} & =\frac{1}{(1-x)^{r-1}} \frac{L i_{m}(\sigma x)}{1-x}=\frac{1}{(1-x)^{r-1}} \sum_{n=1}^{\infty} H_{n, m}(\sigma) x^{n} \\
& =\frac{1}{(1-x)^{r-2}} \sum_{n=1}^{\infty} \sum_{k=1}^{n} H_{k, m}(\sigma) x^{n}=\frac{1}{(1-x)^{r-2}} \sum_{n=1}^{\infty} H_{n, m}^{2}(\sigma) x^{n} \\
& =\ldots=\sum_{n=1}^{\infty} H_{n, m}^{r}(\sigma) x^{n},
\end{aligned}
$$

as claimed.
From Theorem 2.1, it is clearly seen that

$$
H_{n, m}^{r}(\sigma)=H_{n, m}^{r-1}(\sigma)+H_{n-1, m}^{r}(\sigma) .
$$

Theorem 2.2. For $n, m, r \in \mathbb{Z}^{+}$, we have

$$
H_{n, m}^{r}(\sigma)=\sum_{k=1}^{n}\binom{n-k+r-1}{r-1} \frac{\sigma^{k}}{k^{m}} .
$$

Proof. By (1.4) and (2.4), we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} H_{n, m}^{r}(\sigma) x^{n} & =\frac{L i_{m}(\sigma x)}{(1-x)^{r}}=\sum_{n=0}^{\infty}\binom{n+r-1}{n} x^{n} \sum_{n=1}^{\infty} \frac{\sigma^{n}}{n^{m}} x^{n} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n}\binom{n-k+r-1}{r-1} \frac{\sigma^{k}}{k^{m}} x^{n} .
\end{aligned}
$$

Thus, by comparing the coefficients on both sides, the proof is complete.

Theorem 2.3. Let r, s be positive integers such that $1 \leq s \leq r$. For $n, m \in \mathbb{Z}^{+}$, we have

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n-k+s-1}{s-1} H_{k, m}^{r-s}(\sigma)=H_{n, m}^{r}(\sigma), \tag{2.5}
\end{equation*}
$$

and

$$
\sum_{k=1}^{n}\binom{r}{n-k}(-1)^{k} H_{k, m}^{r}(\sigma)=\frac{(-\sigma)^{n}}{n^{m}}
$$

Proof. By (1.4) and (2.4), we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} H_{n, m}^{r}(\sigma) x^{n} & =\frac{1}{(1-x)^{r-s}} L i_{m}(\sigma x) \frac{1}{(1-x)^{s}} \\
& =\sum_{n=1}^{\infty} H_{n, m}^{r-s}(\sigma) x^{n} \sum_{n=0}^{\infty}\binom{n+s-1}{s-1} x^{n} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n}\binom{n-k+s-1}{s-1} H_{k, m}^{r-s}(\sigma) x^{n},
\end{aligned}
$$

and by (2.4),

$$
\begin{align*}
L i_{m}(\sigma x) & =\sum_{n=1}^{\infty} \frac{\sigma^{n}}{n^{m}} x^{n}=\sum_{n=1}^{\infty} H_{n, m}^{r}(\sigma) x^{n} \sum_{n=0}^{\infty}\binom{r}{n}(-1)^{n} x^{n} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n}\binom{r}{n-k}(-1)^{n-k} H_{k, m}^{r}(\sigma) x^{n} . \tag{2.6}
\end{align*}
$$

Thus, by comparing the coefficients on both sides, we have the proof.
For example, when $r=s$ in (2.5), we obtained Theorem 2.2.
Theorem 2.4. For $n, m, r \in \mathbb{Z}^{+}$, we have

$$
\sum_{k=1}^{n}(-1)^{n+k} k!H_{k, m}^{r}(\sigma) S_{2}(n, k)=\sum_{k=1}^{n} \sum_{i=1}^{k}(-1)^{i+k}\binom{n}{k} \frac{\sigma^{i}}{i^{m}} S_{2}(k, i) i!r^{n-k}
$$

