Notes on generalized and extended Leonardo numbers

Anthony G. Shannon ${ }^{1}$, Peter J.-S. Shiue ${ }^{2}$ and Shen C. Huang ${ }^{3}$
${ }^{1}$ Warrane College, University of New South Wales
Kensington, NSW 2033, Australia
e-mail: tshannon38@gmail.com
${ }^{2}$ Department of Mathematical Sciences, University of Nevada, Las Vegas
4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
e-mail: shiue@unlv.nevada.edu
${ }^{3}$ Department of Mathematical Sciences, University of Nevada, Las Vegas
4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
e-mail: huangs5@unlv. nevada.edu

Received: 19 September 2023 Accepted: 30 October 2023 Online First: 27 November 2023

Abstract

This paper both extends and generalizes recently published properties which have been developed by many authors for elements of the Leonardo sequence in the context of second-order recursive sequences. It does this by considering the difference equation properties of the homogeneous Fibonacci sequence and the non-homogeneous properties of their Leonardo sequence counterparts. This produces a number of new identities associated with a generalized Leonardo sequence and its associated algorithm, as well as some combinatorial results which lead into elegant properties of hyper-Fibonacci numbers in contrast to their ordinary Fibonacci number analogues, and as a convolution of Fibonacci and Leonardo numbers.

Keywords: Binet formulas, Leonardo sequences, Generalized Leonardo sequence, Extended Leonardo sequence, Fibonacci sequences, Hyper-Fibonacci sequences, Recurrence relations, Undetermined coefficients.
2020 Mathematics Subject Classification: 05A19, 11B37, 11B39.

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
 terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

1 Introduction

A revival of interest in these Leonard Fibonacci sequences occurred after the paper from Paula Catarino and Anabela Borges [4]. There was also some passing attention in the early days of the Fibonacci Association [3] in order to emphasize the genius of Leonard Fibonacci, but for the most part it was a case of converting non-homogeneous second order forms into higher order homogeneous forms. This possibly accounts for the relative dearth of number theory specifically about Leonardo sequences per se. We too consider some non-homogeneous properties to extend the work of Alwyn Horadam [9] to the Leonardo canvas. This results in a number of tables which, in themselves, suggest further work for the interested reader. Some applications follow with a number of well-known sequences from Koshy [12]. This culminates in a number of identities associated with a generalized Leonardo sequence and an associated algorithm, as well as some combinatorial results which lead into hyper-Fibonacci numbers $\{2,5,11,21,38,66,112,187, \ldots\}$ as a convolution of Fibonacci and Leonardo numbers.

2 Preliminaries

Consider the Fibonacci sequence $\left\{F_{n}\right\}$

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2}, n \geq 2, \tag{1}
\end{equation*}
$$

with $F_{0}=0$ and $F_{1}=1$, and the Lucas sequence $\left\{L_{n}\right\}$

$$
\begin{equation*}
L_{n}=L_{n-1}+L_{n-2}, n \geq 2, \tag{2}
\end{equation*}
$$

with $L_{0}=2$ and $L_{1}=1$. The closed formulas for the Fibonacci sequence and Lucas sequence are

$$
\begin{align*}
& F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\psi^{n}\right) \tag{3}\\
& L_{n}=\phi^{n}+\psi^{n} \tag{4}
\end{align*}
$$

respectively, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}$. These formulas are also known as Binet's formula.
We first consider the generalized Leonardo sequence.
Definition 2.1 (Kuhapatanakul et al. [13]). The generalized Leonardo sequence $\left\{\mathcal{L}_{k, n}\right\}$, with a fixed positive integer k, is defined by

$$
\begin{equation*}
\mathcal{L}_{k, n}=\mathcal{L}_{k, n-1}+\mathcal{L}_{k, n-2}+k, n \geq 2 \tag{5}
\end{equation*}
$$

with the initial conditions $\mathcal{L}_{k, 0}=\mathcal{L}_{k, 1}=1$.
A version of the Leonardo-like sequence $\left\{C_{n}(a, b, k)\right\}$, defined by

$$
\begin{equation*}
C_{n}(a, b, k)=C_{n-1}(a, b, k)+C_{n-2}(a, b, k)+k, \tag{6}
\end{equation*}
$$

with $C_{0}(a, b, k)=b-a-k, C_{1}(a, b, k)=a$, and k is a constant, has been studied by Bicknell-Johnson and Bergum [3]. The generalized Leonardo sequence arises as a special case of C_{n} :

$$
\mathcal{L}_{k, n}=C_{n}(1,2+k, k) .
$$

Theorem 2.1 (Kuhapatanakul et al. [13]). The closed formula for the generalized Leonardo sequence $\left\{\mathcal{L}_{k, n}\right\}$ is

$$
\begin{equation*}
\mathcal{L}_{k, n}=(1+k) F_{n+1}-k, \tag{7}
\end{equation*}
$$

Corollary 2.1 (Catarino and Borges [4]). Let $\left\{L_{n}\right\}$ be the classical Leonardo sequence be defined by $L e_{n}=L e_{n-1}+L e_{n-2}+1, n \geq 2$ with initial conditions $L e_{0}=L e_{1}=1$. Then

$$
L e_{n}=2 F_{n+1}-1
$$

Proof. Let $k=1$ in the previous theorem.
Corollary 2.2. We have
(i) $\mathcal{L}_{k, n}=(k+1) \frac{\mathcal{L}_{1, n}-1}{2}+1$,
(ii) $\mathcal{L}_{k+1, n}-\mathcal{L}_{k, n}=\frac{\mathcal{L}_{1, n}-1}{2}$.

Proof. From Corollary 2.1, we have $\mathcal{L}_{1, n}=L e_{n}=2 F_{n+1}-1$. Then $F_{n+1}=\frac{\mathcal{L}_{1, n}+1}{2}$. By Theorem 2.1, we have

$$
\mathcal{L}_{k, n}=(1+k) F_{n+1}-k=(1+k) \frac{\mathcal{L}_{1, n}+1}{2}-k=(k+1) \frac{\mathcal{L}_{1, n}-1}{2}+1,
$$

which proves (i).
Next, again by Theorem 2.1,

$$
\begin{aligned}
\mathcal{L}_{k+1, n} & =(k+2) F_{n+1}-(k+1), \\
\mathcal{L}_{k, n} & =(k+1) F_{n+1}-k .
\end{aligned}
$$

Subtract these two equations yields

$$
\begin{aligned}
\mathcal{L}_{k+1, n}-\mathcal{L}_{k, n} & =(k+2) F_{n+1}-k-1-(k+1) F_{n+1}+k=F_{n+1}-1 \\
& =\frac{\mathcal{L}_{1, n}-1}{2}
\end{aligned}
$$

which proves (ii).

3 Main results

Let $\left\{a_{n}\right\}$ be a sequence of order 2 satisfying the following homogeneous linear recurrence relation:

$$
\begin{equation*}
a_{n}=p a_{n-1}+q a_{n-2}, \quad n \geq 2, \tag{8}
\end{equation*}
$$

where $a_{0}, a_{1}, p, q \neq 0$ are given constants. Let α and β be two roots of the characteristic equation of (8):

$$
\begin{equation*}
x^{2}-p x-q=0 \tag{9}
\end{equation*}
$$

He and Shiue [7] proved the following theorem that gives the general formula of $\left\{a_{n}\right\}$.

Theorem 3.1 (He and Shiue [7]). Let $\left\{a_{n}\right\}$ be a sequence of order 2 satisfying the linear recurrence relation (8). Then

$$
a_{n}= \begin{cases}\left(\frac{a_{1}-\beta a_{0}}{\alpha-\beta}\right) \alpha^{n}-\left(\frac{a_{1}-\alpha a_{0}}{\alpha-\beta}\right) \beta^{n}, & \text { if } \alpha \neq \beta ; \tag{10}\\ n a_{1} \alpha^{n-1}-(n-1) a_{0} \alpha^{n}, & \text { if } \alpha=\beta,\end{cases}
$$

where α and β are the two roots of (9).
Corollary 3.1. If $a_{0}=0$ and $a_{1}=1$, then the general formula is given by

$$
a_{n}= \begin{cases}\left(\frac{1}{\alpha-\beta}\right) \alpha^{n}-\left(\frac{1}{\alpha-\beta}\right) \beta^{n}, & \text { if } \alpha \neq \beta ; \tag{11}\\ n \alpha^{n-1}, & \text { if } \alpha=\beta .\end{cases}
$$

Corollary 3.2. If $a_{0}=1$ and $a_{1}=1$, then the general formula is given by

$$
a_{n}= \begin{cases}\left(\frac{1-\beta}{\alpha-\beta}\right) \alpha^{n}-\left(\frac{1-\alpha}{\alpha-\beta}\right) \beta^{n}, & \text { if } \alpha \neq \beta ; \tag{12}\\ n \alpha^{n-1}-(n-1) \alpha^{n}, & \text { if } \alpha=\beta .\end{cases}
$$

