Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2023, Volume 29, Number 4, 752–773 DOI: 10.7546/nntdm.2023.29.4.752-773

Notes on generalized and extended Leonardo numbers

Anthony G. Shannon¹, Peter J.-S. Shiue² and Shen C. Huang³

¹ Warrane College, University of New South Wales Kensington, NSW 2033, Australia e-mail: tshannon38@gmail.com

² Department of Mathematical Sciences, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA e-mail: shiue@unlv.nevada.edu

³ Department of Mathematical Sciences, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA e-mail: huangs5@unlv.nevada.edu

Received: 19 September 2023 Accepted: 30 October 2023 Online First: 27 November 2023

Abstract: This paper both extends and generalizes recently published properties which have been developed by many authors for elements of the Leonardo sequence in the context of second-order recursive sequences. It does this by considering the difference equation properties of the homogeneous Fibonacci sequence and the non-homogeneous properties of their Leonardo sequence counterparts. This produces a number of new identities associated with a generalized Leonardo sequence and its associated algorithm, as well as some combinatorial results which lead into elegant properties of hyper-Fibonacci numbers in contrast to their ordinary Fibonacci number analogues, and as a convolution of Fibonacci and Leonardo numbers.

Keywords: Binet formulas, Leonardo sequences, Generalized Leonardo sequence, Extended Leonardo sequence, Fibonacci sequences, Hyper-Fibonacci sequences, Recurrence relations, Undetermined coefficients.

2020 Mathematics Subject Classification: 05A19, 11B37, 11B39.

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

1 Introduction

A revival of interest in these Leonard Fibonacci sequences occurred after the paper from Paula Catarino and Anabela Borges [4]. There was also some passing attention in the early days of the Fibonacci Association [3] in order to emphasize the genius of Leonard Fibonacci, but for the most part it was a case of converting non-homogeneous second order forms into higher order homogeneous forms. This possibly accounts for the relative dearth of number theory specifically about Leonardo sequences per se. We too consider some non-homogeneous properties to extend the work of Alwyn Horadam [9] to the Leonardo canvas. This results in a number of tables which, in themselves, suggest further work for the interested reader. Some applications follow with a number of well-known sequences from Koshy [12]. This culminates in a number of identities associated with a generalized Leonardo sequence and an associated algorithm, as well as some combinatorial results which lead into hyper-Fibonacci numbers $\{2, 5, 11, 21, 38, 66, 112, 187, \ldots\}$ as a convolution of Fibonacci and Leonardo numbers.

2 Preliminaries

Consider the Fibonacci sequence $\{F_n\}$

$$F_n = F_{n-1} + F_{n-2}, \ n \ge 2, \tag{1}$$

with $F_0 = 0$ and $F_1 = 1$, and the Lucas sequence $\{L_n\}$

$$L_n = L_{n-1} + L_{n-2}, \ n \ge 2,$$
(2)

with $L_0 = 2$ and $L_1 = 1$. The closed formulas for the Fibonacci sequence and Lucas sequence are

$$F_n = \frac{1}{\sqrt{5}} \left(\phi^n - \psi^n \right) \tag{3}$$

$$L_n = \phi^n + \psi^n, \tag{4}$$

respectively, where $\phi = \frac{1+\sqrt{5}}{2}$ and $\psi = \frac{1-\sqrt{5}}{2}$. These formulas are also known as Binet's formula. We first consider the generalized Leonardo sequence.

Definition 2.1 (Kuhapatanakul *et al.* [13]). *The generalized Leonardo sequence* $\{\mathcal{L}_{k,n}\}$ *, with a fixed positive integer k, is defined by*

$$\mathcal{L}_{k,n} = \mathcal{L}_{k,n-1} + \mathcal{L}_{k,n-2} + k, \ n \ge 2, \tag{5}$$

with the initial conditions $\mathcal{L}_{k,0} = \mathcal{L}_{k,1} = 1$.

A version of the Leonardo-like sequence $\{C_n(a, b, k)\}$, defined by

$$C_n(a,b,k) = C_{n-1}(a,b,k) + C_{n-2}(a,b,k) + k,$$
(6)

with $C_0(a, b, k) = b - a - k$, $C_1(a, b, k) = a$, and k is a constant, has been studied by Bicknell-Johnson and Bergum [3]. The generalized Leonardo sequence arises as a special case of C_n :

$$\mathcal{L}_{k,n} = C_n(1, 2+k, k).$$

Theorem 2.1 (Kuhapatanakul *et al.* [13]). *The closed formula for the generalized Leonardo* sequence $\{\mathcal{L}_{k,n}\}$ is

$$\mathcal{L}_{k,n} = (1+k)F_{n+1} - k,$$
(7)

Corollary 2.1 (Catarino and Borges [4]). Let $\{Le_n\}$ be the classical Leonardo sequence be defined by $Le_n = Le_{n-1} + Le_{n-2} + 1$, $n \ge 2$ with initial conditions $Le_0 = Le_1 = 1$. Then

$$Le_n = 2F_{n+1} - 1.$$

Proof. Let k = 1 in the previous theorem.

Corollary 2.2. We have

- (i) $\mathcal{L}_{k,n} = (k+1)\frac{\mathcal{L}_{1,n}-1}{2} + 1$,
- (ii) $\mathcal{L}_{k+1,n} \mathcal{L}_{k,n} = \frac{\mathcal{L}_{1,n}-1}{2}.$

Proof. From Corollary 2.1, we have $\mathcal{L}_{1,n} = Le_n = 2F_{n+1} - 1$. Then $F_{n+1} = \frac{\mathcal{L}_{1,n}+1}{2}$. By Theorem 2.1, we have

$$\mathcal{L}_{k,n} = (1+k)F_{n+1} - k = (1+k)\frac{\mathcal{L}_{1,n} + 1}{2} - k = (k+1)\frac{\mathcal{L}_{1,n} - 1}{2} + 1,$$

which proves (i).

Next, again by Theorem 2.1,

$$\mathcal{L}_{k+1,n} = (k+2)F_{n+1} - (k+1)$$
$$\mathcal{L}_{k,n} = (k+1)F_{n+1} - k.$$

Subtract these two equations yields

$$\mathcal{L}_{k+1,n} - \mathcal{L}_{k,n} = (k+2)F_{n+1} - k - 1 - (k+1)F_{n+1} + k = F_{n+1} - 1$$
$$= \frac{\mathcal{L}_{1,n} - 1}{2},$$

which proves (ii).

3 Main results

Let $\{a_n\}$ be a sequence of order 2 satisfying the following homogeneous linear recurrence relation:

$$a_n = pa_{n-1} + qa_{n-2}, \quad n \ge 2,$$
(8)

where $a_0, a_1, p, q \neq 0$ are given constants. Let α and β be two roots of the characteristic equation of (8):

$$x^2 - px - q = 0. (9)$$

He and Shiue [7] proved the following theorem that gives the general formula of $\{a_n\}$.

Theorem 3.1 (He and Shiue [7]). Let $\{a_n\}$ be a sequence of order 2 satisfying the linear recurrence relation (8). Then

$$a_n = \begin{cases} \left(\frac{a_1 - \beta a_0}{\alpha - \beta}\right) \alpha^n - \left(\frac{a_1 - \alpha a_0}{\alpha - \beta}\right) \beta^n, & \text{if } \alpha \neq \beta;\\ na_1 \alpha^{n-1} - (n-1)a_0 \alpha^n, & \text{if } \alpha = \beta, \end{cases}$$
(10)

where α and β are the two roots of (9).

Corollary 3.1. If $a_0 = 0$ and $a_1 = 1$, then the general formula is given by

$$a_n = \begin{cases} \left(\frac{1}{\alpha - \beta}\right) \alpha^n - \left(\frac{1}{\alpha - \beta}\right) \beta^n, & \text{if } \alpha \neq \beta; \\ n\alpha^{n-1}, & \text{if } \alpha = \beta. \end{cases}$$
(11)

Corollary 3.2. If $a_0 = 1$ and $a_1 = 1$, then the general formula is given by

$$a_n = \begin{cases} \left(\frac{1-\beta}{\alpha-\beta}\right)\alpha^n - \left(\frac{1-\alpha}{\alpha-\beta}\right)\beta^n, & \text{if } \alpha \neq \beta;\\ n\alpha^{n-1} - (n-1)\alpha^n, & \text{if } \alpha = \beta. \end{cases}$$
(12)

Theorem 3.1, Corollary 3.1, and Corollary 3.2 will be used in the main results.

