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1 Introduction

A revival of interest in these Leonard Fibonacci sequences occurred after the paper from Paula
Catarino and Anabela Borges [4]. There was also some passing attention in the early days of
the Fibonacci Association [3] in order to emphasize the genius of Leonard Fibonacci, but for the
most part it was a case of converting non-homogeneous second order forms into higher order
homogeneous forms. This possibly accounts for the relative dearth of number theory specifically
about Leonardo sequences per se. We too consider some non-homogeneous properties to extend
the work of Alwyn Horadam [9] to the Leonardo canvas. This results in a number of tables which,
in themselves, suggest further work for the interested reader. Some applications follow with a
number of well-known sequences from Koshy [12]. This culminates in a number of identities
associated with a generalized Leonardo sequence and an associated algorithm, as well as some
combinatorial results which lead into hyper-Fibonacci numbers {2, 5, 11, 21, 38, 66, 112, 187, . . .}
as a convolution of Fibonacci and Leonardo numbers.

2 Preliminaries

Consider the Fibonacci sequence {Fn}

Fn = Fn−1 + Fn−2, n ≥ 2, (1)

with F0 = 0 and F1 = 1, and the Lucas sequence {Ln}

Ln = Ln−1 + Ln−2, n ≥ 2, , (2)

with L0 = 2 and L1 = 1. The closed formulas for the Fibonacci sequence and Lucas sequence are

Fn =
1√
5
(ϕn − ψn) (3)

Ln = ϕn + ψn, (4)

respectively, where ϕ = 1+
√
5

2
and ψ = 1−

√
5

2
. These formulas are also known as Binet’s formula.

We first consider the generalized Leonardo sequence.

Definition 2.1 (Kuhapatanakul et al. [13]). The generalized Leonardo sequence {Lk,n}, with a
fixed positive integer k, is defined by

Lk,n = Lk,n−1 + Lk,n−2 + k, n ≥ 2, (5)

with the initial conditions Lk,0 = Lk,1 = 1.

A version of the Leonardo-like sequence {Cn(a, b, k)}, defined by

Cn(a, b, k) = Cn−1(a, b, k) + Cn−2(a, b, k) + k, (6)

with C0(a, b, k) = b − a − k, C1(a, b, k) = a, and k is a constant, has been studied by
Bicknell-Johnson and Bergum [3]. The generalized Leonardo sequence arises as a special case of
Cn:

Lk,n = Cn(1, 2 + k, k).
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Theorem 2.1 (Kuhapatanakul et al. [13]). The closed formula for the generalized Leonardo
sequence {Lk,n} is

Lk,n = (1 + k)Fn+1 − k, (7)

Corollary 2.1 (Catarino and Borges [4]). Let {Len} be the classical Leonardo sequence be defined
by Len = Len−1 + Len−2 + 1, n ≥ 2 with initial conditions Le0 = Le1 = 1. Then

Len = 2Fn+1 − 1.

Proof. Let k = 1 in the previous theorem.

Corollary 2.2. We have

(i) Lk,n = (k + 1)L1,n−1

2
+ 1,

(ii) Lk+1,n − Lk,n = L1,n−1

2
.

Proof. From Corollary 2.1, we haveL1,n = Len = 2Fn+1−1. Then Fn+1 =
L1,n+1

2
. By Theorem

2.1, we have

Lk,n = (1 + k)Fn+1 − k = (1 + k)
L1,n + 1

2
− k = (k + 1)

L1,n − 1

2
+ 1,

which proves (i).
Next, again by Theorem 2.1,

Lk+1,n = (k + 2)Fn+1 − (k + 1),

Lk,n = (k + 1)Fn+1 − k.

Subtract these two equations yields

Lk+1,n − Lk,n = (k + 2)Fn+1 − k − 1− (k + 1)Fn+1 + k = Fn+1 − 1

=
L1,n − 1

2
,

which proves (ii).

3 Main results

Let {an} be a sequence of order 2 satisfying the following homogeneous linear recurrence relation:

an = pan−1 + qan−2, n ≥ 2, (8)

where a0, a1, p, q ̸= 0 are given constants. Let α and β be two roots of the characteristic equation
of (8):

x2 − px− q = 0. (9)

He and Shiue [7] proved the following theorem that gives the general formula of {an}.
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Theorem 3.1 (He and Shiue [7]). Let {an} be a sequence of order 2 satisfying the linear recurrence
relation (8). Then

an =


(

a1−βa0
α−β

)
αn −

(
a1−αa0
α−β

)
βn, if α ̸= β;

na1α
n−1 − (n− 1)a0α

n, if α = β,
(10)

where α and β are the two roots of (9).

Corollary 3.1. If a0 = 0 and a1 = 1, then the general formula is given by

an =


(

1
α−β

)
αn −

(
1

α−β

)
βn, if α ̸= β;

nαn−1, if α = β.
(11)

Corollary 3.2. If a0 = 1 and a1 = 1, then the general formula is given by

an =


(

1−β
α−β

)
αn −

(
1−α
α−β

)
βn, if α ̸= β;

nαn−1 − (n− 1)αn, if α = β.
(12)

Theorem 3.1, Corollary 3.1, and Corollary 3.2 will be used in the main results.
In this paper, we will consider the sequence {an(t, j)} satisfying the second order non-

homogeneous linear recurrence relation:

an(t, j) = pan−1(t, j) + qan−2(t, j) + (p+ q − 1)(tn+ j), n ≥ 2, t, j ∈ Z, (13)

where a0(t, j), a1(t, j), p, and q, with p+ q ̸= 1, are given constants.
We will write an(t, j) as wn, to follow Horadam’s [9] notation:

wn ≡ wn(w0, w1, p, q, t, j) = an(t, j), (14)

with w0 = a0(t, j), w1 = a1(t, j), wn(w0, w1, p, q, 0, 0) = an, n ≥ 2.
We now give the general formula of wn:

Theorem 3.2. Let {wn(w0, w1, p, q, t, j)} be a sequence of order 2 satisfying the non-homogeneous
linear relation in the following form:

wn = pwn−1 + qwn−2 + (p+ q − 1)(tn+ j), n ≥ 2, t, j ∈ Z, (15)

where w0, w1, p, q, with p+ q ̸= 1, are given constants. Then

wn = wn(w0, w1, p, q, 0, 0)+

(
j− t(p+ 2q)

1− p− q

)
(wn(1, 1, p, q, 0, 0)−1)+t (wn(0, 1, p, q, 0, 0)−n) .