Theorem 3.1, Corollary 3.1, and Corollary 3.2 will be used in the main results.
In this paper, we will consider the sequence $\left\{a_{n}(t, j)\right\}$ satisfying the second order nonhomogeneous linear recurrence relation:

$$
\begin{equation*}
a_{n}(t, j)=p a_{n-1}(t, j)+q a_{n-2}(t, j)+(p+q-1)(t n+j), \quad n \geq 2, t, j \in \mathbb{Z} \tag{13}
\end{equation*}
$$

where $a_{0}(t, j), a_{1}(t, j), p$, and q, with $p+q \neq 1$, are given constants.
We will write $a_{n}(t, j)$ as w_{n}, to follow Horadam's [9] notation:

$$
\begin{equation*}
w_{n} \equiv w_{n}\left(w_{0}, w_{1}, p, q, t, j\right)=a_{n}(t, j) \tag{14}
\end{equation*}
$$

with $w_{0}=a_{0}(t, j), w_{1}=a_{1}(t, j), w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=a_{n}, n \geq 2$.
We now give the general formula of w_{n} :
Theorem 3.2. Let $\left\{w_{n}\left(w_{0}, w_{1}, p, q, t, j\right)\right\}$ be a sequence of order 2 satisfying the non-homogeneous linear relation in the following form:

$$
\begin{equation*}
w_{n}=p w_{n-1}+q w_{n-2}+(p+q-1)(t n+j), n \geq 2, t, j \in \mathbb{Z}, \tag{15}
\end{equation*}
$$

where w_{0}, w_{1}, p, q, with $p+q \neq 1$, are given constants. Then
$w_{n}=w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)+\left(j-\frac{t(p+2 q)}{1-p-q}\right)\left(w_{n}(1,1, p, q, 0,0)-1\right)+t\left(w_{n}(0,1, p, q, 0,0)-n\right)$.

Proof. First we consider the homogeneous part

$$
w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=p w_{n-1}\left(w_{0}, w_{1}, p, q, 0,0\right)+q w_{n-2}\left(w_{0}, w_{1}, p, q, 0,0\right)
$$

Then the characteristic equation

$$
x^{2}=p x+q
$$

gives

$$
x=\frac{p \pm \sqrt{p^{2}+4 q}}{2} .
$$

Let $\alpha=\frac{p+\sqrt{p^{2}+4 q}}{2}$ and $\beta=\frac{p-\sqrt{p^{2}+4 q}}{2}$. Then the homogeneous solution of (15) is

$$
w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=c_{1} \alpha^{n}+c_{2} \beta^{n} .
$$

Suppose $\alpha \neq \beta$. Assume the particular solution is of the form

$$
w_{n}^{\rho}=A n+B
$$

where $A=A(t, j)$ and $B=B(t, j)$. Then we have

$$
A n+B=p(A(n-1)+B)+q(A(n-2)+B)+(p+q-1)(t n+j) .
$$

Solving for A and B, we have

$$
\begin{aligned}
& A=-t \\
& B=\frac{t(p+2 q)}{1-p-q}-j .
\end{aligned}
$$

Then

$$
w_{n}=c_{1} \alpha^{n}+c_{2} \beta^{n}-t n-j+\frac{t(p+2 q)}{1-p-q} .
$$

Using the initial conditions w_{0} and w_{1}, we have

$$
\begin{cases}w_{0} & =c_{1}+c_{2}-j+\frac{t(p+2 q)}{1-p-q} \\ w_{1} & =c_{1} \alpha+c_{2} \beta-t-j+\frac{t(p+2 q)}{1-p-q} .\end{cases}
$$

Multiplying the first equation by α and subtract with the second, we have

$$
\begin{gathered}
w_{0} \alpha-w_{1}=c_{2}(\alpha-\beta)+\left(-j+\frac{t(p+2 q)}{1-p-q}\right) \alpha+t+j+\frac{t(p+2 q)}{1-p-q} \\
\Longrightarrow c_{2}=\frac{w_{0} \alpha-w_{1}}{\alpha-\beta}-\frac{t}{\alpha-\beta}+\left(-j+\frac{t(p+2 q)}{1-p-q}\right)\left(\frac{1-\alpha}{\alpha-\beta}\right)
\end{gathered}
$$

Then

$$
c_{1}=\frac{w_{1}-w_{0} \beta}{\alpha-\beta}+\frac{t}{\alpha-\beta}+\left(-j+\frac{t(p+2 q)}{1-p-q}\right)\left(\frac{\beta-1}{\alpha-\beta}\right) .
$$

Thus, the general solution is

$$
\begin{align*}
w_{n}= & {\left[\frac{w_{1}-w_{0} \beta}{\alpha-\beta}+\frac{t}{\alpha-\beta}+\left(-j+\frac{t(p+2 q)}{1-p-q}\right)\left(\frac{\beta-1}{\alpha-\beta}\right)\right] \alpha^{n} } \\
& +\left[\frac{w_{0} \alpha-w_{1}}{\alpha-\beta}-\frac{t}{\alpha-\beta}+\left(-j+\frac{t(p+2 q)}{1-p-q}\right)\left(\frac{1-\alpha}{\alpha-\beta}\right)\right] \beta^{n} \tag{17}\\
& -t n-j+\frac{t(p+2 q)}{1-p-q} .
\end{align*}
$$

We can rewrite it as

$$
\begin{aligned}
w_{n} & =\left(\frac{w_{1}-w_{0} \beta}{\alpha-\beta}\right) \alpha^{n}-\left(\frac{w_{1}-w_{0} \alpha}{\alpha-\beta}\right) \beta^{n}-\left(j-\frac{t(p+2 q)}{1-p-q}\right)\left(\frac{(\beta-1) \alpha^{n}+(1-\alpha) \beta^{n}}{\alpha-\beta}\right) \\
& +t\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)-t n-j+\frac{t(p+2 q)}{1-p-q} .
\end{aligned}
$$

Using (10), (11), and (12), we have

$$
\begin{align*}
w_{n}= & w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)+\left(j-\frac{t(p+2 q)}{1-p-q}\right)\left(w_{n}(1,1, p, q, 0,0)-1\right) \tag{18}\\
& +t\left(w_{n}(0,1, p, q, 0,0)-n\right) .
\end{align*}
$$

for $\alpha \neq \beta$.
Now, if $\alpha=\beta$, we have

$$
w_{n}=\left(c_{1}+c_{2} n\right) \alpha^{n}
$$

The solution is

$$
w_{n}=\left(c_{1}+c_{2} n\right) \alpha^{n}-t n-j+\frac{t(p+2 q)}{1-p-q} .
$$

Using the initial conditions,

$$
\begin{aligned}
& w_{0}=c_{1}-j+\frac{t(p+2 q)}{1-p-q} \\
& w_{1}=c_{1} \alpha+c_{2} \alpha-t-j+\frac{t(p+2 q)}{1-p-q}
\end{aligned}
$$

Then

$$
\begin{aligned}
& c_{1}=w_{0}+j-\frac{t(p+2 q)}{1-p-q} \\
& c_{2}=\frac{w_{1}}{\alpha}-w_{0}-j+\frac{t(p+2 q)}{1-p-q}+\frac{1}{\alpha}\left(t+j-\frac{t(p+2 q)}{1-p-q}\right) \\
& w_{n}=\left(w_{0}+j-\frac{t(p+2 q)}{1-p-q}\right) \alpha^{n}+\left[\frac{w_{1}}{\alpha}-w_{0}-j+\frac{t(p+2 q)}{1-p-q}+\frac{1}{\alpha}\left(t+j-\frac{t(p+2 q)}{1-p-q}\right)\right] n \alpha^{n} \\
& -t n-j+\frac{t(p+2 q)}{1-p-q} \\
& =\left(w_{0}+j-\frac{t(p+2 q)}{1-p-q}\right)\left(\alpha^{n}-n \alpha^{n}\right)+\left(w_{1}+t+j-\frac{t(p+2 q)}{1-p-q}\right) n \alpha^{n-1} \\
& -t n-j+\frac{t(p+2 q)}{1-p-q} \\
& =w_{1} n \alpha^{n-1}-w_{0}(n-1) \alpha^{n}+\left(j-\frac{t(p+2 q)}{1-p-q}\right)\left(n \alpha^{n-1}-(n-1) \alpha^{n}-1\right)+t n \alpha^{n-1}-t n .
\end{aligned}
$$

Thus, if $\alpha=\beta$, the solution is

$$
w_{n}=w_{1} n \alpha^{n-1}-w_{0}(n-1) \alpha^{n}+\left(j-\frac{t(p+2 q)}{1-p-q}\right)\left(n \alpha^{n-1}-(n-1) \alpha^{n}-1\right)+t n \alpha^{n-1}-t n .
$$

Using (10), (11), and (12), then

$$
\begin{aligned}
w_{n}= & w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)+\left(j-\frac{t(p+2 q)}{1-p-q}\right)\left(w_{n}(1,1, p, q, 0,0)-1\right) \\
& +t\left(w_{n}(0,1, p, q, 0,0)-n\right) .
\end{aligned}
$$

The results for both cases are the same.