In this paper, we will consider the sequence $\{a_n(t, j)\}\$ satisfying the second order non-homogeneous linear recurrence relation:

$$a_n(t,j) = pa_{n-1}(t,j) + qa_{n-2}(t,j) + (p+q-1)(tn+j), \quad n \ge 2, \ t,j \in \mathbb{Z},$$
(13)

where $a_0(t, j)$, $a_1(t, j)$, p, and q, with $p + q \neq 1$, are given constants.

We will write $a_n(t, j)$ as w_n , to follow Horadam's [9] notation:

$$w_n \equiv w_n(w_0, w_1, p, q, t, j) = a_n(t, j),$$
(14)

with $w_0 = a_0(t, j), w_1 = a_1(t, j), w_n(w_0, w_1, p, q, 0, 0) = a_n, n \ge 2.$

We now give the general formula of w_n :

Theorem 3.2. Let $\{w_n(w_0, w_1, p, q, t, j)\}$ be a sequence of order 2 satisfying the non-homogeneous linear relation in the following form:

$$w_n = pw_{n-1} + qw_{n-2} + (p+q-1)(tn+j), \ n \ge 2, \ t, j \in \mathbb{Z},$$
(15)

where w_0 , w_1 , p, q, with $p + q \neq 1$, are given constants. Then

$$w_n = w_n(w_0, w_1, p, q, 0, 0) + \left(j - \frac{t(p+2q)}{1-p-q}\right) (w_n(1, 1, p, q, 0, 0) - 1) + t (w_n(0, 1, p, q, 0, 0) - n).$$
(16)

Proof. First we consider the homogeneous part

 $w_n(w_0, w_1, p, q, 0, 0) = pw_{n-1}(w_0, w_1, p, q, 0, 0) + qw_{n-2}(w_0, w_1, p, q, 0, 0).$

Then the characteristic equation

$$x^2 = px + q$$

gives

$$x = \frac{p \pm \sqrt{p^2 + 4q}}{2}.$$

Let $\alpha = \frac{p+\sqrt{p^2+4q}}{2}$ and $\beta = \frac{p-\sqrt{p^2+4q}}{2}$. Then the homogeneous solution of (15) is $w_n(w_0, w_1, p, q, 0, 0) = c_1 \alpha^n + c_2 \beta^n$.

Suppose $\alpha \neq \beta$. Assume the particular solution is of the form

$$w_n^{\rho} = An + B,$$

where A = A(t, j) and B = B(t, j). Then we have

$$An + B = p(A(n-1) + B) + q(A(n-2) + B) + (p+q-1)(tn+j)$$

Solving for A and B, we have

$$A = -t,$$

$$B = \frac{t(p+2q)}{1-p-q} - j.$$

Then

$$w_n = c_1 \alpha^n + c_2 \beta^n - tn - j + \frac{t(p+2q)}{1-p-q}.$$

Using the initial conditions w_0 and w_1 , we have

$$\begin{cases} w_0 = c_1 + c_2 - j + \frac{t(p+2q)}{1-p-q} \\ w_1 = c_1 \alpha + c_2 \beta - t - j + \frac{t(p+2q)}{1-p-q} \end{cases}$$

Multiplying the first equation by α and subtract with the second, we have

$$w_0 \alpha - w_1 = c_2(\alpha - \beta) + \left(-j + \frac{t(p+2q)}{1-p-q}\right) \alpha + t + j + \frac{t(p+2q)}{1-p-q}$$
$$\implies c_2 = \frac{w_0 \alpha - w_1}{\alpha - \beta} - \frac{t}{\alpha - \beta} + \left(-j + \frac{t(p+2q)}{1-p-q}\right) \left(\frac{1-\alpha}{\alpha - \beta}\right).$$

Then

$$c_1 = \frac{w_1 - w_0\beta}{\alpha - \beta} + \frac{t}{\alpha - \beta} + \left(-j + \frac{t(p + 2q)}{1 - p - q}\right) \left(\frac{\beta - 1}{\alpha - \beta}\right).$$

Thus, the general solution is

$$w_{n} = \left[\frac{w_{1} - w_{0}\beta}{\alpha - \beta} + \frac{t}{\alpha - \beta} + \left(-j + \frac{t(p + 2q)}{1 - p - q}\right) \left(\frac{\beta - 1}{\alpha - \beta}\right)\right] \alpha^{n} + \left[\frac{w_{0}\alpha - w_{1}}{\alpha - \beta} - \frac{t}{\alpha - \beta} + \left(-j + \frac{t(p + 2q)}{1 - p - q}\right) \left(\frac{1 - \alpha}{\alpha - \beta}\right)\right] \beta^{n}$$

$$- tn - j + \frac{t(p + 2q)}{1 - p - q}.$$
(17)

We can rewrite it as

$$w_n = \left(\frac{w_1 - w_0\beta}{\alpha - \beta}\right)\alpha^n - \left(\frac{w_1 - w_0\alpha}{\alpha - \beta}\right)\beta^n - \left(j - \frac{t(p+2q)}{1 - p - q}\right)\left(\frac{(\beta - 1)\alpha^n + (1 - \alpha)\beta^n}{\alpha - \beta}\right) \\ + t\left(\frac{\alpha^n - \beta^n}{\alpha - \beta}\right) - tn - j + \frac{t(p+2q)}{1 - p - q}.$$

Using (10), (11), and (12), we have

$$w_n = w_n(w_0, w_1, p, q, 0, 0) + \left(j - \frac{t(p+2q)}{1-p-q}\right) (w_n(1, 1, p, q, 0, 0) - 1) + t (w_n(0, 1, p, q, 0, 0) - n).$$
(18)

for $\alpha \neq \beta$.

Now, if $\alpha = \beta$, we have

$$w_n = (c_1 + c_2 n) \, \alpha^n.$$

The solution is

$$w_n = (c_1 + c_2 n) \alpha^n - tn - j + \frac{t(p+2q)}{1-p-q}.$$

Using the initial conditions,

$$w_0 = c_1 - j + \frac{t(p+2q)}{1-p-q}$$
$$w_1 = c_1\alpha + c_2\alpha - t - j + \frac{t(p+2q)}{1-p-q}.$$

Then

$$c_{1} = w_{0} + j - \frac{t(p+2q)}{1-p-q}$$

$$c_{2} = \frac{w_{1}}{\alpha} - w_{0} - j + \frac{t(p+2q)}{1-p-q} + \frac{1}{\alpha} \left(t + j - \frac{t(p+2q)}{1-p-q} \right)$$

$$\begin{split} w_n &= \left(w_0 + j - \frac{t(p+2q)}{1-p-q}\right) \alpha^n + \left[\frac{w_1}{\alpha} - w_0 - j + \frac{t(p+2q)}{1-p-q} + \frac{1}{\alpha} \left(t+j - \frac{t(p+2q)}{1-p-q}\right)\right] n \alpha^n \\ &- tn - j + \frac{t(p+2q)}{1-p-q} \\ &= \left(w_0 + j - \frac{t(p+2q)}{1-p-q}\right) (\alpha^n - n\alpha^n) + \left(w_1 + t+j - \frac{t(p+2q)}{1-p-q}\right) n \alpha^{n-1} \\ &- tn - j + \frac{t(p+2q)}{1-p-q} \\ &= w_1 n \alpha^{n-1} - w_0 (n-1) \alpha^n + \left(j - \frac{t(p+2q)}{1-p-q}\right) \left(n \alpha^{n-1} - (n-1) \alpha^n - 1\right) + tn \alpha^{n-1} - tn. \end{split}$$

Thus, if $\alpha = \beta$, the solution is

$$w_n = w_1 n \alpha^{n-1} - w_0 (n-1) \alpha^n + \left(j - \frac{t(p+2q)}{1-p-q} \right) \left(n \alpha^{n-1} - (n-1) \alpha^n - 1 \right) + t n \alpha^{n-1} - t n.$$

Using (10), (11), and (12), then

$$w_n = w_n(w_0, w_1, p, q, 0, 0) + \left(j - \frac{t(p+2q)}{1-p-q}\right) (w_n(1, 1, p, q, 0, 0) - 1) + t(w_n(0, 1, p, q, 0, 0) - n).$$

The results for both cases are the same.