(16)

Proof. First we consider the homogeneous part

wn(w0, w1, p, q, 0, 0) = pwn−1(w0, w1, p, q, 0, 0) + qwn−2(w0, w1, p, q, 0, 0).

Then the characteristic equation

x2 = px+ q

gives

x =
p±

√
p2 + 4q

2
.
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Let α =
p+
√

p2+4q

2
and β =

p−
√

p2+4q

2
. Then the homogeneous solution of (15) is

wn(w0, w1, p, q, 0, 0) = c1α
n + c2β

n.

Suppose α ̸= β. Assume the particular solution is of the form

wρ
n = An+B,

where A = A(t, j) and B = B(t, j). Then we have

An+B = p(A(n− 1) +B) + q(A(n− 2) +B) + (p+ q − 1)(tn+ j).

Solving for A and B, we have

A = −t,

B =
t(p+ 2q)

1− p− q
− j.

Then

wn = c1α
n + c2β

n − tn− j + t(p+ 2q)

1− p− q
.

Using the initial conditions w0 and w1, we have{
w0 = c1 + c2 − j + t(p+2q)

1−p−q

w1 = c1α + c2β − t− j + t(p+2q)
1−p−q

.

Multiplying the first equation by α and subtract with the second, we have

w0α− w1 = c2(α− β) +
(
−j + t(p+ 2q)

1− p− q

)
α + t+ j +

t(p+ 2q)

1− p− q

=⇒ c2 =
w0α− w1

α− β
− t

α− β
+

(
−j + t(p+ 2q)

1− p− q

)(
1− α
α− β

)
.

Then

c1 =
w1 − w0β

α− β
+

t

α− β
+

(
−j + t(p+ 2q)

1− p− q

)(
β − 1

α− β

)
.

Thus, the general solution is

wn =

[
w1 − w0β

α− β
+

t

α− β
+

(
−j + t(p+ 2q)

1− p− q

)(
β − 1

α− β

)]
αn

+

[
w0α− w1

α− β
− t

α− β
+

(
−j + t(p+ 2q)

1− p− q

)(
1− α
α− β

)]
βn

− tn− j + t(p+ 2q)

1− p− q
.

(17)

We can rewrite it as

wn =

(
w1 − w0β

α− β

)
αn −

(
w1 − w0α

α− β

)
βn −

(
j − t(p+ 2q)

1− p− q

)(
(β − 1)αn + (1− α)βn

α− β

)
+ t

(
αn − βn

α− β

)
− tn− j + t(p+ 2q)

1− p− q
.
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Using (10), (11), and (12), we have

wn = wn(w0, w1, p, q, 0, 0) +

(
j − t(p+ 2q)

1− p− q

)
(wn(1, 1, p, q, 0, 0)− 1)

+ t (wn(0, 1, p, q, 0, 0)− n) .
(18)

for α ̸= β.
Now, if α = β, we have

wn = (c1 + c2n)α
n.

The solution is

wn = (c1 + c2n)α
n − tn− j + t(p+ 2q)

1− p− q
.

Using the initial conditions,

w0 = c1 − j +
t(p+ 2q)

1− p− q

w1 = c1α + c2α− t− j +
t(p+ 2q)

1− p− q
.

Then

c1 = w0 + j − t(p+ 2q)

1− p− q

c2 =
w1

α
− w0 − j +

t(p+ 2q)

1− p− q
+

1

α

(
t+ j − t(p+ 2q)

1− p− q

)

wn =

(
w0 + j − t(p+ 2q)

1− p− q

)
αn +

[
w1

α
− w0 − j +

t(p+ 2q)

1− p− q
+

1

α

(
t+ j − t(p+ 2q)

1− p− q

)]
nαn

− tn− j + t(p+ 2q)

1− p− q

=

(
w0 + j − t(p+ 2q)

1− p− q

)
(αn − nαn) +

(
w1 + t+ j − t(p+ 2q)

1− p− q

)
nαn−1

− tn− j + t(p+ 2q)

1− p− q

= w1nα
n−1 − w0(n− 1)αn +

(
j − t(p+ 2q)

1− p− q

)(
nαn−1 − (n− 1)αn − 1

)
+ tnαn−1 − tn.

Thus, if α = β, the solution is

wn = w1nα
n−1 − w0(n− 1)αn +

(
j − t(p+ 2q)

1− p− q

)(
nαn−1 − (n− 1)αn − 1

)
+ tnαn−1 − tn.

Using (10), (11), and (12), then

wn = wn(w0, w1, p, q, 0, 0) +

(
j − t(p+ 2q)

1− p− q

)
(wn(1, 1, p, q, 0, 0)− 1)

+ t(wn(0, 1, p, q, 0, 0)− n).

The results for both cases are the same.
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Corollary 3.3 (Bicknell-Johnson et al. [3]). Consider the Leonardo-like sequence Cn(a, b, k)

defined in (6). Using Horadam’s notation, we have

wn = wn(b− a− k, a, 1, 1, 0, k).

Then
wn(b− a− k, a, 1, 1, 0, k) = aFn−2 + bFn−1 + k(Fn − 1). (19)

Proof. By Theorem 3.2,

wn(b− a− k, a, 1, 1, 0, k) = wn(b− a− k, a, 1, 1, 0, 0) + k(wn(1, 1, 1, 1, 0, 0)− 1)

= wn(b− a− k, a, 1, 1, 0, 0) + k(Fn+1 − 1).

Since p = q = 1 and t = j = 0, we can use Theorem 3.1, with α = ϕ and β = ψ:

wn(b− a− k, a, 1, 1, 0, 0) =
a− ψ(b− a− k)

ϕ− ψ
ϕn − a− ϕ(b− a− k)

ϕ− ψ
ψn

= a

(
ϕn − ψn

ϕ− ψ

)
+ (b− a− k)

(
ϕn−1 − ψn−1

ϕ− ψ

)
= aFn + (b− a− k)Fn−1 = aFn−2 + (b− k)Fn−1.

