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Abstract: Prime numbers have been always of great interest. In this work, we explore the prime
numbers from a sieve other than the Eratosthenes sieve. Given a prime number p, we consider the
binary expansion of 1

p
and, in particular, the size of the period of 1

p
. We show some results that

relate the size of the period to properties of the prime numbers.
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1 Introduction

Prime numbers have been studied since the beginning of mathematics. Euclid in his work Elements
circa 300 BC, showed that there are an infinite number of them. Many great mathematicians
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have worked with them, such as Euclid, Bertran, Legendre, Riemann (see [9]), Fermat, Leibnitz,
Wiles (see [7]), Wilson, Lagrange (see [19]), Oppermann [18], Rosser (see [22]), among others.
And also, there are many conjectures about these numbers, such as the conjecture that there
are an infinite number of Mersenne primes, a Mersenne Prime is a prime number of the form
Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim
friar, who studied them in the early 17-th century. There are many more open conjectures,
such as Andrica’s conjecture [1], Goldbach’s conjecture, Brocard’s conjecture (see [19]), Artin’s
conjecture (see [2] and [13]), among others. See also [11, 12, 14, 21].

In this work, we explore some properties of prime numbers using binary expansions of the
reciprocals of primes.

2 Binary expansions

We start with a Lemma which may be known, but we have not found its proof. We made its proof
with elementary tools such as geometric series and the following definitions, we did not include
the proof but you can ask any of the authors for it if needed.

Let for every n ∈ N the set of positive integers, we define

Dn = {r ∈ N | r|n and r ̸= 1, n}.

We observe that Dn is the empty set if n = 1 or n is a prime number. For every n,m ∈ N
such that 1 ≤ m < n and n is not a prime number, we used in the proof of Lemma 2.1

γm =

⌊ n
m⌋−1∑
i=0

2im and Γn = {l ∈ N | γm ̸ | l for every m ∈ Dn}.

Lemma 2.1. Let q be a rational number in the unit closed interval I = [0, 1]. Then it is well
known that the binary expansion of q is given by

q = 0.a1a2 . . . amb1b2 . . . bn (2.1)

where a1, . . . , am, b1, . . . , bn ∈ {0, 1}, m ∈ N ∪ {0} and n ∈ N. The overlined terms is the
periodic part of the number q, which includes zeros and ones if n > 1, and n is the size of the
shortest period. Then

i) m = 0 and n = 1 if and only if q = 0 or q = 1.

ii) m = 0 and n > 1 if and only if q = l
2n−1

for some integer 1 ≤ l ≤ 2n − 2 such that l ∈ Γn.

iii) m ≥ 1 and n = 1 if and only if q = l
2m

for some odd integer 1 ≤ l ≤ 2m − 1.

iv) If m ≥ 1 and n > 1, then q = l
2m(2n−1)

for some integer 1 ≤ l ≤ 2m(2n − 1)− 1.

Note that the converse of Lemma 2.1 part iv) is not true. For example, for n = 2 and m = 1,
1 ≤ l ≤ 2m(2n − 1) − 1 = 5 and 2m(2n − 1) = 6. With 1

2
= 3

6
= 0.10 = 0.01, so for l = 3,

l
2m(2n−1)

does not have binary expansion with m = 1 and n = 2. Remember that n must be the
shortest possible period.
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Remark 2.1. Note that in part ii) of Lemma 2.1 we have that for every l ∈ {1, 2, ..., 2n−3, 2n−2}
the following equation holds

l

2n − 1
= 0.b1 . . . bn

for some b1, . . . , bn ∈ {0, 1}. However, n may not be the shortest period of l
2n−1

.

Now we state a very well known result, whose proof follows directly from Fermat’s little
Theorem. We can find the proof of this theorem in [23].

Lemma 2.2. Let p be a prime number greater than 2. Then p|(2p−1 − 1).

It is well known that, the converse of Lemma 2.2 does not hold. For example if q = 341,
q is not prime: 341 = 11 · 31, this was proved first by Sarrus in 1819. In the literature these
counterexamples are called “pseudoprime numbers” (to base 2), that is, an integer q such that
q divides 2q−1−1, but q is not actually a prime, the least pseudoprime is q = 341 and q| (2q−1 − 1),
see for example [20].

