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16059 Nilufer, Bursa, Turkey
e-mail: sibelkoparal@uludag.edu.tr

2 Department of Mathematics, University of Kocaeli
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Abstract: In this paper, we define generalized hyperharmonic numbers of order r, Hr
n,m (σ) , for

m ∈ Z+ and give some applications by using generating functions of these numbers. For example,
for n, r, s ∈ Z+ such that 1 ≤ s ≤ r,

n∑
k=1

(
n− k + s− 1

s− 1

)
Hr−s

k,m (σ) = Hr
n,m (σ) ,

and
n∑

k=1

k∑
i=1

Hr+1
k−i,m (σ)Dr(k − i+ r)

(n− k)! (k − i+ r)!
= H2r+2

n,m (σ),

where Dr(n) is an r-derangement number.
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1 Introduction

The harmonic numbers, denoted by Hn, are defined by

H0 = 0 and Hn =
n∑

k=1

1

k
for n ≥ 1,

and their generating function is
∞∑
n=0

Hnx
n =

− ln(1− x)

1− x
.

In [10], it is known that
n∑

k=0

Hk

n− k + 1
= H2

n+1 −Hn+1,2,

where Hn,2 =
∑n

k=1
1
k2
.

Harmonic numbers are interesting research objects. Recently, these numbers have been
generalized by several authors. There are a lot of works involving harmonic numbers and their
generalizations ([3, 5–9]).

Guo and Cha [5] defined the generalized harmonic numbers by

H0(σ) = 0 and Hn(σ) =
n∑

k=1

σk

k
for n ≥ 1,

where σ is an appropriate parameter, and their generating function is
∞∑
n=0

Hn(σ)x
n =

− ln (1− σx)

1− x
.

When σ = 1/α for α ∈ R+, Hn(1/α) :=
∑n

k=1
1

kαk are called the generalized harmonic numbers
by Genčev [4].

The exponential generating function is

ex =
∞∑
n=0

xn

n!
. (1.1)

The derangement numbers dn are given by the closed form formula

dn = n!
n∑

k=0

(−1)k

k!
.

These numbers satisfy the recursive formula given by

dn = (n− 1) (dn−1 + dn−2) for n ≥ 2,

with d0 = 1, d1 = 0. The generating function of dn is given by
∞∑
n=0

dn
xn

n!
=

1

1− x
e−x. (1.2)

In [11], for 0 ≤ r ≤ n, Dr(n) denotes the number of derangements on n + r elements under the
restriction that the first r elements are in disjoint cycles. A closed form formula for Dr(n) is also
given by
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Dr(n) =
n∑

k=r

(−1)n−k

(
k

r

)
n!

(n− k)!
.

The r-derangement numbers Dr(n) satisfy the recursive formula

Dr(n) = rDr−1(n− 1) + (n− 1)Dr(n− 2) + (n+ r − 1)Dr(n− 1), n > 2, r > 0,

with initial conditions

D1(n) = dn+1, Dr(r) = r! (r ≥ 1) and Dr(r + 1) = r(r + 1)!, r ≥ 2.

The generating function of the r-derangement numbers Dr(n) is given by
∞∑
n=0

Dr(n)
xn

n!
=

xr

(1− x)r+1 e
−x. (1.3)

Note that for r = 0, we have D0(n) = dn. It is known that for r ≥ 1,

∞∑
n=0

(
n+ r − 1

n

)
xn =

1

(1− x)r
. (1.4)

In [1, 2], for m ∈ Z, the polylogarithm is defined by

Lim(x) =
∞∑
n=1

xn

nm
. (1.5)

Note that Li1(x) =
∞∑
n=1

xn

n
= − log(1− x).

The Stirling numbers of the second kind S2(n, k) are defined by

xn =
n∑

k=0

S2(n, k)x
k,

where xn stands for the falling factorial defined by x0 = 1 and xn = x(x− 1)...(x− n+ 1).

The generating function of the Stirling numbers of the second kind S2(n, k) is given by
∞∑
n=k

S2 (n, k)
xn

n!
=

1

k!
(ex − 1)k for k ≥ 0. (1.6)

2 Some results

In this section, we will define generalized harmonic numbers, Hn,m (σ) and then give some
applications of them.