Hence, by Theorem 3.2,

wn(b− a− k, a, 1, 1, 0, k) = aFn−2 + (b− k)Fn−1 + k(Fn+1 − 1)

= aFn−2 + bFn−1 + k(Fn − 1).

Corollary 3.4. Consider the general Leonardo sequence {wn(1, 1, 1, 1, t, j)}. Then

wn(1, 1, 1, 1, t, j) = (1 + 3t+ j)Fn+1 + t(Fn − n− 3)− j. (20)

Proof. Let p = q = 1 and w0 = w1 = 1 in (16) of Theorem 3.2. Recall that the Fibonacci
sequence {Fn} satisfies the second order linear recurrence relation

Fn = Fn−1 + Fn−2, (21)

where F0 = 0 and F1 = 1. By (11), we have

wn(0, 1, 1, 1, 0, 0) = Fn, wn(1, 1, 1, 1, 0, 0) = Fn+1

where α = ϕ and β = ψ. Then

wn(1, 1, 1, 1, t, j) = wn(1, 1, 1, 1, 0, 0) +

(
j − t(1 + 2)

1− 1− 1

)
(wn(1, 1, 1, 1, 0, 0)− 1)

+ t (wn(0, 1, 1, 1, 0, 0)− n)

= Fn+1 + (j + 3t) (Fn+1 − 1) + t(Fn − n)
= (1 + j + 3t)Fn+1 + tFn − tn− j − 3t

= (1 + 3t+ j)Fn+1 + t(Fn − n− 3)− j.

Corollary 3.5 (Shannon et al. [18]). Consider the sequence {wn(1, 1, 1, 1, 1, j)} of order 2

satisfying the non-homogeneous linear recurrence relation (15). Then

wn(1, 1, 1, 1, 1, j) = (4 + j)Fn+1 + Fn − n− 3− j. (22)

Proof. Let t = 1 in Corollary 3.4 yield the result.
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Corollary 3.6. The closed formula for the generalized Leonardo sequence {Lk,n} defined in
Definition 2.1 is

Lk,n = (1 + k)Fn+1 − k,

as given in Theorem 2.1.

Proof. Let t = 0 and j = k in Corollary 3.4 yield the result.

Corollary 3.7 (Shannon et al. [18]). Consider the sequence {wn(1, 1, 1, 1, 1, 0)} of order 2

satisfying the non-homogeneous linear recurrence relation (15). Then

wn(1, 1, 1, 1, 1, 0) = 4Fn+1 + Fn − n− 3 (23)

Proof. Let t = 1 and j = 0 in Corollary 3.4 yield the result.

Theorem 3.3. Let {wn(w0, w1, p, q, t, j)} be a sequence of order 2 satisfying the non-homogeneous
linear relation in the following form:

wn = pwn−1 + qwn−2 + (p+ q − 1)(tn+ j), n ≥ 2, t, j ∈ Z, (24)

where w0, w1, p, q, with p+ q ̸= 1, are given constants. Then

wn(w0, w1, p, q, t, j + 1)− wn(w0, w1, p, q, t, j) = wn(1, 1, p, q, 0, 0)− 1 and (25)
wn(w0, w1, p, q, t, j + k)− wn(w0, w1, p, q, t, j) = k (wn(1, 1, p, q, 0, 0)− 1) . (26)

Proof. Using the result from Theorem 3.2, we have

wn(w0, w1, p, q, t, j + 1) = wn(w0, w1, p, q, 0, 0)+

(
j+1− t(p+ 2q)

1− p− q

)
(wn(1, 1, p, q, 0, 0)−1)

+ t (wn(0, 1, p, q, 0, 0)− n)

and

wn(w0, w1, p, q, t, j) = wn(w0, w1, p, q, 0, 0)+

(
j− t(p+ 2q)

1− p− q

)
(wn(1, 1, p, q, 0, 0)−1)

+ t (wn(0, 1, p, q, 0, 0)− n) .

Subtracting the two equations yields

wn(w0, w1, p, q, t, j + 1)− wn(w0, w1, p, q, t, j) = wn(1, 1, p, q, 0, 0)− 1.

The second result can be obtained by repeating the same process and replacing j+1 by j+k.

Corollary 3.8. Consider the Leonardo-like sequence {wn(b − a − k, a, 1, 1, 0, k)}. Then for
n ≥ 2,

wn(b− a− k, a, 1, 1, 0, k + 1)− wn(b− a− k, a, 1, 1, 0, k) = Fn+1 − 1.

Proof. By Theorem 3.3,

wn(b− a− k, a, 1, 1, 0, k + 1)− wn(b− a− k, a, 1, 1, 0, k) = wn(1, 1, 1, 1, 0, 0)− 1

= Fn+1 − 1.
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Corollary 3.9 (Shannon et al. [17]). Consider the general Leonardo sequence {wn(1, 1, 1, 1, t, j)}.
Then for n ≥ 2,

wn(1, 1, 1, 1, t, j + 1)− wn(1, 1, 1, 1, t, j) = Fn+1 − 1. (27)

Proof. Using Theorem 3.3. We have

wn(1, 1, 1, 1, t, j + 1)− wn(1, 1, 1, 1, t, j) = wn(1, 1, 1, 1, 0, 0)− 1 = Fn+1 − 1.

Note that wn(1, 1, 1, 1, 0, k) = Lk,n. Hence when t = 0, we have the same result as
Corollary 2.2 (ii).

Next, note that this difference is independent of t. A table by Shannon and Deveci [18] for
t = 1 is given here:

j

n
0 1 2 3 4 5 6 7 8

−3 1 1 1 2 4 8 15 27 47

−2 1 1 2 4 8 15 27 47 80

−1 1 1 3 6 12 22 39 67 113

0 1 1 4 8 16 29 51 87 146

1 1 1 5 10 20 36 63 107 179

2 1 1 6 12 24 43 75 127 212

3 1 1 7 14 28 50 87 147 245

Differences 0 0 1 2 4 7 12 20 33

Table 1. ”Extended Leonardo sequence”, [18].