Corollary 3.3 (Bicknell-Johnson et al. [3]). Consider the Leonardo-like sequence $C_{n}(a, b, k)$ defined in (6). Using Horadam's notation, we have

$$
w_{n}=w_{n}(b-a-k, a, 1,1,0, k) .
$$

Then

$$
\begin{equation*}
w_{n}(b-a-k, a, 1,1,0, k)=a F_{n-2}+b F_{n-1}+k\left(F_{n}-1\right) . \tag{19}
\end{equation*}
$$

Proof. By Theorem 3.2,

$$
\begin{aligned}
w_{n}(b-a-k, a, 1,1,0, k) & =w_{n}(b-a-k, a, 1,1,0,0)+k\left(w_{n}(1,1,1,1,0,0)-1\right) \\
& =w_{n}(b-a-k, a, 1,1,0,0)+k\left(F_{n+1}-1\right)
\end{aligned}
$$

Since $p=q=1$ and $t=j=0$, we can use Theorem 3.1, with $\alpha=\phi$ and $\beta=\psi$:

$$
\begin{aligned}
w_{n}(b-a-k, a, 1,1,0,0) & =\frac{a-\psi(b-a-k)}{\phi-\psi} \phi^{n}-\frac{a-\phi(b-a-k)}{\phi-\psi} \psi^{n} \\
& =a\left(\frac{\phi^{n}-\psi^{n}}{\phi-\psi}\right)+(b-a-k)\left(\frac{\phi^{n-1}-\psi^{n-1}}{\phi-\psi}\right) \\
& =a F_{n}+(b-a-k) F_{n-1}=a F_{n-2}+(b-k) F_{n-1} .
\end{aligned}
$$

Hence, by Theorem 3.2,

$$
\begin{aligned}
w_{n}(b-a-k, a, 1,1,0, k) & =a F_{n-2}+(b-k) F_{n-1}+k\left(F_{n+1}-1\right) \\
& =a F_{n-2}+b F_{n-1}+k\left(F_{n}-1\right) .
\end{aligned}
$$

Corollary 3.4. Consider the general Leonardo sequence $\left\{w_{n}(1,1,1,1, t, j)\right\}$. Then

$$
\begin{equation*}
w_{n}(1,1,1,1, t, j)=(1+3 t+j) F_{n+1}+t\left(F_{n}-n-3\right)-j . \tag{20}
\end{equation*}
$$

Proof. Let $p=q=1$ and $w_{0}=w_{1}=1$ in (16) of Theorem 3.2. Recall that the Fibonacci sequence $\left\{F_{n}\right\}$ satisfies the second order linear recurrence relation

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2}, \tag{21}
\end{equation*}
$$

where $F_{0}=0$ and $F_{1}=1$. By (11), we have

$$
w_{n}(0,1,1,1,0,0)=F_{n}, w_{n}(1,1,1,1,0,0)=F_{n+1}
$$

where $\alpha=\phi$ and $\beta=\psi$. Then

$$
\begin{aligned}
w_{n}(1,1,1,1, t, j)= & w_{n}(1,1,1,1,0,0)+\left(j-\frac{t(1+2)}{1-1-1}\right)\left(w_{n}(1,1,1,1,0,0)-1\right) \\
& \quad+t\left(w_{n}(0,1,1,1,0,0)-n\right) \\
= & F_{n+1}+(j+3 t)\left(F_{n+1}-1\right)+t\left(F_{n}-n\right) \\
= & (1+j+3 t) F_{n+1}+t F_{n}-t n-j-3 t \\
= & (1+3 t+j) F_{n+1}+t\left(F_{n}-n-3\right)-j
\end{aligned}
$$

Corollary 3.5 (Shannon et al. [18]). Consider the sequence $\left\{w_{n}(1,1,1,1,1, j)\right\}$ of order 2 satisfying the non-homogeneous linear recurrence relation (15). Then

$$
\begin{equation*}
w_{n}(1,1,1,1,1, j)=(4+j) F_{n+1}+F_{n}-n-3-j \tag{22}
\end{equation*}
$$

Proof. Let $t=1$ in Corollary 3.4 yield the result.

Corollary 3.6. The closed formula for the generalized Leonardo sequence $\left\{\mathcal{L}_{k, n}\right\}$ defined in Definition 2.1 is

$$
\mathcal{L}_{k, n}=(1+k) F_{n+1}-k,
$$

as given in Theorem 2.1.
Proof. Let $t=0$ and $j=k$ in Corollary 3.4 yield the result.
Corollary 3.7 (Shannon et al. [18]). Consider the sequence $\left\{w_{n}(1,1,1,1,1,0)\right\}$ of order 2 satisfying the non-homogeneous linear recurrence relation (15). Then

$$
\begin{equation*}
w_{n}(1,1,1,1,1,0)=4 F_{n+1}+F_{n}-n-3 \tag{23}
\end{equation*}
$$

Proof. Let $t=1$ and $j=0$ in Corollary 3.4 yield the result.
Theorem 3.3. Let $\left\{w_{n}\left(w_{0}, w_{1}, p, q, t, j\right)\right\}$ be a sequence of order 2 satisfying the non-homogeneous linear relation in the following form:

$$
\begin{equation*}
w_{n}=p w_{n-1}+q w_{n-2}+(p+q-1)(t n+j), n \geq 2, t, j \in \mathbb{Z} \tag{24}
\end{equation*}
$$

where w_{0}, w_{1}, p, q, with $p+q \neq 1$, are given constants. Then

$$
\begin{align*}
& w_{n}\left(w_{0}, w_{1}, p, q, t, j+1\right)-w_{n}\left(w_{0}, w_{1}, p, q, t, j\right)=w_{n}(1,1, p, q, 0,0)-1 \text { and } \tag{25}\\
& w_{n}\left(w_{0}, w_{1}, p, q, t, j+k\right)-w_{n}\left(w_{0}, w_{1}, p, q, t, j\right)=k\left(w_{n}(1,1, p, q, 0,0)-1\right) \tag{26}
\end{align*}
$$

Proof. Using the result from Theorem 3.2, we have

$$
\begin{gathered}
w_{n}\left(w_{0}, w_{1}, p, q, t, j+1\right)=w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)+\left(j+1-\frac{t(p+2 q)}{1-p-q}\right)\left(w_{n}(1,1, p, q, 0,0)-1\right) \\
+ \\
+t\left(w_{n}(0,1, p, q, 0,0)-n\right)
\end{gathered}
$$

and

$$
\begin{gathered}
w_{n}\left(w_{0}, w_{1}, p, q, t, j\right)=w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)+\left(j-\frac{t(p+2 q)}{1-p-q}\right)\left(w_{n}(1,1, p, q, 0,0)-1\right) \\
+t\left(w_{n}(0,1, p, q, 0,0)-n\right)
\end{gathered}
$$

Subtracting the two equations yields

$$
w_{n}\left(w_{0}, w_{1}, p, q, t, j+1\right)-w_{n}\left(w_{0}, w_{1}, p, q, t, j\right)=w_{n}(1,1, p, q, 0,0)-1
$$

The second result can be obtained by repeating the same process and replacing $j+1$ by $j+k$.
Corollary 3.8. Consider the Leonardo-like sequence $\left\{w_{n}(b-a-k, a, 1,1,0, k)\right\}$. Then for $n \geq 2$,

$$
w_{n}(b-a-k, a, 1,1,0, k+1)-w_{n}(b-a-k, a, 1,1,0, k)=F_{n+1}-1
$$

Proof. By Theorem 3.3,

$$
\begin{aligned}
w_{n}(b-a-k, a, 1,1,0, k+1)-w_{n}(b-a-k, a, 1,1,0, k) & =w_{n}(1,1,1,1,0,0)-1 \\
& =F_{n+1}-1
\end{aligned}
$$

Corollary 3.9 (Shannon et al. [17]). Consider the general Leonardo sequence $\left\{w_{n}(1,1,1,1, t, j)\right\}$.
Then for $n \geq 2$,

$$
\begin{equation*}
w_{n}(1,1,1,1, t, j+1)-w_{n}(1,1,1,1, t, j)=F_{n+1}-1 . \tag{27}
\end{equation*}
$$

Proof. Using Theorem 3.3. We have

$$
w_{n}(1,1,1,1, t, j+1)-w_{n}(1,1,1,1, t, j)=w_{n}(1,1,1,1,0,0)-1=F_{n+1}-1
$$

Note that $w_{n}(1,1,1,1,0, k)=\mathcal{L}_{k, n}$. Hence when $t=0$, we have the same result as Corollary 2.2 (ii).