Corollary 3.3 (Bicknell-Johnson *et al.* [3]). Consider the Leonardo-like sequence $C_n(a, b, k)$ defined in (6). Using Horadam's notation, we have

$$w_n = w_n(b - a - k, a, 1, 1, 0, k).$$

Then

$$w_n(b-a-k, a, 1, 1, 0, k) = aF_{n-2} + bF_{n-1} + k(F_n - 1).$$
(19)

Proof. By Theorem 3.2,

$$w_n(b-a-k, a, 1, 1, 0, k) = w_n(b-a-k, a, 1, 1, 0, 0) + k(w_n(1, 1, 1, 1, 0, 0) - 1)$$

= $w_n(b-a-k, a, 1, 1, 0, 0) + k(F_{n+1} - 1).$

Since p = q = 1 and t = j = 0, we can use Theorem 3.1, with $\alpha = \phi$ and $\beta = \psi$:

$$w_n(b-a-k, a, 1, 1, 0, 0) = \frac{a - \psi(b-a-k)}{\phi - \psi} \phi^n - \frac{a - \phi(b-a-k)}{\phi - \psi} \psi^n$$

= $a \left(\frac{\phi^n - \psi^n}{\phi - \psi} \right) + (b-a-k) \left(\frac{\phi^{n-1} - \psi^{n-1}}{\phi - \psi} \right)$
= $aF_n + (b-a-k)F_{n-1} = aF_{n-2} + (b-k)F_{n-1}.$

Hence, by Theorem 3.2,

$$w_n(b-a-k, a, 1, 1, 0, k) = aF_{n-2} + (b-k)F_{n-1} + k(F_{n+1} - 1)$$

= $aF_{n-2} + bF_{n-1} + k(F_n - 1)$.

Corollary 3.4. Consider the general Leonardo sequence $\{w_n(1, 1, 1, 1, t, j)\}$. Then

$$w_n(1,1,1,1,t,j) = (1+3t+j)F_{n+1} + t(F_n - n - 3) - j.$$
(20)

Proof. Let p = q = 1 and $w_0 = w_1 = 1$ in (16) of Theorem 3.2. Recall that the Fibonacci sequence $\{F_n\}$ satisfies the second order linear recurrence relation

$$F_n = F_{n-1} + F_{n-2}, (21)$$

where $F_0 = 0$ and $F_1 = 1$. By (11), we have

$$w_n(0, 1, 1, 1, 0, 0) = F_n, w_n(1, 1, 1, 1, 0, 0) = F_{n+1}$$

where $\alpha = \phi$ and $\beta = \psi$. Then

$$w_n(1,1,1,1,t,j) = w_n(1,1,1,1,0,0) + \left(j - \frac{t(1+2)}{1-1-1}\right) (w_n(1,1,1,1,0,0) - 1) + t (w_n(0,1,1,1,0,0) - n) = F_{n+1} + (j+3t) (F_{n+1} - 1) + t(F_n - n) = (1+j+3t)F_{n+1} + tF_n - tn - j - 3t = (1+3t+j)F_{n+1} + t(F_n - n - 3) - j.$$

Corollary 3.5 (Shannon *et al.* [18]). Consider the sequence $\{w_n(1,1,1,1,1,j)\}$ of order 2 satisfying the non-homogeneous linear recurrence relation (15). Then

$$w_n(1,1,1,1,1,j) = (4+j)F_{n+1} + F_n - n - 3 - j.$$
(22)

Proof. Let t = 1 in Corollary 3.4 yield the result.

Corollary 3.6. The closed formula for the generalized Leonardo sequence $\{\mathcal{L}_{k,n}\}$ defined in Definition 2.1 is

$$\mathcal{L}_{k,n} = (1+k)F_{n+1} - k,$$

as given in Theorem 2.1.

Proof. Let t = 0 and j = k in Corollary 3.4 yield the result.

Corollary 3.7 (Shannon *et al.* [18]). Consider the sequence $\{w_n(1,1,1,1,1,0)\}$ of order 2 satisfying the non-homogeneous linear recurrence relation (15). Then

$$w_n(1,1,1,1,1,0) = 4F_{n+1} + F_n - n - 3$$
(23)

Proof. Let t = 1 and j = 0 in Corollary 3.4 yield the result.

Theorem 3.3. Let $\{w_n(w_0, w_1, p, q, t, j)\}$ be a sequence of order 2 satisfying the non-homogeneous linear relation in the following form:

$$w_n = pw_{n-1} + qw_{n-2} + (p+q-1)(tn+j), \ n \ge 2, \ t, j \in \mathbb{Z},$$
(24)

where w_0 , w_1 , p, q, with $p + q \neq 1$, are given constants. Then

$$w_n(w_0, w_1, p, q, t, j+1) - w_n(w_0, w_1, p, q, t, j) = w_n(1, 1, p, q, 0, 0) - 1 \text{ and}$$
(25)

$$w_n(w_0, w_1, p, q, t, j+k) - w_n(w_0, w_1, p, q, t, j) = k (w_n(1, 1, p, q, 0, 0) - 1).$$
(26)

Proof. Using the result from Theorem 3.2, we have

$$w_n(w_0, w_1, p, q, t, j+1) = w_n(w_0, w_1, p, q, 0, 0) + \left(j + 1 - \frac{t(p+2q)}{1-p-q}\right) (w_n(1, 1, p, q, 0, 0) - 1) + t (w_n(0, 1, p, q, 0, 0) - n)$$

and

$$w_n(w_0, w_1, p, q, t, j) = w_n(w_0, w_1, p, q, 0, 0) + \left(j - \frac{t(p+2q)}{1-p-q}\right) (w_n(1, 1, p, q, 0, 0) - 1) + t (w_n(0, 1, p, q, 0, 0) - n).$$

Subtracting the two equations yields

$$w_n(w_0, w_1, p, q, t, j+1) - w_n(w_0, w_1, p, q, t, j) = w_n(1, 1, p, q, 0, 0) - 1$$

The second result can be obtained by repeating the same process and replacing j + 1 by j + k. \Box **Corollary 3.8.** Consider the Leonardo-like sequence $\{w_n(b - a - k, a, 1, 1, 0, k)\}$. Then for $n \ge 2$,

$$w_n(b-a-k, a, 1, 1, 0, k+1) - w_n(b-a-k, a, 1, 1, 0, k) = F_{n+1} - 1.$$

Proof. By Theorem 3.3,

$$w_n(b-a-k,a,1,1,0,k+1) - w_n(b-a-k,a,1,1,0,k) = w_n(1,1,1,1,0,0) - 1$$

= $F_{n+1} - 1$.

Corollary 3.9 (Shannon *et al.* [17]). Consider the general Leonardo sequence $\{w_n(1, 1, 1, 1, t, j)\}$. Then for $n \ge 2$,

$$w_n(1,1,1,1,t,j+1) - w_n(1,1,1,t,j) = F_{n+1} - 1.$$
(27)

Proof. Using Theorem 3.3. We have

$$w_n(1,1,1,1,t,j+1) - w_n(1,1,1,t,j) = w_n(1,1,1,1,0,0) - 1 = F_{n+1} - 1.$$

Note that $w_n(1, 1, 1, 1, 0, k) = \mathcal{L}_{k,n}$. Hence when t = 0, we have the same result as Corollary 2.2 (ii).