We now give two more tables with t = 2 and t = 3 to show the Independence of t:

j

n
0 1 2 3 4 5 6 7 8

−3 1 1 3 7 15 29 53 93 159

−2 1 1 4 9 19 36 65 113 192

−1 1 1 5 11 23 43 77 133 225

0 1 1 6 13 27 50 89 153 258

1 1 1 7 15 31 57 101 173 291

2 1 1 8 17 35 64 113 193 324

3 1 1 9 19 39 71 125 213 357

Differences 0 0 1 2 4 7 12 20 33

Table 2. Extended Leonardo sequence with t = 2.
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j

n
0 1 2 3 4 5 6 7 8

−3 1 1 5 12 26 50 91 159 271

−2 1 1 6 14 30 57 103 179 304

−1 1 1 7 16 34 64 115 199 337

0 1 1 8 18 38 71 127 219 370

1 1 1 9 20 42 78 139 239 403

2 1 1 10 22 46 85 151 259 436

3 1 1 11 24 50 92 163 279 469

Differences 0 0 1 2 4 7 12 20 33

Table 3. Extended Leonardo sequence with t = 3.

Theorem 3.4. Let {an} be a sequence of order 2 satisfying the non-homogeneous linear relation:

an = an−1 + an−2 + Ckn, n ≥ 2, (28)

where a0 = 0, a1 = 1, C ̸= 0, k ̸= 0, and k2 − k − 1 ̸= 0. Then

an =

(
1− Ck3

k2 − k − 1

)
Fn +

(
1− Ck2

k2 − k − 1

)
Fn−1 +

Ckn+2

k2 − k − 1
. (29)

Proof. The homogeneous solution is

an = c1ϕ
n + c2ψ

n,

where ϕ = 1+
√
5

2
and ψ = 1−

√
5

2
.

The particular solution can be found using the method of undetermined coefficients. Assume
the particular solution is of the form a∗n = Akn, where A is a constant. Then

Akn = Akn−1 + Akn−2 + Ckn

=⇒ A =
Ck2

k2 − k − 1
.

Hence, the general solution to (28) is

an = c1ϕ
n + c2ψ

n +
Ckn+2

k2 − k − 1
.

With a0 = a1 = 1, we have the following system{
1 = c1 + c2 +

Ck2

k2−k−1

1 = c1ϕ+ c2ψ + Ck3

k2−k−1

=⇒

{
c1 + c2 = 1− Ck2

k2−k−1

c1ϕ+ c2ψ = 1− Ck3

k2−k−1

.

Then

c2(ϕ− ψ) = ϕ− Ck2ϕ

k2 − k − 1
− 1 +

Ck3

k2 − k − 1

=⇒ c2 =
ϕ− 1√

5
+

Ck3 − Ck2ϕ√
5(k2 − k − 1)

= − ψ√
5
+

Ck3 − Ck2ϕ√
5(k2 − k − 1)

.
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Moreover,

c1 = 1− Ck2

k2 − k − 1
+

ψ√
5
− Ck3 − Ck2ϕ√

5(k2 − k − 1)

=
(k2 − k − 1− Ck2)(ϕ− ψ) + ψ(k2 − k − 1)− Ck3 + Ck2ϕ√

5(k2 − k − 1)

=
−(k + 1)(ϕ− ψ) + (k2 − Ck2)(ϕ− ψ) + k2ψ − (k + 1)ψ − Ck3 + Ck2ϕ√

5(k2 − k − 1)

=
−(k + 1)ϕ+ k2 ((1− C)(ϕ− ψ)− αk + Cϕ+ ψ)√

5(k2 − k − 1)

=
−(k + 1)ϕ+ k2(ϕ+ Cψ − Ck)√

5(k2 − k − 1)
=

ϕ√
5
− Ck3 − Ck2ψ√

5(k2 − k − 1)
.

Hence, the general solution to (28) is

an =

(
ϕ√
5
− Ck3 − Ck2ψ√

5(k2 − k − 1)

)
ϕn −

(
ψ√
5
− Ck3 − Ck2ϕ√

5(k2 − k − 1)

)
ψn +

Ckn+2

k2 − k − 1

=
ϕn+1 − ψn+1

√
5

− Ck3(ϕn − ψn)√
5(k2 − k − 1)

+
Ck2ϕψ(ϕn−1 − ψn−1)√

5(k2 − k − 1)
+

Ckn+2

k2 − k − 1

= Fn+1 −
Ck3

k2 − k − 1
Fn −

Ck2

k2 − k − 1
Fn−1 +

Ckn+2

k2 − k − 1

=

(
1− Ck3

k2 − k − 1

)
Fn +

(
1− Ck2

k2 − k − 1

)
Fn−1 +

Ckn+2

k2 − k − 1
.

Corollary 3.10 (Shannon et al. [18]). Consider a sequence {aj,n} of order 2 satisfying the
following non-homogeneous linear recurrence relation:

aj,n = aj,n−1 + aj,n−2 + (−1)nj, n ≥ 2, j ≥ 0, (30)

where a0 = 0, = a1 = 1. Then

aj,n = Fn+1 + jFn−2 + (−1)nj, n ≥ 2. (31)

Proof. Let C = j and k = −1. Then

an =

(
1− −j

1

)
Fn +

(
1− j

1

)
Fn−1 +

(−1)n+2j

1

= (1 + j)Fn + (1− j)Fn−1 + (−1)nj
= Fn+1 + jFn−2 + (−1)nj.

Corollary 3.11 (Shannon et al. [18]). Consider a sequence {an} of order 2 satisfying the following
non-homogeneous linear recurrence relation:

an = an−1 + an−2 + (−1)n, n ≥ 2, (32)

where a0 = 0, a1 = 1. Then

an = 2Fn + (−1)n. (33)
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Proof. Let j = 1 in the previous corollary. Then

an = Fn+1 + Fn−2 + (−1)n = Fn + Fn−1 + Fn − Fn−1 + (−1)n = 2Fn + (−1)n.