Some of the Lemmas in this paper are used also in the theory of pseudoprime numbers.

Corollary 2.1. Let p be a prime number greater than 2. Then 0 < 1
p
≤ 1

3
and

1

p
=

r

2p−1 − 1
(2.2)

for some integer 1 ≤ r ≤ 2p−1 − 3. Besides, 1
p

has a binary expansion which satisfies

1

p
= 0.b1b2 . . . bp−1, (2.3)

with b1 = 0 and bp−1 = 1. Note also that the period in Equation (2.3) may not be the shortest
one.

Proof. If p is a prime number greater than 2, it is obvious that 0 < 1
p
≤ 1

3
, and by Lemma 2.2 p

divides 2p−1 − 1, so there exists an integer r such that p · r = 2p−1 − 1. Therefore, Equation (2.2)
follows, and by Remark 2.1 we have that 1

p
has the binary expansion given by Equation (2.3).

Since 1
p
≤ 1

3
, then b1 = 0, and since p is an odd integer, then bp−1 = 1. The last note can be

observed, for example when p = 7, in the next paragraph.

For example, if p = 3, then 2p−1 − 1 = 3 and in this case 1
3
= 0.01. If p = 5, then

2p−1 − 1 = 15 = 3 · 5 and in this case 1
5
= 0.0011. If p = 7, then 2p−1 − 1 = 63 = 3 · 3 · 7 and

in this case 1
7
= 0.001001, here we observe that 23 − 1 = 7, that is why 1

7
has a shorter period of

only three numbers, that is, 1
7
= 0.001. This last example motivates the definition given below.

If p = 11, then 2p−1 − 1 = 1023 = 3 · 11 · 31 and in this case 1
11

= 0.0001011101. Note that
p = 3 = 22 − 1, p = 7 = 23 − 1, p = 31 = 25 − 1 and p = 127 = 27 − 1 are Mersenne’s primes,
but p = 2047 = 211 − 1 = 23 · 89 is not a prime, but a composite number.

A natural order to generate prime numbers p is to consider the size of the shortest period of
the binary expansion of 1

p
.
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Definition 2.1. Let n ∈ N and let p be a prime number such that p|(2n − 1). We will say that p is
a primitive prime divisor of 2n − 1 if and only if p ̸ | (2q − 1) for every 2 ≤ q < n. If n = p− 1,
we will say that p is a long prime, and if n < p−1, we will say that p is a short prime. See [26].

From the example above p = 3, p = 5 and p = 11 are long primes, but p = 7 and p = 31 are
short primes, since 7 divides 23 − 1 and 31 divides 25 − 1. Of course, 31 also divides 230 − 1 =

1073741823 = 3 · 3 · 7 · 11 · 31 · 151 · 331. We will use later on the above definition to generate
prime numbers using numbers of the form powers of two minus one. Let us mention another
useful result. Its proof is well-known and elementary.

Lemma 2.3. Let p, q ∈ N such that q|p. Then (2q − 1)|(2p − 1).

Since 3|6, then 7 = 23 − 1|26 − 1 = 63 = 3 · 3 · 7, so 7 is a short prime, and since 2|6, then
3 = 22 − 1|26 − 1 = 63 = 3 · 3 · 7, so 3 is a long prime. We will see that the case 26 − 1 is an
interesting exceptional case, when we consider all the numbers of the form 2n−1, for any integer
n ≥ 2.

In Table 3 to Table 5, we found the value of 2n − 1 for 2 ≤ n ≤ 100 we give the prime
decomposition of 2n − 1 underlining the new primes, which we have not found previously,
and for 76 ≤ n ≤ 100 we only provide the decompositions. The underlined primes will be of
great importance in the interpretation of these tables, and they will also help in finding the prime
decomposition of the numbers 2n − 1 when n is not a prime number. We will also observe how
to find the short primes when we evaluate the prime decompositions of the numbers 2n − 1 when
n varies from 2 up to N for N ≤ 100.