Proof. Inserting $1-e^{-x}$ in the place of x in (2.4), by (1.6), we have

$$
\begin{align*}
\sum_{k=1}^{\infty} H_{k, m}^{r}(\sigma)\left(1-e^{-x}\right)^{k} & =\sum_{k=1}^{\infty}(-1)^{k} H_{k, m}^{r}(\sigma) k!\frac{\left(e^{-x}-1\right)^{k}}{k!} \\
& =\sum_{k=1}^{\infty}(-1)^{k} H_{k, m}^{r}(\sigma) k!\sum_{n=k}^{\infty}(-1)^{n} S_{2}(n, k) \frac{x^{n}}{n!} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n}(-1)^{n+k} H_{k, m}^{r}(\sigma) S_{2}(n, k) \frac{k!}{n!} x^{n} \tag{2.7}
\end{align*}
$$

and from (1.1) and (1.6),

$$
\frac{\operatorname{Li} i_{m}\left(\sigma\left(1-e^{-x}\right)\right)}{e^{-r x}}=e^{r x} \operatorname{Li} i_{m}\left(\sigma\left(1-e^{-x}\right)\right)
$$

$$
\begin{align*}
& =e^{r x} \sum_{i=1}^{\infty}(-1)^{i} \frac{\sigma^{i}}{i^{m}} i!\sum_{n=i}^{\infty}(-1)^{n} S_{2}(n, i) \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{r^{n}}{n!} x^{n} \sum_{n=1}^{\infty} \sum_{i=1}^{n}(-1)^{n+i} \frac{\sigma^{i}}{i^{m}} S_{2}(n, i) \frac{i!}{n!} x^{n} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{i=1}^{k}(-1)^{i+k} \frac{\sigma^{i}}{i^{m}} S_{2}(k, i) \frac{i!}{k!} \frac{r^{n-k}}{(n-k)!} x^{n} . \tag{2.8}
\end{align*}
$$

Thus, by comparing the coefficients on right sides of (2.7) and (2.8), we have the proof.
Theorem 2.5. For $r, s, m, t \in \mathbb{Z}^{+}$and $n \in \mathbb{Z}^{+} \backslash\{1\}$, we have

$$
\sum_{k=1}^{n-1} H_{k, m}^{r}(\sigma) H_{n-k, t}^{s}(\sigma)=\sum_{k=1}^{n-1} \sum_{i=1}^{k}\binom{k-i+r+s-1}{k-i} \frac{\sigma^{i+n-k}}{i^{m}(n-k)^{t}}
$$

Proof. By (1.4), (1.5) and (2.4), we have

$$
\left.\begin{array}{rl}
\sum_{n=2}^{\infty} \sum_{k=1}^{n-1} H_{k, m}^{r}(\sigma) H_{n-k, t}^{s}(\sigma) x^{n} & =\sum_{n=1}^{\infty} H_{n, m}^{r}(\sigma) x^{n} \sum_{n=1}^{\infty} H_{n, t}^{s}(\sigma) x^{n}=\frac{L i_{m}(\sigma x) L i_{t}(\sigma x)}{(1-x)^{r+s}} \\
& =\sum_{n=0}^{\infty}\binom{n+r+s-1}{n} x^{n} \sum_{n=1}^{\infty} \frac{\sigma^{n}}{n^{m}} x^{n} \sum_{n=1}^{\infty} \frac{\sigma^{n}}{n^{t}} x^{n} \\
& =\left(\sum_{n=1}^{\infty} \sum_{i=1}^{n}\binom{n-i+r+s-1}{n-i} \frac{\sigma^{i}}{i^{m}} x^{n}\right.
\end{array}\right)\left(\sum_{n=1}^{\infty} \frac{\sigma^{n}}{n^{t}} x^{n}\right) .
$$

Thus, by comparing the coefficients on both sides, we obtain the proof.
Theorem 2.6. For $n, m, r \in \mathbb{Z}^{+}$, we have

$$
\sum_{k=1}^{n} \sum_{i=1}^{k} H_{i, m}^{r+1}(\sigma) \frac{D_{r}(k-i+r)}{(n-k)!(k-i+r)!}=H_{n, m}^{2 r+2}(\sigma),
$$

and

$$
\sum_{k=1}^{n} \frac{(-1)^{n-k} H_{k, m}^{r}(\sigma)-d_{n-k} H_{k, m}^{r-1}(\sigma)}{(n-k)!}=0
$$