Next, note that this difference is independent of t. A table by Shannon and Deveci [18] for t = 1 is given here:

n j	0	1	2	3	4	5	6	7	8
-3	1	1	1	2	4	8	15	27	47
-2	1	1	2	4	8	15	27	47	80
-1	1	1	3	6	12	22	39	67	113
0	1	1	4	8	16	29	51	87	146
1	1	1	5	10	20	36	63	107	179
2	1	1	6	12	24	43	75	127	212
3	1	1	7	14	28	50	87	147	245
Differences	0	0	1	2	4	7	12	20	33

Table 1. "Extended Leonardo sequence", [18].

We now give two more tables with t = 2 and t = 3 to show the Independence of t:

n	0	1	2	3	4	5	6	7	8
-3	1	1	3	7	15	29	53	93	159
-2	1	1	4	9	19	36	65	113	192
-1	1	1	5	11	23	43	77	133	225
0	1	1	6	13	27	50	89	153	258
1	1	1	7	15	31	57	101	173	291
2	1	1	8	17	35	64	113	193	324
3	1	1	9	19	39	71	125	213	357
Differences	0	0	1	2	4	7	12	20	33

Table 2. Extended Leonardo sequence with t = 2.

n j	0	1	2	3	4	5	6	7	8
-3	1	1	5	12	26	50	91	159	271
-2	1	1	6	14	30	57	103	179	304
-1	1	1	7	16	34	64	115	199	337
0	1	1	8	18	38	71	127	219	370
1	1	1	9	20	42	78	139	239	403
2	1	1	10	22	46	85	151	259	436
3	1	1	11	24	50	92	163	279	469
Differences	0	0	1	2	4	7	12	20	33

Table 3. Extended Leonardo sequence with t = 3.

Theorem 3.4. Let $\{a_n\}$ be a sequence of order 2 satisfying the non-homogeneous linear relation:

$$a_n = a_{n-1} + a_{n-2} + Ck^n, \ n \ge 2,$$
(28)

where $a_0 = 0, a_1 = 1, C \neq 0, k \neq 0$, and $k^2 - k - 1 \neq 0$. Then

$$a_n = \left(1 - \frac{Ck^3}{k^2 - k - 1}\right)F_n + \left(1 - \frac{Ck^2}{k^2 - k - 1}\right)F_{n-1} + \frac{Ck^{n+2}}{k^2 - k - 1}.$$
(29)

Proof. The homogeneous solution is

$$a_n = c_1 \phi^n + c_2 \psi^n,$$

where $\phi = \frac{1+\sqrt{5}}{2}$ and $\psi = \frac{1-\sqrt{5}}{2}$.

The particular solution can be found using the method of undetermined coefficients. Assume the particular solution is of the form $a_n^* = Ak^n$, where A is a constant. Then

$$Ak^{n} = Ak^{n-1} + Ak^{n-2} + Ck^{n}$$
$$\implies A = \frac{Ck^{2}}{k^{2} - k - 1}.$$

Hence, the general solution to (28) is

$$a_n = c_1 \phi^n + c_2 \psi^n + \frac{Ck^{n+2}}{k^2 - k - 1}.$$

With $a_0 = a_1 = 1$, we have the following system

$$\begin{cases} 1 &= c_1 + c_2 + \frac{Ck^2}{k^2 - k - 1} \\ 1 &= c_1 \phi + c_2 \psi + \frac{Ck^3}{k^2 - k - 1} \end{cases} \implies \begin{cases} c_1 + c_2 &= 1 - \frac{Ck^2}{k^2 - k - 1} \\ c_1 \phi + c_2 \psi &= 1 - \frac{Ck^3}{k^2 - k - 1} \end{cases}$$

Then

$$c_{2}(\phi - \psi) = \phi - \frac{Ck^{2}\phi}{k^{2} - k - 1} - 1 + \frac{Ck^{3}}{k^{2} - k - 1}$$
$$\implies c_{2} = \frac{\phi - 1}{\sqrt{5}} + \frac{Ck^{3} - Ck^{2}\phi}{\sqrt{5}(k^{2} - k - 1)}$$
$$= -\frac{\psi}{\sqrt{5}} + \frac{Ck^{3} - Ck^{2}\phi}{\sqrt{5}(k^{2} - k - 1)}.$$

Moreover,

$$\begin{split} c_1 &= 1 - \frac{Ck^2}{k^2 - k - 1} + \frac{\psi}{\sqrt{5}} - \frac{Ck^3 - Ck^2\phi}{\sqrt{5}(k^2 - k - 1)} \\ &= \frac{(k^2 - k - 1 - Ck^2)(\phi - \psi) + \psi(k^2 - k - 1) - Ck^3 + Ck^2\phi}{\sqrt{5}(k^2 - k - 1)} \\ &= \frac{-(k + 1)(\phi - \psi) + (k^2 - Ck^2)(\phi - \psi) + k^2\psi - (k + 1)\psi - Ck^3 + Ck^2\phi}{\sqrt{5}(k^2 - k - 1)} \\ &= \frac{-(k + 1)\phi + k^2\left((1 - C)(\phi - \psi) - \alpha k + C\phi + \psi\right)}{\sqrt{5}(k^2 - k - 1)} \\ &= \frac{-(k + 1)\phi + k^2(\phi + C\psi - Ck)}{\sqrt{5}(k^2 - k - 1)} = \frac{\phi}{\sqrt{5}} - \frac{Ck^3 - Ck^2\psi}{\sqrt{5}(k^2 - k - 1)}. \end{split}$$

Hence, the general solution to (28) is

$$a_{n} = \left(\frac{\phi}{\sqrt{5}} - \frac{Ck^{3} - Ck^{2}\psi}{\sqrt{5}(k^{2} - k - 1)}\right)\phi^{n} - \left(\frac{\psi}{\sqrt{5}} - \frac{Ck^{3} - Ck^{2}\phi}{\sqrt{5}(k^{2} - k - 1)}\right)\psi^{n} + \frac{Ck^{n+2}}{k^{2} - k - 1}$$

$$= \frac{\phi^{n+1} - \psi^{n+1}}{\sqrt{5}} - \frac{Ck^{3}(\phi^{n} - \psi^{n})}{\sqrt{5}(k^{2} - k - 1)} + \frac{Ck^{2}\phi\psi(\phi^{n-1} - \psi^{n-1})}{\sqrt{5}(k^{2} - k - 1)} + \frac{Ck^{n+2}}{k^{2} - k - 1}$$

$$= F_{n+1} - \frac{Ck^{3}}{k^{2} - k - 1}F_{n} - \frac{Ck^{2}}{k^{2} - k - 1}F_{n-1} + \frac{Ck^{n+2}}{k^{2} - k - 1}$$

$$= \left(1 - \frac{Ck^{3}}{k^{2} - k - 1}\right)F_{n} + \left(1 - \frac{Ck^{2}}{k^{2} - k - 1}\right)F_{n-1} + \frac{Ck^{n+2}}{k^{2} - k - 1}.$$

Corollary 3.10 (Shannon *et al.* [18]). Consider a sequence $\{a_{j,n}\}$ of order 2 satisfying the following non-homogeneous linear recurrence relation:

$$a_{j,n} = a_{j,n-1} + a_{j,n-2} + (-1)^n j, \ n \ge 2, \ j \ge 0,$$
(30)

where $a_0 = 0$, $= a_1 = 1$. Then

$$a_{j,n} = F_{n+1} + jF_{n-2} + (-1)^n j, \ n \ge 2.$$
(31)

Proof. Let C = j and k = -1. Then

$$a_n = \left(1 - \frac{-j}{1}\right) F_n + \left(1 - \frac{j}{1}\right) F_{n-1} + \frac{(-1)^{n+2}j}{1}$$

= $(1+j)F_n + (1-j)F_{n-1} + (-1)^n j$
= $F_{n+1} + jF_{n-2} + (-1)^n j$.