Next, note that this difference is independent of t. A table by Shannon and Deveci [18] for $t=1$ is given here:

\boldsymbol{j}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
-3	1	1	1	2	4	8	15	27	47
-2	1	1	2	4	8	15	27	47	80
-1	1	1	3	6	12	22	39	67	113
0	1	1	4	8	16	29	51	87	146
1	1	1	5	10	20	36	63	107	179
2	1	1	6	12	24	43	75	127	212
3	1	1	7	14	28	50	87	147	245
Differences	0	0	1	2	4	7	12	20	33

Table 1. "Extended Leonardo sequence", [18].

We now give two more tables with $t=2$ and $t=3$ to show the Independence of t :

\boldsymbol{j}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
-3	1	1	3	7	15	29	53	93	159
-2	1	1	4	9	19	36	65	113	192
-1	1	1	5	11	23	43	77	133	225
0	1	1	6	13	27	50	89	153	258
1	1	1	7	15	31	57	101	173	291
2	1	1	8	17	35	64	113	193	324
3	1	1	9	19	39	71	125	213	357
Differences	0	0	1	2	4	7	12	20	33

Table 2. Extended Leonardo sequence with $t=2$.

\boldsymbol{j}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
-3	1	1	5	12	26	50	91	159	271
-2	1	1	6	14	30	57	103	179	304
-1	1	1	7	16	34	64	115	199	337
0	1	1	8	18	38	71	127	219	370
1	1	1	9	20	42	78	139	239	403
2	1	1	10	22	46	85	151	259	436
3	1	1	11	24	50	92	163	279	469
Differences	0	0	1	2	4	7	12	20	33

Table 3. Extended Leonardo sequence with $t=3$.
Theorem 3.4. Let $\left\{a_{n}\right\}$ be a sequence of order 2 satisfying the non-homogeneous linear relation:

$$
\begin{equation*}
a_{n}=a_{n-1}+a_{n-2}+C k^{n}, n \geq 2, \tag{28}
\end{equation*}
$$

where $a_{0}=0, a_{1}=1, C \neq 0, k \neq 0$, and $k^{2}-k-1 \neq 0$. Then

$$
\begin{equation*}
a_{n}=\left(1-\frac{C k^{3}}{k^{2}-k-1}\right) F_{n}+\left(1-\frac{C k^{2}}{k^{2}-k-1}\right) F_{n-1}+\frac{C k^{n+2}}{k^{2}-k-1} . \tag{29}
\end{equation*}
$$

Proof. The homogeneous solution is

$$
a_{n}=c_{1} \phi^{n}+c_{2} \psi^{n},
$$

where $\phi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}$.
The particular solution can be found using the method of undetermined coefficients. Assume the particular solution is of the form $a_{n}^{*}=A k^{n}$, where A is a constant. Then

$$
\begin{aligned}
A k^{n} & =A k^{n-1}+A k^{n-2}+C k^{n} \\
\Longrightarrow A & =\frac{C k^{2}}{k^{2}-k-1} .
\end{aligned}
$$

Hence, the general solution to (28) is

$$
a_{n}=c_{1} \phi^{n}+c_{2} \psi^{n}+\frac{C k^{n+2}}{k^{2}-k-1} .
$$

With $a_{0}=a_{1}=1$, we have the following system

$$
\left\{\begin{array} { l }
{ 1 = c _ { 1 } + c _ { 2 } + \frac { C k ^ { 2 } } { k ^ { 2 } - k - 1 } } \\
{ 1 = c _ { 1 } \phi + c _ { 2 } \psi + \frac { C k ^ { 3 } } { k ^ { 2 } - k - 1 } }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
c_{1}+c_{2} & =1-\frac{C k^{2}}{k^{2}-k-1} \\
c_{1} \phi+c_{2} \psi & =1-\frac{C k^{3}}{k^{2}-k-1}
\end{array}\right.\right.
$$

Then

$$
\begin{aligned}
c_{2}(\phi-\psi) & =\phi-\frac{C k^{2} \phi}{k^{2}-k-1}-1+\frac{C k^{3}}{k^{2}-k-1} \\
\Longrightarrow c_{2} & =\frac{\phi-1}{\sqrt{5}}+\frac{C k^{3}-C k^{2} \phi}{\sqrt{5}\left(k^{2}-k-1\right)} \\
& =-\frac{\psi}{\sqrt{5}}+\frac{C k^{3}-C k^{2} \phi}{\sqrt{5}\left(k^{2}-k-1\right)} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
c_{1} & =1-\frac{C k^{2}}{k^{2}-k-1}+\frac{\psi}{\sqrt{5}}-\frac{C k^{3}-C k^{2} \phi}{\sqrt{5}\left(k^{2}-k-1\right)} \\
& =\frac{\left(k^{2}-k-1-C k^{2}\right)(\phi-\psi)+\psi\left(k^{2}-k-1\right)-C k^{3}+C k^{2} \phi}{\sqrt{5}\left(k^{2}-k-1\right)} \\
& =\frac{-(k+1)(\phi-\psi)+\left(k^{2}-C k^{2}\right)(\phi-\psi)+k^{2} \psi-(k+1) \psi-C k^{3}+C k^{2} \phi}{\sqrt{5}\left(k^{2}-k-1\right)} \\
& =\frac{-(k+1) \phi+k^{2}((1-C)(\phi-\psi)-\alpha k+C \phi+\psi)}{\sqrt{5}\left(k^{2}-k-1\right)} \\
& =\frac{-(k+1) \phi+k^{2}(\phi+C \psi-C k)}{\sqrt{5}\left(k^{2}-k-1\right)}=\frac{\phi}{\sqrt{5}}-\frac{C k^{3}-C k^{2} \psi}{\sqrt{5}\left(k^{2}-k-1\right)} .
\end{aligned}
$$

Hence, the general solution to (28) is

$$
\begin{aligned}
a_{n} & =\left(\frac{\phi}{\sqrt{5}}-\frac{C k^{3}-C k^{2} \psi}{\sqrt{5}\left(k^{2}-k-1\right)}\right) \phi^{n}-\left(\frac{\psi}{\sqrt{5}}-\frac{C k^{3}-C k^{2} \phi}{\sqrt{5}\left(k^{2}-k-1\right)}\right) \psi^{n}+\frac{C k^{n+2}}{k^{2}-k-1} \\
& =\frac{\phi^{n+1}-\psi^{n+1}}{\sqrt{5}}-\frac{C k^{3}\left(\phi^{n}-\psi^{n}\right)}{\sqrt{5}\left(k^{2}-k-1\right)}+\frac{C k^{2} \phi \psi\left(\phi^{n-1}-\psi^{n-1}\right)}{\sqrt{5}\left(k^{2}-k-1\right)}+\frac{C k^{n+2}}{k^{2}-k-1} \\
& =F_{n+1}-\frac{C k^{3}}{k^{2}-k-1} F_{n}-\frac{C k^{2}}{k^{2}-k-1} F_{n-1}+\frac{C k^{n+2}}{k^{2}-k-1} \\
& =\left(1-\frac{C k^{3}}{k^{2}-k-1}\right) F_{n}+\left(1-\frac{C k^{2}}{k^{2}-k-1}\right) F_{n-1}+\frac{C k^{n+2}}{k^{2}-k-1} .
\end{aligned}
$$

Corollary 3.10 (Shannon et al. [18]). Consider a sequence $\left\{a_{j, n}\right\}$ of order 2 satisfying the following non-homogeneous linear recurrence relation:

$$
\begin{equation*}
a_{j, n}=a_{j, n-1}+a_{j, n-2}+(-1)^{n} j, n \geq 2, j \geq 0 \tag{30}
\end{equation*}
$$

where $a_{0}=0,=a_{1}=1$. Then

$$
\begin{equation*}
a_{j, n}=F_{n+1}+j F_{n-2}+(-1)^{n} j, n \geq 2 \tag{31}
\end{equation*}
$$

Proof. Let $C=j$ and $k=-1$. Then

$$
\begin{aligned}
a_{n} & =\left(1-\frac{-j}{1}\right) F_{n}+\left(1-\frac{j}{1}\right) F_{n-1}+\frac{(-1)^{n+2} j}{1} \\
& =(1+j) F_{n}+(1-j) F_{n-1}+(-1)^{n} j \\
& =F_{n+1}+j F_{n-2}+(-1)^{n} j .
\end{aligned}
$$