Definition 2.1. For n,m ∈ Z+, the generalized harmonic numbers, Hn,m (σ) , are defined by

H0,m (σ) = 0 and Hn,m (σ) =
n∑

k=1

σk

km
, (2.1)

where σ is an appropriate parameter.

When m = 1 in (2.1), we get Hn,1 (σ) = Hn (σ) .
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It is clearly seen that for m > 0, we have
∞∑
n=1

Hn,m (σ)xn =
Lim (σx)

1− x
. (2.2)

Definition 2.2. For r < 0 or n ≤ 0, Hr
0,m (σ) = 0 and for n ≥ 1, the generalized hyperharmonic

numbers of order r, Hr
n,m (σ) , are defined by

Hr
n,m (σ) =

n∑
k=1

Hr−1
k,m (σ) for r ≥ 1, (2.3)

where H0
n,m (σ) = σn

nm .

Note that for r = 1, H1
n,m (σ) = Hn,m (σ) .

Theorem 2.1. For m ∈ Z+ and r ∈ Z+ ∪ {0} , we have
∞∑
n=1

Hr
n,m (σ)xn =

Lim (σx)

(1− x)r
. (2.4)

Proof. By (2.2) and (2.3), we have

Lim (σx)

(1− x)r
=

1

(1− x)r−1

Lim (σx)

1− x
=

1

(1− x)r−1

∞∑
n=1

Hn,m (σ)xn

=
1

(1− x)r−2

∞∑
n=1

n∑
k=1

Hk,m (σ)xn =
1

(1− x)r−2

∞∑
n=1

H2
n,m (σ)xn

= ... =
∞∑
n=1

Hr
n,m (σ)xn,

as claimed.

From Theorem 2.1, it is clearly seen that

Hr
n,m (σ) = Hr−1

n,m (σ) +Hr
n−1,m (σ) .

Theorem 2.2. For n,m, r ∈ Z+, we have

Hr
n,m (σ) =

n∑
k=1

(
n− k + r − 1

r − 1

)
σk

km
.

Proof. By (1.4) and (2.4), we have
∞∑
n=1

Hr
n,m (σ)xn =

Lim (σx)

(1− x)r
=

∞∑
n=0

(
n+ r − 1

n

)
xn

∞∑
n=1

σn

nm
xn

=
∞∑
n=1

n∑
k=1

(
n− k + r − 1

r − 1

)
σk

km
xn.

Thus, by comparing the coefficients on both sides, the proof is complete.
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Theorem 2.3. Let r, s be positive integers such that 1 ≤ s ≤ r. For n,m ∈ Z+, we have
n∑

k=1

(
n− k + s− 1

s− 1

)
Hr−s

k,m (σ) = Hr
n,m (σ) , (2.5)

and
n∑

k=1

(
r

n− k

)
(−1)k Hr

k,m (σ) =
(−σ)n

nm
.

Proof. By (1.4) and (2.4), we have
∞∑
n=1

Hr
n,m (σ)xn =

1

(1− x)r−sLim (σx)
1

(1− x)s

=
∞∑
n=1

Hr−s
n,m (σ)xn

∞∑
n=0

(
n+ s− 1

s− 1

)
xn

=
∞∑
n=1

n∑
k=1

(
n− k + s− 1

s− 1

)
Hr−s

k,m (σ)xn,

and by (2.4),

Lim(σx) =
∞∑
n=1

σn

nm
xn =

∞∑
n=1

Hr
n,m (σ)xn

∞∑
n=0

(
r

n

)
(−1)n xn

=
∞∑
n=1

n∑
k=1

(
r

n− k

)
(−1)n−k Hr

k,m (σ)xn. (2.6)

Thus, by comparing the coefficients on both sides, we have the proof.

For example, when r = s in (2.5), we obtained Theorem 2.2.

Theorem 2.4. For n,m, r ∈ Z+, we have

n∑
k=1

(−1)n+k k!Hr
k,m (σ)S2 (n, k) =

n∑
k=1

k∑
i=1

(−1)i+k

(
n

k

)
σi

im
S2 (k, i) i!r

n−k.