Corollary 3.11 (Shannon *et al.* [18]). Consider a sequence $\{a_n\}$ of order 2 satisfying the following non-homogeneous linear recurrence relation:

$$a_n = a_{n-1} + a_{n-2} + (-1)^n, \ n \ge 2,$$
(32)

where $a_0 = 0, a_1 = 1$. Then

$$a_n = 2F_n + (-1)^n. (33)$$

Proof. Let j = 1 in the previous corollary. Then

$$a_n = F_{n+1} + F_{n-2} + (-1)^n = F_n + F_{n-1} + F_n - F_{n-1} + (-1)^n = 2F_n + (-1)^n.$$

Corollary 3.12 (Shannon *et al.* [18]). Consider a sequence $\{a_{j,n}\}$ of order 2 satisfying the following non-homogeneous linear recurrence relation: Let

$$a_{j,n} = a_{j,n-1} + a_{j,n-2} + (-1)^n j, \ n \ge 2, \ j \ge 0,$$

where $a_0 = 0$, $= a_1 = 1$. Then

$$a_{j+1,n} - a_{j,n} = F_{n-2} + (-1)^n, \ n \ge 2.$$
 (34)

Proof. By Corollary 3.10, we have

$$a_{j,n} = F_{n+1} + jF_{n-2} + (-1)^n j$$

and

$$a_{j+1,n} = F_{n+1} + (j+1)F_{n-2} + (-1)^n(j+1).$$

Then

$$a_{j+1,n} - a_{j,n} = F_{n-2} + (-1)^n.$$

n	0	1	2	3	4	5	6	7	8	9
0	0	1	1	2	3	5	8	13	21	34
1	0	1	2	2	5	6	12	17	30	46
2	0	1	3	2	7	7	16	21	39	58
3	0	1	4	2	9	8	20	25	48	70
4	0	1	5	2	11	9	24	29	57	82
5	0	1	6	2	13	10	28	33	66	94
6	0	1	7	2	15	11	32	37	75	106
7	0	1	8	2	17	12	36	41	84	118
8	0	1	9	2	19	13	40	45	93	130
9	0	1	10	2	21	14	44	49	102	142
10	0	1	11	2	23	15	48	53	111	154
Differences	0	0	1	0	2	1	4	4	9	12

Table 4. Table of values for Corollary 3.14.

4 Examples

Consider

 $w_n(w_0, w_1, p, q, 0, 0) = pw_{n-1}(w_0, w_1, p, q, 0, 0) + qw_{n-2}(w_0, w_1, p, q, 0, 0), \ n \ge 2,$

where w_0 , w_1 , p, and $q \neq 0$ are given constants. The following table by Koshy [12] lists some well-known sequences:

Sequence of numbers	w_0	w_1	p	\boldsymbol{q}
Fibonacci F _n	0	1	1	1
Lucas L_n	2	1	1	1
Pell P_n	0	1	2	1
Pell–Lucas Q_n	2	2	2	1
Mersenne M_n	0	1	3	-2
Jacobsthal J_n	0	1	1	2
Jacobsthal–Lucas \mathcal{J}_n	2	1	1	2
Balancing B_n	0	1	6	-1
Lucas-balancing C_n	1	3	6	-1
M. Ward W_n	1	1	4	-1
Fermat of the first kind T_n	1	3	3	-2
Fermat of the second kind S_n	2	3	3	-2

Table 5. Some well-known sequences, [12].

Example 4.1. Let $w_0 = 2$, $w_1 = 1$, p = q = 1 in (15), i.e.,

$$w_n(2,1,1,1,t,j) = w_{n-1}(2,1,1,1,t,j) + w_{n-2}(2,1,1,1,t,j) + tn + j, \ n \ge 2, \ t \in \mathbb{Z},$$

Then

(1).
$$w_n(2, 1, 1, 1, t, j) = L_n + (j + 3t) (F_{n+1} - 1) + t (F_n - n);$$

(2). $w_n(2, 1, 1, 1, t, j + 1) - w_n(2, 1, 1, 1, t, j) = F_{n+1} - 1.$

Proof. Since p = q = 1, $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$, $w_n(w_0, w_1, p, q, 0, 0) = w_n(2, 1, 1, 1, 0, 0) = L_n$, $w_n(0, 1, p, q, 0, 0) = w_n(0, 1, 1, 1, 0, 0) = F_n$, and $w_n(1, 1, p, q, 0, 0) = w_n(1, 1, 1, 1, 0, 0) = F_{n+1}$. Then by Theorem 3.2,

$$w_n(2, 1, 1, 1, t, j) = w_n(2, 1, 1, 1, 0, 0) + \left(j - \frac{t(1+2)}{1-1-1}\right) (w_n(1, 1, 1, 1, 0, 0) - 1) + t (w_n(0, 1, 1, 1, 0, 0) - n) = L_n + (j+3t) (F_{n+1} - 1) + t (F_n - n).$$

We use Theorem 3.3 to obtain the second result. We have

$$w_n(2,1,1,1,t,j+1) - w_n(2,1,1,1,t,j) = w_n(1,1,1,1,0,0) - 1$$

= $F_{n+1} - 1$.

We give three tables to show this difference.

For
$$t = 1$$
:

n j	0	1	2	3	4	5	6	7	8
-3	2	1	2	3	6	11	20	35	60
-2	2	1	3	5	10	18	32	55	93
-1	2	1	4	7	14	25	44	75	126
0	2	1	5	9	18	32	56	95	159
1	2	1	6	11	22	39	68	115	192
2	2	1	7	13	26	46	80	135	225
3	2	1	8	15	30	53	92	155	258
Differences	0	0	1	2	4	7	12	20	33

Table 6. Values of $w_n(2, 1, 1, 1, 1, j)$.

For t = 2:

n j	0	1	2	3	4	5	6	7	8
-3	2	1	4	8	17	32	58	101	172
-2	2	1	5	10	21	39	70	121	205
-1	2	1	6	12	25	46	82	141	238
0	2	1	7	14	29	53	94	161	271
1	2	1	8	16	33	60	106	181	304
2	2	1	9	18	37	67	118	201	337
3	2	1	10	20	41	74	130	221	370
Differences	0	0	1	2	4	7	12	20	33

Table 7. Values of $w_n(2, 1, 1, 1, 2, j)$.

For t = 3:

n	0	1	2	3	4	5	6	7	8
-3	2	1	6	13	28	53	96	167	284
-2	2	1	7	15	32	60	108	187	317
-1	2	1	8	17	36	67	120	207	350
0	2	1	9	19	40	74	132	227	383
1	2	1	10	21	44	81	144	247	416
2	2	1	11	23	48	88	156	267	449
3	2	1	12	25	52	95	168	287	482
Differences	0	0	1	2	4	7	12	20	33

Table 8. Values of $w_n(2, 1, 1, 1, 3, j)$.

We can see that the difference resembles the sequence $\{F_{n+1} - 1\}$.

Example 4.2. Let $w_0 = 0$, $w_1 = 1$, p = 2, and q = 1 in (15), i.e.,

 $w_n(0,1,2,1,t,j) = 2w_{n-1}(0,1,2,1,t,j) + w_{n-2}(0,1,2,1,t,j) + 2(tn+j), n \ge 2, t \in \mathbb{Z}.$ Then

(1).
$$w_n(0, 1, 2, 1, t, j) = (1+t)P_n + (j+2t)(P_{n+1} - P_n - 1) - tn;$$

(2). $w_n(0, 1, 2, 1, t, j+1) - w_n(0, 1, 2, 1, t, j) = P_{n+1} - P_n - 1.$

Proof. Since p = 2 and q = 1, $\alpha = 1 + \sqrt{2}$, $\beta = 1 - \sqrt{2}$, $w_n(w_0, w_1, p, q, 0, 0) = w_n(0, 1, 2, 1, 0, 0) = P_n$. Then by Theorem 3.2,

$$w_n(0, 1, 2, 1, t, j) = w_n(0, 1, 2, 1, 0, 0) + \left(j - \frac{t(2+2)}{1-2-1}\right) (w_n(1, 1, 2, 1, 0, 0) - 1) + t (w_n(0, 1, 2, 1, 0, 0) - n) = P_n + (j+2t) (P_{n+1} - P_n - 1) + tP_n - tn = (1+t)P_n + (j+2t)(P_{n+1} - P_n - 1) - tn.$$