Corollary 3.11 (Shannon et al. [18]). Consider a sequence $\left\{a_{n}\right\}$ of order 2 satisfying the following non-homogeneous linear recurrence relation:

$$
\begin{equation*}
a_{n}=a_{n-1}+a_{n-2}+(-1)^{n}, n \geq 2, \tag{32}
\end{equation*}
$$

where $a_{0}=0, a_{1}=1$. Then

$$
\begin{equation*}
a_{n}=2 F_{n}+(-1)^{n} . \tag{33}
\end{equation*}
$$

Proof. Let $j=1$ in the previous corollary. Then

$$
a_{n}=F_{n+1}+F_{n-2}+(-1)^{n}=F_{n}+F_{n-1}+F_{n}-F_{n-1}+(-1)^{n}=2 F_{n}+(-1)^{n} .
$$

Corollary 3.12 (Shannon et al. [18]). Consider a sequence $\left\{a_{j, n}\right\}$ of order 2 satisfying the following non-homogeneous linear recurrence relation: Let

$$
a_{j, n}=a_{j, n-1}+a_{j, n-2}+(-1)^{n} j, n \geq 2, j \geq 0
$$

where $a_{0}=0,=a_{1}=1$. Then

$$
\begin{equation*}
a_{j+1, n}-a_{j, n}=F_{n-2}+(-1)^{n}, n \geq 2 . \tag{34}
\end{equation*}
$$

Proof. By Corollary 3.10, we have

$$
a_{j, n}=F_{n+1}+j F_{n-2}+(-1)^{n} j
$$

and

$$
a_{j+1, n}=F_{n+1}+(j+1) F_{n-2}+(-1)^{n}(j+1) .
$$

Then

$$
a_{j+1, n}-a_{j, n}=F_{n-2}+(-1)^{n} .
$$

\boldsymbol{j}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
0	0	1	1	2	3	5	8	13	21	34
1	0	1	2	2	5	6	12	17	30	46
2	0	1	3	2	7	7	16	21	39	58
3	0	1	4	2	9	8	20	25	48	70
4	0	1	5	2	11	9	24	29	57	82
5	0	1	6	2	13	10	28	33	66	94
6	0	1	7	2	15	11	32	37	75	106
7	0	1	8	2	17	12	36	41	84	118
8	0	1	9	2	19	13	40	45	93	130
9	0	1	10	2	21	14	44	49	102	142
10	0	1	11	2	23	15	48	53	111	154
Differences	0	0	1	0	2	1	4	4	9	12

Table 4. Table of values for Corollary 3.14.

4 Examples

Consider

$$
w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=p w_{n-1}\left(w_{0}, w_{1}, p, q, 0,0\right)+q w_{n-2}\left(w_{0}, w_{1}, p, q, 0,0\right), n \geq 2
$$

where w_{0}, w_{1}, p, and $q \neq 0$ are given constants. The following table by Koshy [12] lists some well-known sequences:

Sequence of numbers	$\boldsymbol{w}_{\mathbf{0}}$	$\boldsymbol{w}_{\mathbf{1}}$	\boldsymbol{p}	\boldsymbol{q}
Fibonacci F_{n}	0	1	1	1
Lucas L_{n}	2	1	1	1
Pell P_{n}	0	1	2	1
Pell-Lucas Q_{n}	2	2	2	1
Mersenne M_{n}	0	1	3	-2
Jacobsthal J_{n}	0	1	1	2
Jacobsthal-Lucas \mathcal{J}_{n}	2	1	1	2
Balancing B_{n}	0	1	6	-1
Lucas-balancing C_{n}	1	3	6	-1
M. Ward W_{n}	1	1	4	-1
Fermat of the first kind T_{n}	1	3	3	-2
Fermat of the second kind S_{n}	2	3	3	-2

Table 5. Some well-known sequences, [12].

Example 4.1. Let $w_{0}=2, w_{1}=1, p=q=1$ in(15), i.e.,

$$
w_{n}(2,1,1,1, t, j)=w_{n-1}(2,1,1,1, t, j)+w_{n-2}(2,1,1,1, t, j)+t n+j, n \geq 2, t \in \mathbb{Z},
$$

Then

(1). $w_{n}(2,1,1,1, t, j)=L_{n}+(j+3 t)\left(F_{n+1}-1\right)+t\left(F_{n}-n\right)$;
(2). $w_{n}(2,1,1,1, t, j+1)-w_{n}(2,1,1,1, t, j)=F_{n+1}-1$.

Proof. Since $p=q=1, \alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=w_{n}(2,1,1,1,0,0)=L_{n}$, $w_{n}(0,1, p, q, 0,0)=w_{n}(0,1,1,1,0,0)=F_{n}$, and $w_{n}(1,1, p, q, 0,0)=w_{n}(1,1,1,1,0,0)=F_{n+1}$. Then by Theorem 3.2,

$$
\begin{aligned}
w_{n}(2,1,1,1, t, j)= & w_{n}(2,1,1,1,0,0)+\left(j-\frac{t(1+2)}{1-1-1}\right)\left(w_{n}(1,1,1,1,0,0)-1\right) \\
& \quad+t\left(w_{n}(0,1,1,1,0,0)-n\right) \\
= & L_{n}+(j+3 t)\left(F_{n+1}-1\right)+t\left(F_{n}-n\right)
\end{aligned}
$$

We use Theorem 3.3 to obtain the second result. We have

$$
\begin{aligned}
w_{n}(2,1,1,1, t, j+1)-w_{n}(2,1,1,1, t, j) & =w_{n}(1,1,1,1,0,0)-1 \\
& =F_{n+1}-1
\end{aligned}
$$

We give three tables to show this difference.

For $t=1$:

\boldsymbol{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
-3	2	1	2	3	6	11	20	35	60
-2	2	1	3	5	10	18	32	55	93
-1	2	1	4	7	14	25	44	75	126
0	2	1	5	9	18	32	56	95	159
1	2	1	6	11	22	39	68	115	192
2	2	1	7	13	26	46	80	135	225
3	2	1	8	15	30	53	92	155	258
Differences	0	0	1	2	4	7	12	20	33

Table 6. Values of $w_{n}(2,1,1,1,1, j)$.
For $t=2$:

\boldsymbol{j}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
-3	2	1	4	8	17	32	58	101	172
-2	2	1	5	10	21	39	70	121	205
-1	2	1	6	12	25	46	82	141	238
0	2	1	7	14	29	53	94	161	271
1	2	1	8	16	33	60	106	181	304
2	2	1	9	18	37	67	118	201	337
3	2	1	10	20	41	74	130	221	370
Differences	0	0	1	2	4	7	12	20	33

Table 7. Values of $w_{n}(2,1,1,1,2, j)$.
For $t=3$:

\boldsymbol{j}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
-3	2	1	6	13	28	53	96	167	284
-2	2	1	7	15	32	60	108	187	317
-1	2	1	8	17	36	67	120	207	350
0	2	1	9	19	40	74	132	227	383
1	2	1	10	21	44	81	144	247	416
2	2	1	11	23	48	88	156	267	449
3	2	1	12	25	52	95	168	287	482
Differences	0	0	1	2	4	7	12	20	33

Table 8. Values of $w_{n}(2,1,1,1,3, j)$.

We can see that the difference resembles the sequence $\left\{F_{n+1}-1\right\}$.
Example 4.2. Let $w_{0}=0, w_{1}=1, p=2$, and $q=1$ in (15), i.e.,

$$
w_{n}(0,1,2,1, t, j)=2 w_{n-1}(0,1,2,1, t, j)+w_{n-2}(0,1,2,1, t, j)+2(t n+j), n \geq 2, t \in \mathbb{Z}
$$

Then

(1). $w_{n}(0,1,2,1, t, j)=(1+t) P_{n}+(j+2 t)\left(P_{n+1}-P_{n}-1\right)-t n$;
(2). $w_{n}(0,1,2,1, t, j+1)-w_{n}(0,1,2,1, t, j)=P_{n+1}-P_{n}-1$.