Corollary 3.12 (Shannon et al. [18]). Consider a sequence {aj,n} of order 2 satisfying the
following non-homogeneous linear recurrence relation: Let

aj,n = aj,n−1 + aj,n−2 + (−1)nj, n ≥ 2, j ≥ 0,

where a0 = 0, = a1 = 1. Then

aj+1,n − aj,n = Fn−2 + (−1)n, n ≥ 2. (34)

Proof. By Corollary 3.10, we have

aj,n = Fn+1 + jFn−2 + (−1)nj

and

aj+1,n = Fn+1 + (j + 1)Fn−2 + (−1)n(j + 1).

Then
aj+1,n − aj,n = Fn−2 + (−1)n.

j

n
0 1 2 3 4 5 6 7 8 9

0 0 1 1 2 3 5 8 13 21 34

1 0 1 2 2 5 6 12 17 30 46

2 0 1 3 2 7 7 16 21 39 58

3 0 1 4 2 9 8 20 25 48 70

4 0 1 5 2 11 9 24 29 57 82

5 0 1 6 2 13 10 28 33 66 94

6 0 1 7 2 15 11 32 37 75 106

7 0 1 8 2 17 12 36 41 84 118

8 0 1 9 2 19 13 40 45 93 130

9 0 1 10 2 21 14 44 49 102 142

10 0 1 11 2 23 15 48 53 111 154

Differences 0 0 1 0 2 1 4 4 9 12

Table 4. Table of values for Corollary 3.14.

4 Examples

Consider

wn(w0, w1, p, q, 0, 0) = pwn−1(w0, w1, p, q, 0, 0) + qwn−2(w0, w1, p, q, 0, 0), n ≥ 2,

where w0, w1, p, and q ̸= 0 are given constants. The following table by Koshy [12] lists some
well-known sequences:
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Sequence of numbers w0 w1 p q

Fibonacci Fn 0 1 1 1

Lucas Ln 2 1 1 1

Pell Pn 0 1 2 1

Pell–Lucas Qn 2 2 2 1

Mersenne Mn 0 1 3 −2
Jacobsthal Jn 0 1 1 2

Jacobsthal–Lucas Jn 2 1 1 2

Balancing Bn 0 1 6 −1
Lucas-balancing Cn 1 3 6 −1
M. Ward Wn 1 1 4 −1
Fermat of the first kind Tn 1 3 3 −2
Fermat of the second kind Sn 2 3 3 −2

Table 5. Some well-known sequences, [12].

Example 4.1. Let w0 = 2, w1 = 1, p = q = 1 in (15), i.e.,

wn(2, 1, 1, 1, t, j) = wn−1(2, 1, 1, 1, t, j) + wn−2(2, 1, 1, 1, t, j) + tn+ j, n ≥ 2, t ∈ Z,

Then

(1). wn(2, 1, 1, 1, t, j) = Ln + (j + 3t) (Fn+1 − 1) + t (Fn − n);

(2). wn(2, 1, 1, 1, t, j + 1)− wn(2, 1, 1, 1, t, j) = Fn+1 − 1.

Proof. Since p = q = 1, α = 1+
√
5

2
, β = 1−

√
5

2
, wn(w0, w1, p, q, 0, 0) = wn(2, 1, 1, 1, 0, 0) = Ln,

wn(0, 1, p, q, 0, 0) = wn(0, 1, 1, 1, 0, 0)=Fn, and wn(1, 1, p, q, 0, 0)=wn(1, 1, 1, 1, 0, 0)=Fn+1.
Then by Theorem 3.2,

wn(2, 1, 1, 1, t, j) = wn(2, 1, 1, 1, 0, 0) +

(
j − t(1 + 2)

1− 1− 1

)
(wn(1, 1, 1, 1, 0, 0)− 1)

+ t (wn(0, 1, 1, 1, 0, 0)− n)

= Ln + (j + 3t) (Fn+1 − 1) + t (Fn − n) .

We use Theorem 3.3 to obtain the second result. We have

wn(2, 1, 1, 1, t, j + 1)− wn(2, 1, 1, 1, t, j) = wn(1, 1, 1, 1, 0, 0)− 1

= Fn+1 − 1.

We give three tables to show this difference.
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For t = 1:

j

n
0 1 2 3 4 5 6 7 8

−3 2 1 2 3 6 11 20 35 60

−2 2 1 3 5 10 18 32 55 93

−1 2 1 4 7 14 25 44 75 126

0 2 1 5 9 18 32 56 95 159

1 2 1 6 11 22 39 68 115 192

2 2 1 7 13 26 46 80 135 225

3 2 1 8 15 30 53 92 155 258

Differences 0 0 1 2 4 7 12 20 33

Table 6. Values of wn(2, 1, 1, 1, 1, j).

For t = 2:

j

n
0 1 2 3 4 5 6 7 8

−3 2 1 4 8 17 32 58 101 172

−2 2 1 5 10 21 39 70 121 205

−1 2 1 6 12 25 46 82 141 238

0 2 1 7 14 29 53 94 161 271

1 2 1 8 16 33 60 106 181 304

2 2 1 9 18 37 67 118 201 337

3 2 1 10 20 41 74 130 221 370

Differences 0 0 1 2 4 7 12 20 33

Table 7. Values of wn(2, 1, 1, 1, 2, j).

For t = 3:

j

n
0 1 2 3 4 5 6 7 8

−3 2 1 6 13 28 53 96 167 284

−2 2 1 7 15 32 60 108 187 317

−1 2 1 8 17 36 67 120 207 350

0 2 1 9 19 40 74 132 227 383

1 2 1 10 21 44 81 144 247 416

2 2 1 11 23 48 88 156 267 449

3 2 1 12 25 52 95 168 287 482

Differences 0 0 1 2 4 7 12 20 33

Table 8. Values of wn(2, 1, 1, 1, 3, j).
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We can see that the difference resembles the sequence {Fn+1 − 1}.

Example 4.2. Let w0 = 0, w1 = 1, p = 2, and q = 1 in (15), i.e.,

wn(0, 1, 2, 1, t, j) = 2wn−1(0, 1, 2, 1, t, j) + wn−2(0, 1, 2, 1, t, j) + 2(tn+ j), n ≥ 2, t ∈ Z.