We use Theorem 3.3 to obtain the second result. Then

$$w_n(0,1,2,1,t,j+1) - w_n(0,1,2,1,t,j) = w_n(1,1,2,1,0,0) - 1 = P_{n+1} - P_n - 1. \quad \Box$$

Remark 4.1. In Example 4.2, the following identity is used:

$$w_n(1, 1, 2, 1, 0, 0) = w_{n+1}(0, 1, 2, 1, 0, 0) - w_n(0, 1, 2, 1, 0, 0)$$

Proof.

$$w_n(0, 1, 2, 1, 0, 0) = \frac{(1 + \sqrt{2})^n - (1 - \sqrt{2})^n}{2\sqrt{2}}$$

$$w_{n+1}(0, 1, 2, 1, 0, 0) = \frac{(1 + \sqrt{2})^{n+1} - (1 - \sqrt{2})^{n+1}}{2\sqrt{2}}$$

$$w_{n+1}(0, 1, 2, 1, 0, 0) - w_n(0, 1, 2, 1, 0, 0) = \frac{(1 + \sqrt{2})^{n+1} - (1 - \sqrt{2})^{n+1}}{2\sqrt{2}}$$

$$- \frac{(1 + \sqrt{2})^n - (1 - \sqrt{2})^n}{2\sqrt{2}}$$

$$= \frac{\sqrt{2}(1 + \sqrt{2})^n + \sqrt{2}(1 - \sqrt{2})^n}{2\sqrt{2}}$$

$$= \frac{(1 + \sqrt{2})^n + (1 - \sqrt{2})^n}{2}$$

$$= w_n(1, 1, 2, 1, 0, 0).$$

Example 4.3. Let $w_0 = 2$, $w_1 = 2$, p = 2, and q = 1 in (15), i.e.,

 $w_n(2,2,2,1,t,j) = 2w_{n-1}(2,2,2,1,t,j) + w_{n-2}(2,2,2,1,t,j) + 2(tn+j), n \ge 2, t \in \mathbb{Z}.$ Then

(1).
$$w_n(2,2,2,1,t,j) = Q_n + (j+2t)(P_{n+1} - P_n - 1) + t(P_n - n);$$

(2). $w_n(2,2,2,1,t,j+1) - w_n(2,2,2,1,t,j) = P_{n+1} - P_n - 1.$

Proof. Similar to the last example, $\alpha = 1 + \sqrt{2}$, $\beta = 1 - \sqrt{2}$, $w_n(w_0, w_1, p, q, 0, 0) = w_n(2, 2, 2, 1, 0, 0) = Q_n$ and $w_n(0, 1, 2, 1, 0, 0) = P_n$. Then by Theorem 3.2,

$$w_n(2,2,2,1,t,j) = w_n(2,2,2,1,0,0) + \left(j - \frac{t(2+2)}{1-2-1}\right) (w_n(1,1,2,1,0,0) - 1) + t (w_n(0,1,2,1,0,0) - n) = Q_n + (j+2t) (P_{n+1} - P_n - 1) + t(P_n - n).$$

The second result is the same as the last example.

Example 4.4. Let $w_0 = 0$, $w_1 = 1$, p = 1, and q = 2 in (15), i.e.,

$$w_n(0,1,1,2,t,j) = w_{n-1}(0,1,1,2,t,j) + 2w_{n-2}(0,1,1,2,t,j) + 2(tn+j), \ n \ge 2, \ t \in \mathbb{Z}.$$

Then

(1).
$$w_n(0, 1, 1, 2, t, j) = (1+t)J_n + (j + \frac{5t}{2})(\mathcal{J}_n - 1) - tn;$$

(2). $w_n(0, 1, 1, 2, t, j + 1) - w_n(0, 1, 1, 2, t, j) = \mathcal{J}_n - 1.$

Proof. Since p = 1 and q = 2, we have $\alpha = -1$, $\beta = 2$, and $w_n(w_0, w_1, p, q, 0, 0) = w_n(0, 1, 1, 2, 0, 0) = J_n$. Then by Theorem 3.2,

$$w_n(0, 1, 1, 2, t, j) = w_n(0, 1, 1, 2, 0, 0) + \left(j - \frac{t(1+2\cdot 2)}{1-p-q}\right) (w_n(1, 1, 1, 2, 0, 0) - 1) + t (w_n(0, 1, 1, 2, 0, 0) - n) = J_n + \left(j + \frac{5t}{2}\right) (\mathcal{J}_n - 1) + tJ_n - tn = (1+t)J_n + \left(j + \frac{5t}{2}\right) (\mathcal{J}_n - 1) - tn.$$

We use Theorem 3.3 to obtain the second result. Then

$$w_n(0,1,1,2,t,j+1) - w_n(0,1,1,2,t,j) = w_n(1,1,2,1,0,0) - 1 = \mathcal{J}_n - 1.$$

Remark 4.2. In Example 4.4, the following identity is used:

$$w_{n+1}(0, 1, 1, 2, 0, 0) = w_n(1, 1, 1, 2, 0, 0).$$

Proof.

$$w_{n+1}(0,1,1,2,0,0) = \frac{1}{3} \left((-1)^{n+2} + 2^{n+1} \right) = \frac{1}{3} \left((-1)^n + 2^{n+1} \right)$$
$$= w_n(1,1,1,2,0,0) = J_{n+1} = \mathcal{J}_n.$$

Example 4.5. Let $w_0 = 1$, $w_1 = 1$, p = 1, and q = 2 in (15), i.e.,

$$w_n(1,1,1,2,t,j) = w_{n-1}(1,1,1,2,t,j) + 2w_{n-2}(1,1,1,2,t,j) + tn + j, \ n \ge 2, \ t \in \mathbb{Z}.$$

Then

(1).
$$w_n(1, 1, 1, 2, t, j) = \mathcal{J}_n + \left(j + \frac{5t}{2}\right)(\mathcal{J}_n - 1) + t(\mathcal{J}_n - n);$$

(2). $w_n(1, 1, 1, 2, t, j + 1) - w_n(1, 1, 1, 2, t, j) = \mathcal{J}_n - 1.$

Proof. Similar to the last example, we have $\alpha = -1$, $\beta = 2$, $w_n(w_0, w_1, p, q, 0, 0) = w_n(1, 1, 1, 2, 0, 0) = \mathcal{J}_n$. Then by Theorem 3.2,

$$w_n(1, 1, 1, 2, t, j) = w_n(1, 1, 1, 2, 0, 0) + \left(j - \frac{t(1+2\cdot 2)}{1-1-2}\right) (w_n(1, 1, 1, 2, 0, 0) - 1) + t (w_n(0, 1, 1, 2, 0, 0) - n) = \mathcal{J}_n + \left(j + \frac{5t}{2}\right) (\mathcal{J}_n - 1) + t(J_n - n).$$

The second result is the same as the previous example.

Remark 4.3. In Examples 4.2, 4.3, 4.4, 4.5, the homogeneous parts are Pell sequence $\{P_n\}$, Pell–Lucas sequence $\{Q_n\}$, Jacobsthal sequence $\{J_n\}$, and Jacobsthal–Lucas sequence $\{\mathcal{J}_n\}$, respectively.