Proof. Since $p=2$ and $q=1, \alpha=1+\sqrt{2}, \beta=1-\sqrt{2}, w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=w_{n}(0,1,2,1,0,0)=$ P_{n}. Then by Theorem 3.2,

$$
\begin{aligned}
w_{n}(0,1,2,1, t, j)= & w_{n}(0,1,2,1,0,0)+\left(j-\frac{t(2+2)}{1-2-1}\right)\left(w_{n}(1,1,2,1,0,0)-1\right) \\
& \quad+t\left(w_{n}(0,1,2,1,0,0)-n\right) \\
= & P_{n}+(j+2 t)\left(P_{n+1}-P_{n}-1\right)+t P_{n}-t n \\
= & (1+t) P_{n}+(j+2 t)\left(P_{n+1}-P_{n}-1\right)-t n .
\end{aligned}
$$

We use Theorem 3.3 to obtain the second result. Then

$$
w_{n}(0,1,2,1, t, j+1)-w_{n}(0,1,2,1, t, j)=w_{n}(1,1,2,1,0,0)-1=P_{n+1}-P_{n}-1 .
$$

Remark 4.1. In Example 4.2, the following identity is used:

$$
w_{n}(1,1,2,1,0,0)=w_{n+1}(0,1,2,1,0,0)-w_{n}(0,1,2,1,0,0)
$$

Proof.

$$
\begin{aligned}
w_{n}(0,1,2,1,0,0)= & \frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2 \sqrt{2}} \\
w_{n+1}(0,1,2,1,0,0)= & \frac{(1+\sqrt{2})^{n+1}-(1-\sqrt{2})^{n+1}}{2 \sqrt{2}} \\
w_{n+1}(0,1,2,1,0,0)-w_{n}(0,1,2,1,0,0)= & \frac{(1+\sqrt{2})^{n+1}-(1-\sqrt{2})^{n+1}}{2 \sqrt{2}} \\
& -\frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2 \sqrt{2}} \\
= & \frac{\sqrt{2}(1+\sqrt{2})^{n}+\sqrt{2}(1-\sqrt{2})^{n}}{2 \sqrt{2}} \\
= & \frac{(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{2} \\
= & w_{n}(1,1,2,1,0,0) .
\end{aligned}
$$

Example 4.3. Let $w_{0}=2, w_{1}=2, p=2$, and $q=1$ in (15), i.e.,

$$
w_{n}(2,2,2,1, t, j)=2 w_{n-1}(2,2,2,1, t, j)+w_{n-2}(2,2,2,1, t, j)+2(t n+j), n \geq 2, t \in \mathbb{Z}
$$

Then
(1). $w_{n}(2,2,2,1, t, j)=Q_{n}+(j+2 t)\left(P_{n+1}-P_{n}-1\right)+t\left(P_{n}-n\right)$;
(2). $w_{n}(2,2,2,1, t, j+1)-w_{n}(2,2,2,1, t, j)=P_{n+1}-P_{n}-1$.

Proof. Similar to the last example, $\alpha=1+\sqrt{2}, \beta=1-\sqrt{2}$, $w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=$ $w_{n}(2,2,2,1,0,0)=Q_{n}$ and $w_{n}(0,1,2,1,0,0)=P_{n}$. Then by Theorem 3.2,

$$
\begin{aligned}
w_{n}(2,2,2,1, t, j)= & w_{n}(2,2,2,1,0,0)+\left(j-\frac{t(2+2)}{1-2-1}\right)\left(w_{n}(1,1,2,1,0,0)-1\right) \\
& \quad+t\left(w_{n}(0,1,2,1,0,0)-n\right) \\
= & Q_{n}+(j+2 t)\left(P_{n+1}-P_{n}-1\right)+t\left(P_{n}-n\right)
\end{aligned}
$$

The second result is the same as the last example.
Example 4.4. Let $w_{0}=0, w_{1}=1, p=1$, and $q=2$ in (15), i.e.,

$$
w_{n}(0,1,1,2, t, j)=w_{n-1}(0,1,1,2, t, j)+2 w_{n-2}(0,1,1,2, t, j)+2(t n+j), n \geq 2, t \in \mathbb{Z}
$$

Then

(1). $w_{n}(0,1,1,2, t, j)=(1+t) J_{n}+\left(j+\frac{5 t}{2}\right)\left(\mathcal{J}_{n}-1\right)-t n$;
(2). $w_{n}(0,1,1,2, t, j+1)-w_{n}(0,1,1,2, t, j)=\mathcal{J}_{n}-1$.

Proof. Since $p=1$ and $q=2$, we have $\alpha=-1, \beta=2$, and $w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=$ $w_{n}(0,1,1,2,0,0)=J_{n}$. Then by Theorem 3.2,

$$
\begin{aligned}
w_{n}(0,1,1,2, t, j)= & w_{n}(0,1,1,2,0,0)+\left(j-\frac{t(1+2 \cdot 2)}{1-p-q}\right)\left(w_{n}(1,1,1,2,0,0)-1\right) \\
& +t\left(w_{n}(0,1,1,2,0,0)-n\right) \\
= & J_{n}+\left(j+\frac{5 t}{2}\right)\left(\mathcal{J}_{n}-1\right)+t J_{n}-t n \\
= & (1+t) J_{n}+\left(j+\frac{5 t}{2}\right)\left(\mathcal{J}_{n}-1\right)-t n .
\end{aligned}
$$

We use Theorem 3.3 to obtain the second result. Then

$$
w_{n}(0,1,1,2, t, j+1)-w_{n}(0,1,1,2, t, j)=w_{n}(1,1,2,1,0,0)-1=\mathcal{J}_{n}-1 .
$$

Remark 4.2. In Example 4.4, the following identity is used:

$$
w_{n+1}(0,1,1,2,0,0)=w_{n}(1,1,1,2,0,0) .
$$

Proof.

$$
\begin{aligned}
w_{n+1}(0,1,1,2,0,0) & =\frac{1}{3}\left((-1)^{n+2}+2^{n+1}\right)=\frac{1}{3}\left((-1)^{n}+2^{n+1}\right) \\
& =w_{n}(1,1,1,2,0,0)=J_{n+1}=\mathcal{J}_{n}
\end{aligned}
$$

Example 4.5. Let $w_{0}=1, w_{1}=1, p=1$, and $q=2$ in (15), i.e.,

$$
w_{n}(1,1,1,2, t, j)=w_{n-1}(1,1,1,2, t, j)+2 w_{n-2}(1,1,1,2, t, j)+t n+j, n \geq 2, t \in \mathbb{Z}
$$

Then
(1). $w_{n}(1,1,1,2, t, j)=\mathcal{J}_{n}+\left(j+\frac{5 t}{2}\right)\left(\mathcal{J}_{n}-1\right)+t\left(J_{n}-n\right)$;
(2). $w_{n}(1,1,1,2, t, j+1)-w_{n}(1,1,1,2, t, j)=\mathcal{J}_{n}-1$.

Proof. Similar to the last example, we have $\alpha=-1, \beta=2, w_{n}\left(w_{0}, w_{1}, p, q, 0,0\right)=$ $w_{n}(1,1,1,2,0,0)=\mathcal{J}_{n}$. Then by Theorem 3.2,

$$
\begin{aligned}
w_{n}(1,1,1,2, t, j)= & w_{n}(1,1,1,2,0,0)+\left(j-\frac{t(1+2 \cdot 2)}{1-1-2}\right)\left(w_{n}(1,1,1,2,0,0)-1\right) \\
& +t\left(w_{n}(0,1,1,2,0,0)-n\right) \\
= & \mathcal{J}_{n}+\left(j+\frac{5 t}{2}\right)\left(\mathcal{J}_{n}-1\right)+t\left(J_{n}-n\right) .
\end{aligned}
$$

The second result is the same as the previous example.
Remark 4.3. In Examples 4.2, 4.3, 4.4, 4.5, the homogeneous parts are Pell sequence $\left\{P_{n}\right\}$, Pell-Lucas sequence $\left\{Q_{n}\right\}$, Jacobsthal sequence $\left\{J_{n}\right\}$, and Jacobsthal-Lucas sequence $\left\{\mathcal{J}_{n}\right\}$, respectively.

5 Some identities involving the generalized Leonardo sequence

Theorem 5.1. Let $\left\{\mathcal{L}_{k, n}\right\}$ denote the generalized Leonardo sequence. Then

1. (Shattuck [19]) $\mathcal{L}_{k, n}^{2}-\mathcal{L}_{k, n-1} \mathcal{L}_{k, n+1}=(-1)^{n}(k+1)^{2}+k(k+1) F_{n-2}$;
2. (Kuhapatanakul [13]) $\mathcal{L}_{k, m} \mathcal{L}_{k, n-1}+\mathcal{L}_{k, m-1} \mathcal{L}_{k, n}=\mathcal{L}_{k, m+1} \mathcal{L}_{k, n+1}-(k+1) \mathcal{L}_{k, m+n}-k$.