First, we note that from Lemma 2.2, if n is a prime greater than 2, then n|(2n−1 − 1). So, if
we find the prime decomposition of 2m − 1 for every m ∈ N, then for every prime p greater than
2 we will find an m ∈ N, such that p|2m − 1, of course this holds for m = p− 1.

Let us assume that we are trying to find the prime decomposition of 2n − 1 when n is not
a prime number. If n is not too large, it is possible to find its prime decomposition using for
example the package Mathematica, which by the way has an amazing range to perform this task.
Let us assume that q1 ≤ q2 ≤ · · · ≤ qk−1 ≤ qk are the prime numbers such that

n = q1 · q2 · · · qk−1 · qk, where k ∈ N, (2.4)

where (2.4) is of course the prime decomposition of n. Let

1 < r1 < r2 < r3 < · · · < rm−1 < rm

be all the different divisors of n obtained by multiplying one or more primes given in Equation (2.4),
of course rm = n. So, for example, if n = 40, its prime decomposition is given by n = 2 ·2 ·2 ·5,
that is, k = 4, and the different divisors of n greater than 1 are 2 < 4 < 5 < 8 < 10 < 20 < 40,
so, m = 7.

Now, we observe that the only value of n, for 2 ≤ n ≤ 100, such that the decomposition of
2n − 1 does not include a new prime in its prime decomposition, is when n = 6, see Table 3 to
Table 5. We will see that this holds for every n > 100. We also observe that as n increases, the
number of new primes also increases. From Table 1 we observe that 211 − 1 includes for the first
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time two new primes, that 229 − 1 for the first time includes three new primes, and that 292 − 1

includes four new primes for the first time, etc. The last observations take us to a new conjecture,
which we will state in Conjecture 2.1.

We will see that for every n ∈ N, with n ̸= 6, there is a prime number p such that 1
p

has binary
expansion of size n. The first to prove this result was the Norwegian mathematician A. S. Bang
in 1886 [4, 5]. In 1892 the Austrian professor Zsigmondy proved a more general result [28].

The proof of the following theorem is given in [6]. Its proof uses the cyclotomic polynomials
of complex variable as a tool.

Theorem 2.1. (Zsigmondy’s Theorem) Let a > b ≥ 1 be coprime integers and let n ≥ 2 be an
integer. Then there exists a primitive prime divisor of an − bn, except when:

i) n = 2 and a+ b is a power of 2; or

ii) a = 2, b = 1 and n = 6.

Remark 2.2. Observe that if p is a primitive prime divisor for 2n − 1 with n ∈ N \ {6}, then
p|(2n − 1) and p = l

2n−1
for some 1 ≤ l ≤ 2n − 2. By Remark 2.1,

1

p
= 0.b1 . . . bn for some b1, . . . , bn ∈ {0, 1} (2.5)

If n is not the size of the period of 1
p
, then let k < n the size of the period of 1

p
. From Lemma 2.1,

part ii), 1
p
= s

2k−1
for some 1 ≤ s ≤ 2k − 2 with s ∈ Γk. So, ps = 2k − 1 and p|(2k − 1) with

k < n. This contradicts Equation (2.5). Since, n is the size of the period of 1
p
.

Zsigmondy’s theorem gives us the following theorem:

Theorem 2.2. For every integer n ≥ 2 with n ̸= 6 the prime decomposition of the number 2n− 1

includes at least a new prime qn such that qn does not divide 2m − 1 for every 2 ≤ m < n.

Part ii) of the Theorem 2.1 proves that n = 6 is the only exception to the existence of primitive
prime divisors for 2n − 1.

It is noticeable that the last Theorem is related to the fact that between any natural number n
and 2 · n there exists a prime number p, but actually it is quite stronger, because it states that for
every n ≥ 2 with n ̸= 5, if we consider the list of all prime numbers that have appeared in the
prime decompositions of 2k − 1 for every 2 ≤ k ≤ n, then we can find at least one new prime
number in the prime decomposition of 2n+1 − 1 = 2 · (2n − 1) + 1. Of course, in this case the
new prime number found does not need to be between 2n − 1 and 2n+1 − 1.