5 Some identities involving the generalized Leonardo sequence

Theorem 5.1. Let $\{\mathcal{L}_{k,n}\}$ denote the generalized Leonardo sequence. Then

- 1. (Shattuck [19]) $\mathcal{L}_{k,n}^2 \mathcal{L}_{k,n-1}\mathcal{L}_{k,n+1} = (-1)^n (k+1)^2 + k(k+1)F_{n-2}$;
- 2. (Kuhapatanakul [13]) $\mathcal{L}_{k,m}\mathcal{L}_{k,n-1} + \mathcal{L}_{k,m-1}\mathcal{L}_{k,n} = \mathcal{L}_{k,m+1}\mathcal{L}_{k,n+1} (k+1)\mathcal{L}_{k,m+n} k.$

Proof. By Theorem 2.1, we can write the generalized Leonardo sequence as

$$\mathcal{L}_{k,n} = (1+k)F_{n+1} - k.$$
(35)

Then

$$\begin{aligned} \mathcal{L}_{k,n}^2 - \mathcal{L}_{k,n+1} &= (1+k)^2 F_{n+1}^2 - 2k(1+k)F_{n+1} + k^2 - ((1+k)F_n - k)\left((1+k)F_{n+2} - k\right) \\ &= (1+k)^2 \left(F_{n+1}^2 - F_n F_{n+2}\right) - k(k+1)\left(2F_{n+1} - F_n - F_{n+2}\right) \\ &= (1+k)^2 (-1)^n - k(1+k)\left(2F_{n+1} - F_n - F_{n+1} - F_n\right) \\ &= (1+k)^2 (-1)^n - k(1+k)F_{n-2}, \end{aligned}$$

by Cassini's identity.

For the second result, we first note Honsberger's identity

$$F_{n-1}F_m + F_nF_{m+1} = F_{m+n}.$$

Then

$$\mathcal{L}_{k,m}\mathcal{L}_{k,n-1} = (1+k)^2 F_{m+1}F_n - k(1+k)(F_{m+1}+F_n) + k^2,$$

$$\mathcal{L}_{k,m-1}\mathcal{L}_{k,n} = (1+k)^2 F_m F_{n+1} - k(1+k)(F_m + F_{n+1}) + k^2,$$

$$\mathcal{L}_{k,m+1}\mathcal{L}_{k,n+1} = (1+k)^2 F_{m+2}F_{n+2} - k(1+k)(F_{m+2}+F_{n+2}) + k^2$$

$$= (1+k)^2 (F_{m+1}F_{n+1} + F_{m+1}F_n + F_{n+1}F_m + F_mF_n)$$

$$- k(1+k)(F_{m+1} + F_m + F_{n+1} + F_n) + k^2,$$

$$\mathcal{L}_{k,m+n} = (1+k)F_{m+n+1} - k$$

Then

$$\mathcal{L}_{k,m}\mathcal{L}_{k,n-1}\mathcal{L}_{k,m-1}\mathcal{L}_{k,n} - \mathcal{L}_{k,m+1}\mathcal{L}_{k,n+1} = k^2 - (1+k)^2 (F_{m+1}F_{n+1} + F_mF_n)$$
$$= k^2 - (1+k)^2 F_{m+n+1}.$$

Finally,

$$\mathcal{L}_{k,m}\mathcal{L}_{k,n-1}\mathcal{L}_{k,m-1}\mathcal{L}_{k,n}-\mathcal{L}_{k,m+1}\mathcal{L}_{k,n+1}+(1+k)\mathcal{L}_{k,m+n}+k=0.$$

Theorem 5.2. Let

$$a_0 F_{n+t} + a_1 F_{n+t-1} + \dots + a_t F_n = 0, (36)$$

where $a_0 + a_1 + \cdots + a_t = 0$, $a_i \in \mathbb{Z}$, $(i = 0, 1, 2, \dots, t)$, t is a fixed positive integer. Then

$$a_0 \mathcal{L}_{k,n+t-1} + a_1 \mathcal{L}_{k,n+t-2} + \dots + a_t \mathcal{L}_{k,n-1} = 0.$$
 (37)

Proof. Since $\mathcal{L}_{k,n} = (1+k)F_{n+1} - k$, we have

$$a_{0}\mathcal{L}_{k,n+t-1} + a_{1}\mathcal{L}_{k,n+t-2} + \dots + a_{t}\mathcal{L}_{k,n-1}$$

$$= a_{0}[(1+k)F_{n+t} - k] + a_{1}[(1+k)F_{n+t-1} - k] + \dots + a_{t}[(1+k)F_{n} - k]$$

$$= (1+k)[a_{0}F_{n+t} + a_{1}F_{n+t-1} + \dots + a_{t}F_{n}] - k[a_{0} + a_{1} + \dots + a_{t}]$$

$$= (1+k) \cdot 0 - k \cdot 0 = 0.$$

Remark 5.1. (36) can be obtained by computing $(x^2 - x - 1)x^n(x - 1)p(x)$, where p(x) is a polynomial over \mathbb{Z} first, then replace each x^{n+i} by F_{n+i} .

Algorithm 1 Obtaining this identity

Input: A polynomial p(x) over \mathbb{Z}

Output: An identity with generalized Leonard sequence

1:
$$g(x) \leftarrow (x^2 - x - 1) \cdot x^n \cdot (x - 1) \cdot p(x)$$

- 2: Replace each x^{n+i} by F_{n+i}
- 3: Verify the coefficients of F_{n+i} sums to zero
- 4: Replace each F_{n+i} by \mathcal{L}_{n+i-1}
- 5: Ouput the identity

Example 5.1. It is known that

$$F_n + F_{n+1} + F_{n+6} - 3F_{n+4} = 0.$$

Hence $a_0 = 1$, $a_1 = 0$, $a_2 = -3$, $a_3 = a_4 = 0$, $a_5 = 1$, $a_6 = 1$, *i.e.* $\sum a_i = 0$. Then

$$\mathcal{L}_{k,n+5} - 3\mathcal{L}_{k,n+3} + \mathcal{L}_{k,n} + \mathcal{L}_{k,n-1} = 0,$$

or

$$\mathcal{L}_{k,n+5} + \mathcal{L}_{k,n} + \mathcal{L}_{k,n-1} = 3\mathcal{L}_{k,n+3}.$$
(38)

Example 5.2. Let $f(x) = (x^2 - x - 1)x^n$ and $p(x) = (x - 1)(2x^3 + 3x - 1)$. Then $g(x) = f(x) \cdot p(x) = 2x^{n+6} - 4x^{n+5} + 3x^{n+4} - 5x^{n+3} + 2x^{n+2} + 3x^{n+1} - x^n$. Replacing each x^{n+i} by F_{n+i} , we have

$$2F_{n+6} - 4F_{n+5} + 3F_{n+4} - 5F_{n+3} + 2F_{n+2} + 3F_{n+1} - F_n = 0.$$
(39)

The coefficients are

$$a_0 = 2, a_1 = -4, a_2 = 3, a_3 = -5, a_4 = 2, a_5 = 3, a_6 = -1$$

which gives

$$\sum a_i = 0.$$

Then we have

$$2\mathcal{L}_{k,n+5} - 4\mathcal{L}_{k,n+4} + 3\mathcal{L}_{k,n+3} - 5\mathcal{L}_{k,n+2} + 2\mathcal{L}_{k,n+1} + 3\mathcal{L}_{k,n} - \mathcal{L}_{k,n-1} = 0, \ n \ge 1.$$

Example 5.3. Let $f(x) = (x^2 - x - 1)x^n$ and let $p(x) = (x - 1)(2x^2 + x + 1)$. Then $g(x) = f(x) \cdot p(x) = 2x^{n+5} - 3x^{n+4} - x^{n+3} + x^{n+1} + x^n$. Replacing each x^{n+i} by F_{n+i} , we have

$$2F_{n+5} - 3F_{n+4} - F_{n+3} + F_{n+1} + F_n = 0.$$
(40)

The coefficients are

$$a_0 = 2, a_1 = -3, a_2 = -1, a_3 = 0, a_4 = 1, a_5 = 1,$$

which gives

$$\sum a_i = 0.$$

Then we have

$$2\mathcal{L}_{k,n+4} - 3\mathcal{L}_{k,n+3} - \mathcal{L}_{k,n+2} + \mathcal{L}_{k,n} + \mathcal{L}_{k,n-1} = 0, \ n \ge 1.$$

6 Combinatorial conclusion

Jarden [10] has also considered Leonardo sequences from the point of view of the following variation of the Leonardo equation related to equation (5):

$$a_n = a_{n-1} + a_{n-2} \mp 1, \ n \ge 2, \tag{41}$$

and the associated 3^{rd} order linear recurrence

$$b_n = 2b_{n-1} - b_{n-3}, \ n \ge 3, \tag{42}$$

to which the Leonardo sequences conform as in equation (5) with $k = \pm 1$. In fact, Jarden considers the sequences in Tables 1, 2, and 3, which can bring out the corresponding relations with the Fibonacci and Lucas sequences. $\{u_n\}$ is the sequence of differences, and is related to the generalized Fibonacci numbers of Jarden in Table 9 [10] and the hyper-Fibonacci and hyper-Lucas numbers in Table 10 [6] with further generalized and extended Leonardo numbers.