Then

(1). wn(0, 1, 2, 1, t, j) = (1 + t)Pn + (j + 2t)(Pn+1 − Pn − 1)− tn;

(2). wn(0, 1, 2, 1, t, j + 1)− wn(0, 1, 2, 1, t, j) = Pn+1 − Pn − 1.

Proof. Since p = 2 and q = 1,α = 1+
√
2, β = 1−

√
2,wn(w0, w1, p, q, 0, 0) = wn(0, 1, 2, 1, 0, 0) =

Pn. Then by Theorem 3.2,

wn(0, 1, 2, 1, t, j) = wn(0, 1, 2, 1, 0, 0) +

(
j − t(2 + 2)

1− 2− 1

)
(wn(1, 1, 2, 1, 0, 0)− 1)

+ t (wn(0, 1, 2, 1, 0, 0)− n)
= Pn + (j + 2t) (Pn+1 − Pn − 1) + tPn − tn
= (1 + t)Pn + (j + 2t)(Pn+1 − Pn − 1)− tn.

We use Theorem 3.3 to obtain the second result. Then

wn(0, 1, 2, 1, t, j + 1)− wn(0, 1, 2, 1, t, j) = wn(1, 1, 2, 1, 0, 0)− 1 = Pn+1 − Pn − 1.

Remark 4.1. In Example 4.2, the following identity is used:

wn(1, 1, 2, 1, 0, 0) = wn+1(0, 1, 2, 1, 0, 0)− wn(0, 1, 2, 1, 0, 0).

Proof.

wn(0, 1, 2, 1, 0, 0) =
(1 +

√
2)n − (1−

√
2)n

2
√
2

wn+1(0, 1, 2, 1, 0, 0) =
(1 +

√
2)n+1 − (1−

√
2)n+1

2
√
2

wn+1(0, 1, 2, 1, 0, 0)− wn(0, 1, 2, 1, 0, 0) =
(1 +

√
2)n+1 − (1−

√
2)n+1

2
√
2

− (1 +
√
2)n − (1−

√
2)n

2
√
2

=

√
2(1 +

√
2)n +

√
2(1−

√
2)n

2
√
2

=
(1 +

√
2)n + (1−

√
2)n

2

= wn(1, 1, 2, 1, 0, 0).

Example 4.3. Let w0 = 2, w1 = 2, p = 2, and q = 1 in (15), i.e.,

wn(2, 2, 2, 1, t, j) = 2wn−1(2, 2, 2, 1, t, j) + wn−2(2, 2, 2, 1, t, j) + 2(tn+ j), n ≥ 2, t ∈ Z.

Then

(1). wn(2, 2, 2, 1, t, j) = Qn + (j + 2t)(Pn+1 − Pn − 1) + t(Pn − n);

(2). wn(2, 2, 2, 1, t, j + 1)− wn(2, 2, 2, 1, t, j) = Pn+1 − Pn − 1.
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Proof. Similar to the last example, α = 1 +
√
2, β = 1 −

√
2, wn(w0, w1, p, q, 0, 0) =

wn(2, 2, 2, 1, 0, 0) = Qn and wn(0, 1, 2, 1, 0, 0) = Pn. Then by Theorem 3.2,

wn(2, 2, 2, 1, t, j) = wn(2, 2, 2, 1, 0, 0) +

(
j − t(2 + 2)

1− 2− 1

)
(wn(1, 1, 2, 1, 0, 0)− 1)

+ t (wn(0, 1, 2, 1, 0, 0)− n)
= Qn + (j + 2t) (Pn+1 − Pn − 1) + t(Pn − n).

The second result is the same as the last example.

Example 4.4. Let w0 = 0, w1 = 1, p = 1, and q = 2 in (15), i.e.,

wn(0, 1, 1, 2, t, j) = wn−1(0, 1, 1, 2, t, j) + 2wn−2(0, 1, 1, 2, t, j) + 2(tn+ j), n ≥ 2, t ∈ Z.

Then

(1). wn(0, 1, 1, 2, t, j) = (1 + t)Jn +
(
j + 5t

2

)
(Jn − 1)− tn;

(2). wn(0, 1, 1, 2, t, j + 1)− wn(0, 1, 1, 2, t, j) = Jn − 1.

Proof. Since p = 1 and q = 2, we have α = −1, β = 2, and wn(w0, w1, p, q, 0, 0) =

wn(0, 1, 1, 2, 0, 0) = Jn. Then by Theorem 3.2,

wn(0, 1, 1, 2, t, j) = wn(0, 1, 1, 2, 0, 0) +

(
j − t(1 + 2 · 2)

1− p− q

)
(wn(1, 1, 1, 2, 0, 0)− 1)

+ t (wn(0, 1, 1, 2, 0, 0)− n)

= Jn +

(
j +

5t

2

)
(Jn − 1) + tJn − tn

= (1 + t)Jn +

(
j +

5t

2

)
(Jn − 1)− tn.

We use Theorem 3.3 to obtain the second result. Then

wn(0, 1, 1, 2, t, j + 1)− wn(0, 1, 1, 2, t, j) = wn(1, 1, 2, 1, 0, 0)− 1 = Jn − 1.

Remark 4.2. In Example 4.4, the following identity is used:

wn+1(0, 1, 1, 2, 0, 0) = wn(1, 1, 1, 2, 0, 0).

Proof.

wn+1(0, 1, 1, 2, 0, 0) =
1

3

(
(−1)n+2 + 2n+1

)
=

1

3

(
(−1)n + 2n+1

)
= wn(1, 1, 1, 2, 0, 0) = Jn+1 = Jn.

Example 4.5. Let w0 = 1, w1 = 1, p = 1, and q = 2 in (15), i.e.,

wn(1, 1, 1, 2, t, j) = wn−1(1, 1, 1, 2, t, j) + 2wn−2(1, 1, 1, 2, t, j) + tn+ j, n ≥ 2, t ∈ Z.