Let us assume that we want to find the prime decomposition of 240 − 1. As we observed
above the divisors less than p = 40 are: q ∈ {2, 4, 5, 8, 10, 20}. Then using Lemma 2.3 we
have that 22 − 1|240 − 1, 24 − 1|240 − 1, 25 − 1|240 − 1, 28 − 1|240 − 1, 210 − 1|240 − 1 and
220 − 1|240 − 1. Observing Table 3 to Table 5 we have that 3, 5, 31, 17, 11, 41 all divide 240 − 1.
Then 240 − 1 = 1099511627775, so 240−1

3·5·11·17·31·41 = 308405. So, it is clear that the last number
is divisible by 5 again and 308405

5
= 61681 and in a table of primes we find that r = 61681 is a

prime number, which has not appeared in the new sieve of primes up to n = 39, see Table 3.
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Even if it is not reported here, we have obtained the equivalence of Table 3 to Table 5 for
n = 1206. In Table 6, we report for n = 50, 100, 150, 200, 250, . . . and n = 1000, the number
of different primes obtained from 2m − 1 when 2 ≤ m ≤ n. These values are somehow related
to the well known function π(n) which counts the number of primes less than or equal n, which
by the way has no close formula and it has been suggested that it may not exist, due to the
capricious distribution of the primes. However, a nice approximation of this function is given by
π(n) ∼ n

ln(n)
for large values of n. The first result for π(n) was given by Carl Friedrich Gauss, in

1793, see [7] and [10].
In Table 1 for 1 ≤ m ≤ 10 we have the first n such that 2n − 1 has m new primes in its

decomposition of primes numbers. Also, we have how many of the 1 ≤ k ≤ n, 2k − 1 includes
one new prime, two new primes, and so on up to m new primes.

We also observe in Table 1 that 2113 − 1 includes five new primes, 2223 − 1 includes six
new primes, 2295 − 1 includes seven new primes, 2333 − 1 includes eight new primes, 2397 − 1

includes nine new primes and 21076 includes ten new primes. Hence, we may conjecture that for
any m ∈ N there exists a value of n such that 2n − 1 includes m new primes for the first time.

We obtained Table 1 with the help of Wolfram Mathematica and [17]. Figure 1 includes the
values of n such that for the first time appear m new primes in the binary expansion of 1

2n−1
and

it is standardized to be a probability density function, see [3].

n

m
1 2 3 4 5 6 7 8 9 10

22 − 1 1 0 0 0 0 0 0 0 0 0

211 − 1 8 1 0 0 0 0 0 0 0 0

229 − 1 22 4 1 0 0 0 0 0 0 0

292 − 1 44 31 14 1 0 0 0 0 0 0

2113 − 1 47 42 20 1 1 0 0 0 0 0

2223 − 1 65 80 52 17 6 1 0 0 0 0

2295 − 1 69 105 72 32 11 3 1 0 0 0

2333 − 1 71 114 85 41 13 5 1 1 0 0

2397 − 1 77 126 105 55 21 7 1 2 1 0

21076 − 1 107 240 260 208 134 79 23 19 4 1

Table 1. First n such that 2n − 1 has m primitive prime divisors

Samuel Yates defined an unique-prime to be a prime p such that the decimal expansion of
1
p

has a period that it shares with no other prime, see [27]. In general for decimal expansions
Chris Caldwell and Harvey Dubner defined bi-unique-primes to be pairs of primes which have
a period shared by no other primes. In a similar way, they defined tri-unique-primes and so on,
see [8]. The analogous concept for binary expansions can be found in Table 1.

In Table 1 the first column for m = 1 we have the total of unique primes for the binary
expansion of 1

p
from 2n − 1 varying n in the set {2, 11, 29, 92, 113, 223, 295, 333, 397, 1076},

which corresponds to first time that we obtain m = 1, m = 2, . . . ,m = 10 new primes for 2n−1.
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n=11
n=29
n=92
n=113
n=223

n=295
n=333
n=397
n=1076

1

1 2 3 4 5 6 7 8 9 10

Figure 1. First n such that 2n − 1 has m primitive prime divisors

Of course, the second column for m = 2 includes the total number of bi-unique primes, for
m = 3 the column includes the total number of tri-unique primes, etc.