Proof. Inserting 1− e−x in the place of x in (2.4), by (1.6), we have
∞∑
k=1

Hr
k,m (σ)

(
1− e−x

)k
=

∞∑
k=1

(−1)k Hr
k,m (σ) k!

(e−x − 1)
k

k!

=
∞∑
k=1

(−1)k Hr
k,m (σ) k!

∞∑
n=k

(−1)n S2 (n, k)
xn

n!

=
∞∑
n=1

n∑
k=1

(−1)n+k Hr
k,m (σ)S2 (n, k)

k!

n!
xn, (2.7)

and from (1.1) and (1.6),

Lim (σ (1− e−x))

e−rx
= erxLim

(
σ
(
1− e−x

))
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= erx
∞∑
i=1

(−1)i
σi

im
i!

∞∑
n=i

(−1)n S2 (n, i)
xn

n!

=
∞∑
n=0

rn

n!
xn

∞∑
n=1

n∑
i=1

(−1)n+i σ
i

im
S2 (n, i)

i!

n!
xn

=
∞∑
n=1

n∑
k=1

k∑
i=1

(−1)i+k σi

im
S2 (k, i)

i!

k!

rn−k

(n− k)!
xn. (2.8)

Thus, by comparing the coefficients on right sides of (2.7) and (2.8), we have the proof.

Theorem 2.5. For r, s,m, t ∈ Z+ and n ∈ Z+\ {1} , we have
n−1∑
k=1

Hr
k,m (σ)Hs

n−k,t (σ) =
n−1∑
k=1

k∑
i=1

(
k − i+ r + s− 1

k − i

)
σi+n−k

im (n− k)t
.

Proof. By (1.4), (1.5) and (2.4), we have
∞∑
n=2

n−1∑
k=1

Hr
k,m (σ)Hs

n−k,t (σ)x
n =

∞∑
n=1

Hr
n,m (σ)xn

∞∑
n=1

Hs
n,t (σ)x

n =
Lim (σx)Lit (σx)

(1− x)r+s

=
∞∑
n=0

(
n+ r + s− 1

n

)
xn

∞∑
n=1

σn

nm
xn

∞∑
n=1

σn

nt
xn

=

(
∞∑
n=1

n∑
i=1

(
n− i+ r + s− 1

n− i

)
σi

im
xn

)(
∞∑
n=1

σn

nt
xn

)

=
∞∑
n=2

n−1∑
k=1

k∑
i=1

(
k − i+ r + s− 1

k − i

)
σi+n−k

im (n− k)t
xn.

Thus, by comparing the coefficients on both sides, we obtain the proof.

Theorem 2.6. For n,m, r ∈ Z+, we have
n∑

k=1

k∑
i=1

Hr+1
i,m (σ)

Dr(k − i+ r)

(n− k)!(k − i+ r)!
= H2r+2

n,m (σ),

and
n∑

k=1

(−1)n−k Hr
k,m (σ)− dn−kH

r−1
k,m (σ)

(n− k)!
= 0.

Proof. From (1.1), (1.3) and (2.4), we have
∞∑
n=1

H2r+2
n,m (σ)xn =

1

(1− x)r+1Lim (σx)
xre−x

(1− x)r+1 e
x 1

xr

=
∞∑
n=1

Hr+1
n,m (σ)xn

∞∑
n=r

Dr(n)
xn

n!

∞∑
n=0

xn

n!

1

xr

=
∞∑
n=1

n∑
i=1

Hr+1
i,m (σ)

Dr(n− i+ r)

(n− i+ r)!
xn

∞∑
n=0

xn

n!

=
∞∑
n=1

n∑
k=1

k∑
i=1

Hr+1
i,m (σ)

Dr(k − i+ r)

(n− k)!(k − i+ r)!
xn.
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By comparing the coefficients on both sides, the first equality is obtained.
For the second equality, by (1.1) and (2.4), we have

1

(1− x)r
Lim (σx) e−x =

∞∑
n=1

Hr
n,m (σ)xn

∞∑
n=0

(−1)n

n!
xn

=
∞∑
n=1

n∑
k=1

(−1)n−k H
r
k,m (σ)

(n− k)!
xn, (2.9)

and by (1.2) and (2.4)

1

(1− x)r
Lim (σx) e−x =

1

(1− x)r−1Lim (σx)
e−x

1− x

=
∞∑
n=1

Hr−1
n,m (σ)xn

∞∑
n=0

dn
n!

xn

=
∞∑
n=1

n∑
k=1

Hr−1
k,m (σ)

dn−k

(n− k)!
xn. (2.10)

Thus, by comparing the coefficients on right sides of (2.9) and (2.10), we have the second
equality.