Then

(1). wn(1, 1, 1, 2, t, j) = Jn +
(
j + 5t

2

)
(Jn − 1) + t(Jn − n);

(2). wn(1, 1, 1, 2, t, j + 1)− wn(1, 1, 1, 2, t, j) = Jn − 1.
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Proof. Similar to the last example, we have α = −1, β = 2, wn(w0, w1, p, q, 0, 0) =

wn(1, 1, 1, 2, 0, 0) = Jn. Then by Theorem 3.2,

wn(1, 1, 1, 2, t, j) = wn(1, 1, 1, 2, 0, 0) +

(
j − t(1 + 2 · 2)

1− 1− 2

)
(wn(1, 1, 1, 2, 0, 0)− 1)

+ t (wn(0, 1, 1, 2, 0, 0)− n)

= Jn +

(
j +

5t

2

)
(Jn − 1) + t(Jn − n).

The second result is the same as the previous example.

Remark 4.3. In Examples 4.2, 4.3, 4.4, 4.5, the homogeneous parts are Pell sequence {Pn},
Pell–Lucas sequence {Qn}, Jacobsthal sequence {Jn}, and Jacobsthal–Lucas sequence {Jn},
respectively.

5 Some identities involving the generalized Leonardo sequence

Theorem 5.1. Let {Lk,n} denote the generalized Leonardo sequence. Then

1. (Shattuck [19]) L2
k,n − Lk,n−1Lk,n+1 = (−1)n(k + 1)2 + k(k + 1)Fn−2;

2. (Kuhapatanakul [13]) Lk,mLk,n−1 + Lk,m−1Lk,n = Lk,m+1Lk,n+1 − (k + 1)Lk,m+n − k.

Proof. By Theorem 2.1, we can write the generalized Leonardo sequence as

Lk,n = (1 + k)Fn+1 − k. (35)

Then

L2
k,n−Lk,n−1Lk,n+1 = (1 + k)2F 2

n+1−2k(1 + k)Fn+1 + k2−((1 + k)Fn−k) ((1 + k)Fn+2−k)
= (1 + k)2

(
F 2
n+1 − FnFn+2

)
− k(k + 1) (2Fn+1 − Fn − Fn+2)

= (1 + k)2(−1)n − k(1 + k) (2Fn+1 − Fn − Fn+1 − Fn)

= (1 + k)2(−1)n − k(1 + k)Fn−2,

by Cassini’s identity.
For the second result, we first note Honsberger’s identity

Fn−1Fm + FnFm+1 = Fm+n.

Then

Lk,mLk,n−1 = (1 + k)2Fm+1Fn − k(1 + k)(Fm+1 + Fn) + k2,

Lk,m−1Lk,n = (1 + k)2FmFn+1 − k(1 + k)(Fm + Fn+1) + k2,

Lk,m+1Lk,n+1 = (1 + k)2Fm+2Fn+2 − k(1 + k)(Fm+2 + Fn+2) + k2

= (1 + k)2(Fm+1Fn+1 + Fm+1Fn + Fn+1Fm + FmFn)

− k(1 + k)(Fm+1 + Fm + Fn+1 + Fn) + k2,

Lk,m+n = (1 + k)Fm+n+1 − k
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Then

Lk,mLk,n−1Lk,m−1Lk,n − Lk,m+1Lk,n+1 = k2 − (1 + k)2(Fm+1Fn+1 + FmFn)

= k2 − (1 + k)2Fm+n+1.

Finally,
Lk,mLk,n−1Lk,m−1Lk,n − Lk,m+1Lk,n+1 + (1 + k)Lk,m+n + k = 0.

Theorem 5.2. Let

a0Fn+t + a1Fn+t−1 + · · ·+ atFn = 0, (36)

where a0 + a1 + · · ·+ at = 0, ai ∈ Z, (i = 0, 1, 2, . . . , t), t is a fixed positive integer. Then

a0Lk,n+t−1 + a1Lk,n+t−2 + · · ·+ atLk,n−1 = 0. (37)

Proof. Since Lk,n = (1 + k)Fn+1 − k, we have

a0Lk,n+t−1 + a1Lk,n+t−2 + · · ·+ atLk,n−1

= a0[(1 + k)Fn+t − k] + a1[(1 + k)Fn+t−1 − k] + · · ·+ at[(1 + k)Fn − k]
= (1 + k)[a0Fn+t + a1Fn+t−1 + · · ·+ atFn]− k[a0 + a1 + · · ·+ at]

= (1 + k) · 0− k · 0 = 0.

Remark 5.1. (36) can be obtained by computing (x2 − x − 1)xn(x − 1)p(x), where p(x) is a
polynomial over Z first, then replace each xn+i by Fn+i.

Algorithm 1 Obtaining this identity
Input: A polynomial p(x) over Z
Output: An identity with generalized Leonard sequence

1: g(x)← (x2 − x− 1) · xn · (x− 1) · p(x)
2: Replace each xn+i by Fn+i

3: Verify the coefficients of Fn+i sums to zero
4: Replace each Fn+i by Ln+i−1

5: Ouput the identity

Example 5.1. It is known that

Fn + Fn+1 + Fn+6 − 3Fn+4 = 0.

Hence a0 = 1, a1 = 0, a2 = −3, a3 = a4 = 0, a5 = 1, a6 = 1, i.e.
∑
ai = 0. Then

Lk,n+5 − 3Lk,n+3 + Lk,n + Lk,n−1 = 0,

or

Lk,n+5 + Lk,n + Lk,n−1 = 3Lk,n+3. (38)

Example 5.2. Let f(x) = (x2 − x − 1)xn and p(x) = (x − 1)(2x3 + 3x − 1). Then
g(x) = f(x) · p(x) = 2xn+6 − 4xn+5 + 3xn+4 − 5xn+3 + 2xn+2 + 3xn+1 − xn. Replacing
each xn+i by Fn+i, we have

2Fn+6 − 4Fn+5 + 3Fn+4 − 5Fn+3 + 2Fn+2 + 3Fn+1 − Fn = 0. (39)
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The coefficients are

a0 = 2, a1 = −4, a2 = 3, a3 = −5, a4 = 2, a5 = 3, a6 = −1,

which gives ∑
ai = 0.

Then we have

2Lk,n+5 − 4Lk,n+4 + 3Lk,n+3 − 5Lk,n+2 + 2Lk,n+1 + 3Lk,n − Lk,n−1 = 0, n ≥ 1.