Proof. By Theorem 2.1, we can write the generalized Leonardo sequence as

$$
\begin{equation*}
\mathcal{L}_{k, n}=(1+k) F_{n+1}-k . \tag{35}
\end{equation*}
$$

Then

$$
\begin{aligned}
\mathcal{L}_{k, n}^{2}-\mathcal{L}_{k, n-1} \mathcal{L}_{k, n+1} & =(1+k)^{2} F_{n+1}^{2}-2 k(1+k) F_{n+1}+k^{2}-\left((1+k) F_{n}-k\right)\left((1+k) F_{n+2}-k\right) \\
& =(1+k)^{2}\left(F_{n+1}^{2}-F_{n} F_{n+2}\right)-k(k+1)\left(2 F_{n+1}-F_{n}-F_{n+2}\right) \\
& =(1+k)^{2}(-1)^{n}-k(1+k)\left(2 F_{n+1}-F_{n}-F_{n+1}-F_{n}\right) \\
& =(1+k)^{2}(-1)^{n}-k(1+k) F_{n-2},
\end{aligned}
$$

by Cassini's identity.
For the second result, we first note Honsberger's identity

$$
F_{n-1} F_{m}+F_{n} F_{m+1}=F_{m+n}
$$

Then

$$
\begin{aligned}
\mathcal{L}_{k, m} \mathcal{L}_{k, n-1}= & (1+k)^{2} F_{m+1} F_{n}-k(1+k)\left(F_{m+1}+F_{n}\right)+k^{2}, \\
\mathcal{L}_{k, m-1} \mathcal{L}_{k, n}= & (1+k)^{2} F_{m} F_{n+1}-k(1+k)\left(F_{m}+F_{n+1}\right)+k^{2}, \\
\mathcal{L}_{k, m+1} \mathcal{L}_{k, n+1}= & (1+k)^{2} F_{m+2} F_{n+2}-k(1+k)\left(F_{m+2}+F_{n+2}\right)+k^{2} \\
= & (1+k)^{2}\left(F_{m+1} F_{n+1}+F_{m+1} F_{n}+F_{n+1} F_{m}+F_{m} F_{n}\right) \\
& \quad-k(1+k)\left(F_{m+1}+F_{m}+F_{n+1}+F_{n}\right)+k^{2}, \\
\mathcal{L}_{k, m+n}= & (1+k) F_{m+n+1}-k
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathcal{L}_{k, m} \mathcal{L}_{k, n-1} \mathcal{L}_{k, m-1} \mathcal{L}_{k, n}-\mathcal{L}_{k, m+1} \mathcal{L}_{k, n+1} & =k^{2}-(1+k)^{2}\left(F_{m+1} F_{n+1}+F_{m} F_{n}\right) \\
& =k^{2}-(1+k)^{2} F_{m+n+1} .
\end{aligned}
$$

Finally,

$$
\mathcal{L}_{k, m} \mathcal{L}_{k, n-1} \mathcal{L}_{k, m-1} \mathcal{L}_{k, n}-\mathcal{L}_{k, m+1} \mathcal{L}_{k, n+1}+(1+k) \mathcal{L}_{k, m+n}+k=0 .
$$

Theorem 5.2. Let

$$
\begin{equation*}
a_{0} F_{n+t}+a_{1} F_{n+t-1}+\cdots+a_{t} F_{n}=0, \tag{36}
\end{equation*}
$$

where $a_{0}+a_{1}+\cdots+a_{t}=0, a_{i} \in \mathbb{Z},(i=0,1,2, \ldots, t), t$ is a fixed positive integer. Then

$$
\begin{equation*}
a_{0} \mathcal{L}_{k, n+t-1}+a_{1} \mathcal{L}_{k, n+t-2}+\cdots+a_{t} \mathcal{L}_{k, n-1}=0 . \tag{37}
\end{equation*}
$$

Proof. Since $\mathcal{L}_{k, n}=(1+k) F_{n+1}-k$, we have

$$
\begin{aligned}
& a_{0} \mathcal{L}_{k, n+t-1}+a_{1} \mathcal{L}_{k, n+t-2}+\cdots+a_{t} \mathcal{L}_{k, n-1} \\
& \quad=a_{0}\left[(1+k) F_{n+t}-k\right]+a_{1}\left[(1+k) F_{n+t-1}-k\right]+\cdots+a_{t}\left[(1+k) F_{n}-k\right] \\
& \quad=(1+k)\left[a_{0} F_{n+t}+a_{1} F_{n+t-1}+\cdots+a_{t} F_{n}\right]-k\left[a_{0}+a_{1}+\cdots+a_{t}\right] \\
& \quad=(1+k) \cdot 0-k \cdot 0=0 .
\end{aligned}
$$

Remark 5.1. (36) can be obtained by computing $\left(x^{2}-x-1\right) x^{n}(x-1) p(x)$, where $p(x)$ is a polynomial over \mathbb{Z} first, then replace each x^{n+i} by F_{n+i}.

Algorithm 1 Obtaining this identity

Input: A polynomial $p(x)$ over \mathbb{Z}
Output: An identity with generalized Leonard sequence
1: $g(x) \leftarrow\left(x^{2}-x-1\right) \cdot x^{n} \cdot(x-1) \cdot p(x)$
Replace each x^{n+i} by F_{n+i}
Verify the coefficients of F_{n+i} sums to zero
Replace each F_{n+i} by \mathcal{L}_{n+i-1}
Ouput the identity

Example 5.1. It is known that

$$
F_{n}+F_{n+1}+F_{n+6}-3 F_{n+4}=0 .
$$

Hence $a_{0}=1, a_{1}=0, a_{2}=-3, a_{3}=a_{4}=0, a_{5}=1, a_{6}=1$, i.e. $\sum a_{i}=0$. Then

$$
\mathcal{L}_{k, n+5}-3 \mathcal{L}_{k, n+3}+\mathcal{L}_{k, n}+\mathcal{L}_{k, n-1}=0
$$

or

$$
\begin{equation*}
\mathcal{L}_{k, n+5}+\mathcal{L}_{k, n}+\mathcal{L}_{k, n-1}=3 \mathcal{L}_{k, n+3} . \tag{38}
\end{equation*}
$$

Example 5.2. Let $f(x)=\left(x^{2}-x-1\right) x^{n}$ and $p(x)=(x-1)\left(2 x^{3}+3 x-1\right)$. Then $g(x)=f(x) \cdot p(x)=2 x^{n+6}-4 x^{n+5}+3 x^{n+4}-5 x^{n+3}+2 x^{n+2}+3 x^{n+1}-x^{n}$. Replacing each x^{n+i} by F_{n+i}, we have

$$
\begin{equation*}
2 F_{n+6}-4 F_{n+5}+3 F_{n+4}-5 F_{n+3}+2 F_{n+2}+3 F_{n+1}-F_{n}=0 . \tag{39}
\end{equation*}
$$

The coefficients are

$$
a_{0}=2, a_{1}=-4, a_{2}=3, a_{3}=-5, a_{4}=2, a_{5}=3, a_{6}=-1,
$$

which gives

$$
\sum a_{i}=0 .
$$

Then we have

$$
2 \mathcal{L}_{k, n+5}-4 \mathcal{L}_{k, n+4}+3 \mathcal{L}_{k, n+3}-5 \mathcal{L}_{k, n+2}+2 \mathcal{L}_{k, n+1}+3 \mathcal{L}_{k, n}-\mathcal{L}_{k, n-1}=0, n \geq 1 .
$$

Example 5.3. Let $f(x)=\left(x^{2}-x-1\right) x^{n}$ and let $p(x)=(x-1)\left(2 x^{2}+x+1\right)$. Then $g(x)=$ $f(x) \cdot p(x)=2 x^{n+5}-3 x^{n+4}-x^{n+3}+x^{n+1}+x^{n}$. Replacing each x^{n+i} by F_{n+i}, we have

$$
\begin{equation*}
2 F_{n+5}-3 F_{n+4}-F_{n+3}+F_{n+1}+F_{n}=0 . \tag{40}
\end{equation*}
$$

The coefficients are

$$
a_{0}=2, a_{1}=-3, a_{2}=-1, a_{3}=0, a_{4}=1, a_{5}=1,
$$

which gives

$$
\sum a_{i}=0 .
$$

Then we have

$$
2 \mathcal{L}_{k, n+4}-3 \mathcal{L}_{k, n+3}-\mathcal{L}_{k, n+2}+\mathcal{L}_{k, n}+\mathcal{L}_{k, n-1}=0, n \geq 1 .
$$

6 Combinatorial conclusion

Jarden [10] has also considered Leonardo sequences from the point of view of the following variation of the Leonardo equation related to equation (5):

$$
\begin{equation*}
a_{n}=a_{n-1}+a_{n-2} \mp 1, n \geq 2, \tag{41}
\end{equation*}
$$

and the associated $3^{r d}$ order linear recurrence

$$
\begin{equation*}
b_{n}=2 b_{n-1}-b_{n-3}, n \geq 3, \tag{42}
\end{equation*}
$$

to which the Leonardo sequences conform as in equation (5) with $k=\mp 1$. In fact, Jarden considers the sequences in Tables 1, 2, and 3, which can bring out the corresponding relations with the Fibonacci and Lucas sequences. $\left\{u_{n}\right\}$ is the sequence of differences, and is related to the generalized Fibonacci numbers of Jarden in Table 9 [10] and the hyper-Fibonacci and hyper-Lucas numbers in Table 10 [6] with further generalized and extended Leonardo numbers.