Proof. From (1.1), (1.3) and (2.4), we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} H_{n, m}^{2 r+2}(\sigma) x^{n} & =\frac{1}{(1-x)^{r+1}} L_{m}(\sigma x) \frac{x^{r} e^{-x}}{(1-x)^{r+1}} e^{x} \frac{1}{x^{r}} \\
& =\sum_{n=1}^{\infty} H_{n, m}^{r+1}(\sigma) x^{n} \sum_{n=r}^{\infty} D_{r}(n) \frac{x^{n}}{n!} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \frac{1}{x^{r}} \\
& =\sum_{n=1}^{\infty} \sum_{i=1}^{n} H_{i, m}^{r+1}(\sigma) \frac{D_{r}(n-i+r)}{(n-i+r)!} x^{n} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{i=1}^{k} H_{i, m}^{r+1}(\sigma) \frac{D_{r}(k-i+r)}{(n-k)!(k-i+r)!} x^{n} .
\end{aligned}
$$

By comparing the coefficients on both sides, the first equality is obtained.
For the second equality, by (1.1) and (2.4), we have

$$
\begin{align*}
\frac{1}{(1-x)^{r}} L i_{m}(\sigma x) e^{-x} & =\sum_{n=1}^{\infty} H_{n, m}^{r}(\sigma) x^{n} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n}(-1)^{n-k} \frac{H_{k, m}^{r}(\sigma)}{(n-k)!} x^{n}, \tag{2.9}
\end{align*}
$$

and by (1.2) and (2.4)

$$
\begin{align*}
\frac{1}{(1-x)^{r}} L i_{m}(\sigma x) e^{-x} & =\frac{1}{(1-x)^{r-1}} L i_{m}(\sigma x) \frac{e^{-x}}{1-x} \\
& =\sum_{n=1}^{\infty} H_{n, m}^{r-1}(\sigma) x^{n} \sum_{n=0}^{\infty} \frac{d_{n}}{n!} x^{n} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n} H_{k, m}^{r-1}(\sigma) \frac{d_{n-k}}{(n-k)!} x^{n} . \tag{2.10}
\end{align*}
$$

Thus, by comparing the coefficients on right sides of (2.9) and (2.10), we have the second equality.

Theorem 2.7. For $n, m, r \in \mathbb{Z}^{+}$, we have

$$
\begin{aligned}
\sum_{k=1}^{n} \sum_{i=1}^{k}(-1)^{i} \frac{k!}{\sigma^{k}}\binom{r}{k-i} H_{i, m}^{r}(\sigma) S_{2}(n, k) & =\sum_{k=1}^{n}(-1)^{k} \frac{k!}{k^{m}} S_{2}(n, k) \\
& =\sum_{k=0}^{n-1} \sum_{i=0}^{k}(-1)^{i+1} \frac{i!}{(i+1)^{m-1}}\binom{n-1}{k} S_{2}(k, i) .
\end{aligned}
$$

Proof. Inserting $\frac{1-e^{-x}}{\sigma}$ in the place of x in (2.6), by (1.6), then

$$
\begin{align*}
L i_{m}\left(1-e^{-x}\right) & =\sum_{k=1}^{\infty} \sum_{i=1}^{k}(-1)^{i}\binom{r}{k-i} k!H_{i, m}^{r}(\sigma) \frac{\left(e^{-x}-1\right)^{k}}{\sigma^{k} k!} \\
& =\sum_{k=1}^{\infty} \sum_{i=1}^{k}(-1)^{i}\binom{r}{k-i} \frac{k!}{\sigma^{k}} H_{i, m}^{r}(\sigma) \sum_{n=k}^{\infty}(-1)^{n} S_{2}(n, k) \frac{x^{n}}{n!} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{i=1}^{k}(-1)^{n+i}\binom{r}{k-i} \frac{k!}{n!\sigma^{k}} H_{i, m}^{r}(\sigma) S_{2}(n, k) x^{n}, \tag{2.11}
\end{align*}
$$

and inserting $1-e^{-x}$ in the place of x in (1.5), by (1.6), we have

$$
\begin{align*}
L i_{m}\left(1-e^{-x}\right) & =\sum_{i=1}^{\infty} \frac{\left(1-e^{-x}\right)^{i}}{i^{m}}=\sum_{i=1}^{\infty}(-1)^{i} \frac{i!}{i^{m}} \frac{\left(e^{-x}-1\right)^{i}}{i!} \\
& =\sum_{i=1}^{\infty}(-1)^{i} \frac{i!}{i^{m}} \sum_{n=i}^{\infty}(-1)^{n} S_{2}(n, i) \frac{x^{n}}{n!} \\
& =\sum_{n=1}^{\infty} \sum_{i=1}^{n}(-1)^{n+i} \frac{i!}{n!i^{m}} S_{2}(n, i) x^{n} . \tag{2.12}
\end{align*}
$$