Example 5.3. Let f(x) = (x2 − x − 1)xn and let p(x) = (x − 1)(2x2 + x + 1). Then g(x) =
f(x) · p(x) = 2xn+5 − 3xn+4 − xn+3 + xn+1 + xn. Replacing each xn+i by Fn+i, we have

2Fn+5 − 3Fn+4 − Fn+3 + Fn+1 + Fn = 0. (40)

The coefficients are

a0 = 2, a1 = −3, a2 = −1, a3 = 0, a4 = 1, a5 = 1,

which gives ∑
ai = 0.

Then we have

2Lk,n+4 − 3Lk,n+3 − Lk,n+2 + Lk,n + Lk,n−1 = 0, n ≥ 1.

6 Combinatorial conclusion

Jarden [10] has also considered Leonardo sequences from the point of view of the following
variation of the Leonardo equation related to equation (5):

an = an−1 + an−2 ∓ 1, n ≥ 2, (41)

and the associated 3rd order linear recurrence

bn = 2bn−1 − bn−3, n ≥ 3, (42)

to which the Leonardo sequences conform as in equation (5) with k = ∓1. In fact, Jarden
considers the sequences in Tables 1, 2, and 3, which can bring out the corresponding relations
with the Fibonacci and Lucas sequences. {un} is the sequence of differences, and is related to the
generalized Fibonacci numbers of Jarden in Table 9 [10] and the hyper-Fibonacci and hyper-Lucas
numbers in Table 10 [6] with further generalized and extended Leonardo numbers.

(−1) 0 1 2 3 4 5 6 7 8

Un 1 2 2 3 4 6 9 14 22

Vn 3 2 4 5 8 12 19 30 48

(+1) 0 1 2 3 4 5 6 7 8

Un −1 0 0 1 2 4 7 12 20

Vn 1 0 2 3 6 10 17 28 46

Table 9. Jarden’s example of equation (5) with k = ∓1.
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Table 10 below is copied from Table 1 [1]. It shows the interested reader the salient features of
these sequences, both horizontally and vertically, as well as diagonally. Further properties to be
investigated include intersections between sequences [8] and step functions within sequences [5].
The last of these leads to s-Pascal triangles, as in Table 11.

n 0 1 2 3 4 5 6 7 8 9 · · ·
F

(0)
n 0 1 1 2 3 5 8 13 21 34 · · ·

L
(0)
n 2 1 3 4 7 11 18 29 47 76 · · ·

F
(1)
n 0 1 2 4 7 12 20 33 54 88 · · ·

L
(1)
n 2 3 6 10 17 28 46 75 122 198 · · ·

F
(2)
n 0 1 3 7 14 26 46 79 133 221 · · ·

L
(2)
n 2 5 11 21 38 66 112 187 309 507 · · ·

F
(3)
n 0 1 4 11 25 51 97 176 309 530 · · ·

L
(3)
n 2 7 18 39 77 143 225 442 751 1258 · · ·

Table 10. Hyper-Fibonacci and hyper-Lucas numbers.

1 1

1 1 1 3

1 2 3 2 1 9

1 3 6 7 6 3 1 27

1 4 10 16 19 16 10 4 1 81

1 5 15 30 45 51 45 30 15 5 1 243

1 6 21 50 90 126 141 126 90 50 21 6 1 729

Table 11. A simple s-Pascal triangle.

If we then add along the leading diagonals in Table 11, we seem to arrive at the Tribonacci
numbers, which can generate third-order Leonardo numbers.

In a different, but somewhat similar manner, Lind [14] defined L(n, r) the r-th order nonlinear
binomial sum as the sum of the first r terms of the (n− 1)-th row of the ordinary Pascal’s triangle
plus the terms of the rising stair-step (or rising) diagonal originating at the r-th term, which can
be applied to any of these tables. For example, in Table 11, we can have

L(1, 3) = 1, L(2, 3) = 3, L(3, 3) = 6, L(4, 3) = 12, L(4, 4) = 18.

All of these can provide a nexus between the numerical results in this paper and the recent
combinatorial work of Shattuck [19], who provided a framework for these and other identities
satisfied by the Leonardo numbers in the notation of section 3 and other generalized and extended
Fibonacci numbers. The initial step in extending Corollary 3.12 is

wn = wn−1 + wn−2 + tn+ j, n ≥ 2, j > −4,

and
wn = wn−1 + Fn+1 − 1. (43)
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One can then extend the process to other second order sequences [15] or to other orders and
other dimensions [16] for further related combinatorial properties. In this way, one can relate

wn = wn−1 + wn−2 + tn+ j, n ≥ 2, t ≥ 1,

and
wn = wn−1 + F [k]

n , (44)

in which F [k]
n is hyper-Fibonacci sequence, as in Table 10, the rows of which as k increases can

be seen as staked on top of one another for a third dimension. These can be developed further [2].
We note the neat recurrence relation

F [k]
n = F

[k]
n−1 + F [k−1]

n , k, n > 0, (45)

with boundary conditions F [0]
n = Fn and F [k]

0 = 0; and with an elegant characteristic polynomial

(x2 − x− 1)(x− 1)k,

so that

F [k]
n =

n∑
j=1

(
k + n− j − 1

k − 1

)
Fj; (46)

see [11] for details, including their relation to the infinite matrix in which F [k]
n is the entry in the

n-th row and k-th column, and from there to Stirling numbers of the first kind.
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[2] Bahşi, M. & Solak, S. (2016). A symmetric algorithm for golden ratio in hyper-Horadam
numbers. Chinese Journal of Mathematics, Article ID 4361582.

[3] Bicknell-Johnson, M.& Bergum, G. E. (1988). The generalized Fibonacci numbers {Cn},
Cn = Cn−1 + Cn−2 + k. Applications of Fibonacci Numbers: Proceedings of The Second
International Conference on Fibonacci Numbers and Their Applications, San Jose State
University, California, USA, Springer, 193–205.

[4] Catarino, P. M., & Borges, A. (2019). On Leonardo Numbers. Acta Mathematica
Universitatis Comenianae, 89(1), 75–86.

[5] Chu, H. V., Irmak, N., Miller, S. J., Szalay, L., & Zhang, S. X. Schreier multisets and the
s-step Fibonacci sequences (in press)
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