(-1)	0	1	2	3	4	5	6	7	8
U_n	1	2	2	3	4	6	9	14	22
V_n	3	2	4	5	8	12	19	30	48
(+1)	0	1	2	3	4	5	6	7	8
U_n	-1	0	0	1	2	4	7	12	20

Table 9. Jarden's example of equation (5) with $k = \pm 1$.

Table 10 below is copied from Table 1 [1]. It shows the interested reader the salient features of these sequences, both horizontally and vertically, as well as diagonally. Further properties to be investigated include intersections between sequences [8] and step functions within sequences [5]. The last of these leads to *s*-Pascal triangles, as in Table 11.

\boldsymbol{n}	0	1	2	3	4	5	6	7	8	9	•••
$F_n^{(0)}$	0	1	1	2	3	5	8	13	21	34	
$L_n^{(0)}$	2	1	3	4	7	11	18	29	47	76	
$F_n^{(1)}$	0	1	2	4	7	12	20	33	54	88	
$L_n^{(1)}$	2	3	6	10	17	28	46	75	122	198	
$F_n^{(2)}$	0	1	3	7	14	26	46	79	133	221	
$L_n^{(2)}$	2	5	11	21	38	66	112	187	309	507	
$F_n^{(3)}$	0	1	4	11	25	51	97	176	309	530	
$L_n^{(3)}$	2	7	18	39	77	143	225	442	751	1258	•••

Table 10. Hyper-Fibonacci and hyper-Lucas numbers.

1													1
1	1	1											3
1	2	3	2	1									9
1	3	6	7	6	3	1							27
1	4	10	16	19	16	10	4	1					81
1	5	15	30	45	51	45	30	15	5	1			243
1	6	21	50	90	126	141	126	90	50	21	6	1	729

Table 11. A simple *s*-Pascal triangle.

If we then add along the leading diagonals in Table 11, we seem to arrive at the Tribonacci numbers, which can generate third-order Leonardo numbers.

In a different, but somewhat similar manner, Lind [14] defined L(n, r) the r-th order nonlinear binomial sum as the sum of the first r terms of the (n-1)-th row of the ordinary Pascal's triangle plus the terms of the rising stair-step (or rising) diagonal originating at the r-th term, which can be applied to any of these tables. For example, in Table 11, we can have

$$L(1,3) = 1, L(2,3) = 3, L(3,3) = 6, L(4,3) = 12, L(4,4) = 18.$$

All of these can provide a nexus between the numerical results in this paper and the recent combinatorial work of Shattuck [19], who provided a framework for these and other identities satisfied by the Leonardo numbers in the notation of section 3 and other generalized and extended Fibonacci numbers. The initial step in extending Corollary 3.12 is

$$w_n = w_{n-1} + w_{n-2} + tn + j, \ n \ge 2, \ j > -4,$$

and

$$w_n = w_{n-1} + F_{n+1} - 1. (43)$$

One can then extend the process to other second order sequences [15] or to other orders and other dimensions [16] for further related combinatorial properties. In this way, one can relate

$$w_n = w_{n-1} + w_{n-2} + tn + j, \ n \ge 2, \ t \ge 1,$$

and

$$w_n = w_{n-1} + F_n^{[k]}, (44)$$

in which $F_n^{[k]}$ is hyper-Fibonacci sequence, as in Table 10, the rows of which as k increases can be seen as staked on top of one another for a third dimension. These can be developed further [2]. We note the neat recurrence relation

$$F_n^{[k]} = F_{n-1}^{[k]} + F_n^{[k-1]}, \ k, n > 0,$$
(45)

with boundary conditions $F_n^{[0]} = F_n$ and $F_0^{[k]} = 0$; and with an elegant characteristic polynomial

$$(x^2 - x - 1)(x - 1)^k$$
,

so that

$$F_n^{[k]} = \sum_{j=1}^n \binom{k+n-j-1}{k-1} F_j;$$
(46)

see [11] for details, including their relation to the infinite matrix in which $F_n^{[k]}$ is the entry in the *n*-th row and *k*-th column, and from there to Stirling numbers of the first kind.

References

- [1] Alp, Y. (2023). Hybrid hyper-Fibonacci and hyper-Lucas numbers. *Notes on Number Theory and Discrete Mathematics*, 29(1), 154–170.
- [2] Bahşi, M. & Solak, S. (2016). A symmetric algorithm for golden ratio in hyper-Horadam numbers. *Chinese Journal of Mathematics*, Article ID 4361582.
- [3] Bicknell-Johnson, M.& Bergum, G. E. (1988). The generalized Fibonacci numbers $\{C_n\}$, $C_n = C_{n-1} + C_{n-2} + k$. Applications of Fibonacci Numbers: Proceedings of The Second International Conference on Fibonacci Numbers and Their Applications, San Jose State University, California, USA, Springer, 193–205.
- [4] Catarino, P. M., & Borges, A. (2019). On Leonardo Numbers. Acta Mathematica Universitatis Comenianae, 89(1), 75–86.
- [5] Chu, H. V., Irmak, N., Miller, S. J., Szalay, L., & Zhang, S. X. Schreier multisets and the *s*-step Fibonacci sequences (*in press*)
- [6] Dil, A., & Mező, I. (2008). A symmetric algorithm for hyperharmonic and Fibonacci numbers. *Applied Mathematics and Computation*, 206(2), 942–951.

- [7] He, T.-X., & Shiue, P. J.-S. (2009). On sequences of numbers and polynomials defined by linear recurrence relations of order 2. *International Journal of Mathematics and Mathematical Sciences*, 21, Article ID 709386.
- [8] Horadam, A. F. (1966). Generalization of two theorems of K. Subba Rao. Bulletin of Calcutta Mathematical Society, 58(1), 23–29.
- [9] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. *The Fibonacci Quarterly*, 3(3), 161–176.
- [10] Jarden, D. (1996). Recurring Sequences. Jerusalem: Riveon Lematematika, 95–102.
- [11] Komatsu, T.,& Szalay, L. (2018). A new formula for hyper-Fibonacci numbers, and the number of occurrences. *Turkish Journal of Mathematics*, 42(3), 993–1004.
- [12] Koshy, T. (2019). Fibonacci and Lucas Numbers with Applications (Volume 2), John Wiley & Sons.
- [13] Kuhapatanakul, K., & Chobsorn, J. (2022). On the generalized Leonardo numbers. *Integers*, 22, A48.
- [14] Lind, D. A. (1965). On a class of non-linear binomial sums. *The Fibonacci Quarterly*, 3(4), 292–298.
- [15] Ollerton, R. L., & Shannon, A. G. (1998). Some Properties of Generalized Pascal Squares and Triangles. *The Fibonacci Quarterly*, 36(2), 98–109.
- [16] Shannon, A. G. (1977). Tribonacci numbers and Pascal's pyramid. *The Fibonacci Quarterly*, 15(3), 268–275.
- [17] Shannon, A. G. (2019). A note on generalized Leonardo numbers. *Notes on Number Theory and Discrete Mathematics*, 25(3), 97–101.
- [18] Shannon, A. G., & Deveci, Ö. (2022). A note on generalized and extended Leonardo sequences. *Notes on Number Theory and Discrete Mathematics*, 28(1), 109–114.
- [19] Shattuck, M. (2022). Combinatorial proofs of identities for the generalized Leonardo numbers. *Notes on Number Theory and Discrete Mathematics*, 28(4), 778–790.