By comparing the coefficients on right sides of (2.11) and (2.12), we obtain the first equality. For the second equality, we have

$$
\begin{align*}
\frac{d}{d x} L i_{m}\left(1-e^{-x}\right) & =\frac{d}{d x}\left(\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{i=1}^{k}(-1)^{n+i}\binom{r}{k-i} \frac{k!}{n!\sigma^{k}} H_{i, m}^{r}(\sigma) S_{2}(n, k) x^{n}\right) \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{i=1}^{k}(-1)^{n+i}\binom{r}{k-i} \frac{k!}{(n-1)!\sigma^{k}} H_{i, m}^{r}(\sigma) S_{2}(n, k) x^{n-1} \\
& =\sum_{n=0}^{\infty} \sum_{k=1}^{n+1} \sum_{i=1}^{k}(-1)^{n+i+1}\binom{r}{k-i} \frac{k!}{n!\sigma^{k}} H_{i, m}^{r}(\alpha) S_{2}(n+1, k) x^{n} \tag{2.13}
\end{align*}
$$

and from (1.1) and (1.6)

$$
\begin{align*}
\frac{d}{d x} L i_{m}\left(1-e^{-x}\right) & =\frac{L i_{m-1}\left(1-e^{-x}\right)}{e^{x}-1}=\sum_{k=1}^{\infty} \frac{\left(1-e^{-x}\right)^{k-1}}{k^{m-1}} e^{-x} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{k!}{(k+1)^{m-1}} \frac{\left(e^{-x}-1\right)^{k}}{k!} e^{-x} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{k!}{(k+1)^{m-1}} \sum_{n=k}^{\infty}(-1)^{n} \frac{S_{2}(n, k)}{n!} x^{n} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{k+n} k!}{(k+1)^{m-1} n!} S_{2}(n, k) x^{n} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \sum_{i=0}^{k}(-1)^{i+n}\binom{n}{k} \frac{i!}{(i+1)^{m-1} n!} S_{2}(k, i) x^{n} . \tag{2.14}
\end{align*}
$$

By comparing the coefficients on right sides of (2.13) and (2.14), the second equality is given. Thus, we have the proof.

References

[1] Abouzahra, M., \& Lewin, L. (1985). The polylogarithm in algebraic number fields. Journal of Number Theory, 21(2), 214-244.
[2] Adelberg, A. (2002). Kummer congruences for universal Bernoulli numbers and related congruences for poly-Bernoulli numbers. International Mathematical Journal, 1(1), 53-63.
[3] Choi, J., \& Srivastava, H.M., (2011). Some summation formulas involving harmonic numbers and generalized harmonic numbers. Mathematical and Computer Modelling, 54, 2220-2234.
[4] Genčev, M. (2011). Binomial sums involving harmonic numbers. Mathematica Slovaca, 61(2), 215-226.
[5] Guo, D., \& Chu, W. (2021). Summation formulae involving multiple harmonic numbers. Applicable Analysis and Discrete Mathematics, 15(1), 201-212.
[6] Koparal, S., Ömür, N., Südemen, K.N. (2022). Some identities for derangement numbers. Miskolc Mathematical Notes, 23(2), 773-785.
[7] Ömür, N., \& Koparal, S. (2022). Sums involving generalized harmonic and Daehee numbers. Notes on Number Theory and Discrete Mathematics, 28(1), 92-99.
[8] Ömür, N., \& Bilgin, G. (2018). Some applications of the generalized hyperharmonic numbers of order $r, H_{n}^{r}(\alpha)$. Advances and Applications in Mathematical Sciences, 17(9), 617-627.
[9] Ömür, N., \& Koparal, S. (2018). On the matrices with the generalized hyperharmonic numbers of order r. Asian-European Journal of Mathematics, 11(3), Article ID 1850045.
[10] Spieß, J. (1990). Some identities involving harmonic numbers. Mathematics of Computation, 55(132), 839-863.
[11] Wang, C., Miska, P., \& Mező, I. (2017). The r-derangement numbers. Discrete Mathematics, 340, 1681-1692.