$(\mathbf{- 1)}$	0	1	2	3	4	5	6	7	8
$\boldsymbol{U}_{\boldsymbol{n}}$	1	2	2	3	4	6	9	14	22
$\boldsymbol{V}_{\boldsymbol{n}}$	3	2	4	5	8	12	19	30	48
$\mathbf{(+ 1)}$	0	1	2	3	4	5	6	7	8
$\boldsymbol{U}_{\boldsymbol{n}}$	-1	0	0	1	2	4	7	12	20
$\boldsymbol{V}_{\boldsymbol{n}}$	1	0	2	3	6	10	17	28	46

Table 9. Jarden's example of equation (5) with $k=\mp 1$.

Table 10 below is copied from Table 1 [1]. It shows the interested reader the salient features of these sequences, both horizontally and vertically, as well as diagonally. Further properties to be investigated include intersections between sequences [8] and step functions within sequences [5]. The last of these leads to s-Pascal triangles, as in Table 11.

\boldsymbol{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\cdots
$\boldsymbol{F}_{\boldsymbol{n}}^{(\mathbf{0})}$	0	1	1	2	3	5	8	13	21	34	\cdots
$\boldsymbol{L}_{\boldsymbol{n}}^{(\mathbf{0}}$	2	1	3	4	7	11	18	29	47	76	\cdots
$\boldsymbol{F}_{\boldsymbol{n}}^{\mathbf{(1)}}$	0	1	2	4	7	12	20	33	54	88	\cdots
$\boldsymbol{L}_{\boldsymbol{n}}^{(\mathbf{1})}$	2	3	6	10	17	28	46	75	122	198	\cdots
$\boldsymbol{F}_{\boldsymbol{n}}^{(\mathbf{2})}$	0	1	3	7	14	26	46	79	133	221	\cdots
$\boldsymbol{L}_{\boldsymbol{n}}^{(\mathbf{2})}$	2	5	11	21	38	66	112	187	309	507	\cdots
$\boldsymbol{F}_{\boldsymbol{n}}^{(\mathbf{3})}$	0	1	4	11	25	51	97	176	309	530	\cdots
$\boldsymbol{L}_{\boldsymbol{n}}^{(\mathbf{3})}$	2	7	18	39	77	143	225	442	751	1258	\cdots

Table 10. Hyper-Fibonacci and hyper-Lucas numbers.

1													$\mathbf{1}$
1	1	1											$\mathbf{3}$
1	2	3	2	1									$\mathbf{9}$
1	3	6	7	6	3	1							$\mathbf{2 7}$
1	4	10	16	19	16	10	4	1					$\mathbf{8 1}$
1	5	15	30	45	51	45	30	15	5	1			$\mathbf{2 4 3}$
1	6	21	50	90	126	141	126	90	50	21	6	1	$\mathbf{7 2 9}$

Table 11. A simple s-Pascal triangle.
If we then add along the leading diagonals in Table 11, we seem to arrive at the Tribonacci numbers, which can generate third-order Leonardo numbers.

In a different, but somewhat similar manner, Lind [14] defined $L(n, r)$ the r-th order nonlinear binomial sum as the sum of the first r terms of the $(n-1)$-th row of the ordinary Pascal's triangle plus the terms of the rising stair-step (or rising) diagonal originating at the r-th term, which can be applied to any of these tables. For example, in Table 11, we can have

$$
L(1,3)=1, L(2,3)=3, L(3,3)=6, L(4,3)=12, L(4,4)=18 .
$$

All of these can provide a nexus between the numerical results in this paper and the recent combinatorial work of Shattuck [19], who provided a framework for these and other identities satisfied by the Leonardo numbers in the notation of section 3 and other generalized and extended Fibonacci numbers. The initial step in extending Corollary 3.12 is

$$
w_{n}=w_{n-1}+w_{n-2}+t n+j, n \geq 2, j>-4,
$$

and

$$
\begin{equation*}
w_{n}=w_{n-1}+F_{n+1}-1 . \tag{43}
\end{equation*}
$$

One can then extend the process to other second order sequences [15] or to other orders and other dimensions [16] for further related combinatorial properties. In this way, one can relate

$$
w_{n}=w_{n-1}+w_{n-2}+t n+j, n \geq 2, t \geq 1
$$

and

$$
\begin{equation*}
w_{n}=w_{n-1}+F_{n}^{[k]}, \tag{44}
\end{equation*}
$$

in which $F_{n}^{[k]}$ is hyper-Fibonacci sequence, as in Table 10, the rows of which as k increases can be seen as staked on top of one another for a third dimension. These can be developed further [2]. We note the neat recurrence relation

$$
\begin{equation*}
F_{n}^{[k]}=F_{n-1}^{[k]}+F_{n}^{[k-1]}, k, n>0, \tag{45}
\end{equation*}
$$

with boundary conditions $F_{n}^{[0]}=F_{n}$ and $F_{0}^{[k]}=0$; and with an elegant characteristic polynomial

$$
\left(x^{2}-x-1\right)(x-1)^{k}
$$

so that

$$
\begin{equation*}
F_{n}^{[k]}=\sum_{j=1}^{n}\binom{k+n-j-1}{k-1} F_{j} \tag{46}
\end{equation*}
$$

see [11] for details, including their relation to the infinite matrix in which $F_{n}^{[k]}$ is the entry in the n-th row and k-th column, and from there to Stirling numbers of the first kind.

References

[1] Alp, Y. (2023). Hybrid hyper-Fibonacci and hyper-Lucas numbers. Notes on Number Theory and Discrete Mathematics, 29(1), 154-170.
[2] Bahşi, M. \& Solak, S. (2016). A symmetric algorithm for golden ratio in hyper-Horadam numbers. Chinese Journal of Mathematics, Article ID 4361582.
[3] Bicknell-Johnson, M.\& Bergum, G. E. (1988). The generalized Fibonacci numbers $\left\{C_{n}\right\}$, $C_{n}=C_{n-1}+C_{n-2}+k$. Applications of Fibonacci Numbers: Proceedings of The Second International Conference on Fibonacci Numbers and Their Applications, San Jose State University, California, USA, Springer, 193-205.
[4] Catarino, P. M., \& Borges, A. (2019). On Leonardo Numbers. Acta Mathematica Universitatis Comenianae, 89(1), 75-86.
[5] Chu, H. V., Irmak, N., Miller, S. J., Szalay, L., \& Zhang, S. X. Schreier multisets and the s-step Fibonacci sequences (in press)
[6] Dil, A., \& Mező, I. (2008). A symmetric algorithm for hyperharmonic and Fibonacci numbers. Applied Mathematics and Computation, 206(2), 942-951.
[7] He, T.-X., \& Shiue, P. J.-S. (2009). On sequences of numbers and polynomials defined by linear recurrence relations of order 2. International Journal of Mathematics and Mathematical Sciences, 21, Article ID 709386.
[8] Horadam, A. F. (1966). Generalization of two theorems of K. Subba Rao. Bulletin of Calcutta Mathematical Society, 58(1), 23-29.
[9] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly, 3(3), 161-176.
[10] Jarden, D. (1996). Recurring Sequences. Jerusalem: Riveon Lematematika, 95-102.
[11] Komatsu, T.,\& Szalay, L. (2018). A new formula for hyper-Fibonacci numbers, and the number of occurrences. Turkish Journal of Mathematics, 42(3), 993-1004.
[12] Koshy, T. (2019). Fibonacci and Lucas Numbers with Applications (Volume 2), John Wiley \& Sons.
[13] Kuhapatanakul, K., \& Chobsorn, J. (2022). On the generalized Leonardo numbers. Integers, 22, A48.
[14] Lind, D. A. (1965). On a class of non-linear binomial sums. The Fibonacci Quarterly, 3(4), 292-298.
[15] Ollerton, R. L., \& Shannon, A. G. (1998). Some Properties of Generalized Pascal Squares and Triangles. The Fibonacci Quarterly, 36(2), 98-109.
[16] Shannon, A. G. (1977). Tribonacci numbers and Pascal's pyramid. The Fibonacci Quarterly, 15(3), 268-275.
[17] Shannon, A. G. (2019). A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 25(3), 97-101.
[18] Shannon, A. G., \& Deveci, Ö. (2022). A note on generalized and extended Leonardo sequences. Notes on Number Theory and Discrete Mathematics, 28(1), 109-114.
[19] Shattuck, M. (2022). Combinatorial proofs of identities for the generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 28(4), 778-790.