Theorem 2.7. For n,m, r ∈ Z+, we have
n∑

k=1

k∑
i=1

(−1)i
k!

σk

(
r

k − i

)
Hr

i,m (σ)S2(n, k) =
n∑

k=1

(−1)k
k!

km
S2(n, k)

=
n−1∑
k=0

k∑
i=0

(−1)i+1 i!

(i+ 1)m−1

(
n− 1

k

)
S2(k, i).

Proof. Inserting 1−e−x

σ
in the place of x in (2.6), by (1.6), then

Lim(1− e−x) =
∞∑
k=1

k∑
i=1

(−1)i
(

r

k − i

)
k!Hr

i,m (σ)
(e−x − 1)k

σkk!

=
∞∑
k=1

k∑
i=1

(−1)i
(

r

k − i

)
k!

σk
Hr

i,m (σ)
∞∑
n=k

(−1)n S2(n, k)
xn

n!

=
∞∑
n=1

n∑
k=1

k∑
i=1

(−1)n+i

(
r

k − i

)
k!

n!σk
Hr

i,m (σ)S2(n, k)x
n, (2.11)

and inserting 1− e−x in the place of x in (1.5), by (1.6), we have

Lim(1− e−x) =
∞∑
i=1

(1− e−x)i

im
=

∞∑
i=1

(−1)i
i!

im
(e−x − 1)i

i!

=
∞∑
i=1

(−1)i
i!

im

∞∑
n=i

(−1)n S2(n, i)
xn

n!

=
∞∑
n=1

n∑
i=1

(−1)n+i i!

n!im
S2(n, i)x

n. (2.12)
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By comparing the coefficients on right sides of (2.11) and (2.12), we obtain the first equality.
For the second equality, we have

d

dx
Lim(1− e−x) =

d

dx

(
∞∑
n=1

n∑
k=1

k∑
i=1

(−1)n+i

(
r

k − i

)
k!

n!σk
Hr

i,m (σ)S2(n, k)x
n

)

=
∞∑
n=1

n∑
k=1

k∑
i=1

(−1)n+i

(
r

k − i

)
k!

(n− 1)!σk
Hr

i,m (σ)S2(n, k)x
n−1

=
∞∑
n=0

n+1∑
k=1

k∑
i=1

(−1)n+i+1

(
r

k − i

)
k!

n!σk
Hr

i,m (α)S2(n+ 1, k)xn, (2.13)

and from (1.1) and (1.6)

d

dx
Lim(1− e−x) =

Lim−1(1− e−x)

ex − 1
=

∞∑
k=1

(1− e−x)k−1

km−1
e−x

=
∞∑
k=0

(−1)k
k!

(k + 1)m−1

(e−x − 1)k

k!
e−x

=
∞∑
k=0

(−1)k
k!

(k + 1)m−1

∞∑
n=k

(−1)n
S2(n, k)

n!
xn

∞∑
n=0

(−1)n

n!
xn

=
∞∑
n=0

n∑
k=0

(−1)k+nk!

(k + 1)m−1n!
S2(n, k)x

n

∞∑
n=0

(−1)n

n!
xn

=
∞∑
n=0

n∑
k=0

k∑
i=0

(−1)i+n

(
n

k

)
i!

(i+ 1)m−1n!
S2(k, i)x

n. (2.14)

By comparing the coefficients on right sides of (2.13) and (2.14), the second equality is given.
Thus, we have the proof.
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[8] Ömür, N., & Bilgin, G. (2018). Some applications of the generalized hyperharmonic numbers
of order r, Hr

n (α). Advances and Applications in Mathematical Sciences, 17(9), 617–627.
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