Figure 1 is a graphic representation of the results of the rows in Table 1 standardized by the
sum of the rows. Now we state our conjecture based on the results of Table 1.

Conjecture 2.1. For every m ∈ N, there exists an n ∈ N such that the number of primitive prime
divisors of 2n − 1 is m.

3 The last digit of the new prime numbers
obtained using the binary sieve

Let p be a prime number and consider the field Z∗
p = {[1]p, . . . , [p − 1]p}. Then (Z∗

p, ·) is the
group of units of Zp and it has p − 1 elements. For every [s]p ∈ Z∗

p, if m = order([s]p), then m

is the smallest natural number such that [s]mp = [1]p and m divides |Z∗
p| = p− 1. See Lagrange’s

Theorem 2.81 and Proposition 2.72 in [23]. Also, [s]np = [1]p if and only if m|n, see Lemma 2.53
in [23].

Note that if we want to see what is the last digit of an integer z, it is enough to see what is
the remainder of dividing z by 10. That is, using Euclid’s algorithm, we find w ∈ Z such that
z = 10w + r with 0 ≤ r < 10. This gives us that z − r = 10w and 10|(z − r). So z ≡ r

(mod 10) and r is the last digit in the decimal expansion of z.

Theorem 3.1. If n is a multiple of 5, the last digit of the primitive prime divisors of 2n − 1 is
always 1 in their decimal expansion.

Proof. Let n ∈ N such that n = 5k for some k ∈ N. Let p be a primitive prime divisor of 2n − 1,
so p ̸= 2 and p− 1 is even. Thus 2|p− 1.

Also, 2n ≡ 1 (mod p) and n = order([2]p). By Lemma 2.2, p|(2p−1 − 1), that is, 2p−1 ≡ 1

(mod p). So, we have that n|(p− 1). Then, 2|(p− 1) and 5k = n|(p− 1). By the Fundamental
Theorem of Arithmetic 10 = 5 · 2|(p− 1), that is, p ≡ 1 (mod 10). The last digit of p is 1.
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In Figure 2 the graph shows the distribution of the last digit in the decimal expansions with
the new order that we are considering taking up to 21206 − 1. Of course, the number 5 is the
only prime whose last decimal digit is 5. Using [17] and R-studio, we obtain that there are 1609

primes whose last decimal digit is 1, there are 879 primes whose last decimal digit is 3, there are
902 primes whose last decimal digit is 7 and finally, there are 884 primes whose last decimal digit
is 9.

0.5

0.4

0.3

0.2

0.1

1 2 3 4 5 6 7 8 9

Figure 2. Graph of distribution in the last digit.

Open Question 3.1. Why, in Figure 2 giving the last digit in the decimal expansions of primes in
the new sieve, the number 1 appears almost twice more often than the digits 3, 7 and 9 ?

4 Antisymmetric numbers

Let r, m be positive integers, then r is called an antisymmetric number of size m if and only if
1/r has a binary expansion with period of size 2m, and the expansion is given by

1

r
= 0.a1a2 . . . amâ1â2 . . . âm

for some a1, a2, . . . , am ∈ {0, 1} and âi = 1− ai for every i ∈ {1, 2, . . . ,m}.
Observe that if r is an antisymmetric number of size m, then the binary expansion of 1/r has

a periodic part of even size, that is, 2m.
The first idea of our antisymmetric numbers appeared first in [15], in a more restricted case.

In the case of decimal expansions there is a similar result in the case of fractions with prime
denominators first proved by E. Midy and generalized by A. Tripathi, see [16] and [25].
For every m ≥ 1, let

Sm =
∞∑
k=0

1

(22m)k
=

22m

22m − 1
. (4.1)

Let k be a positive integer such that for some integer m ≥ 1,

1

k
= 0.11 . . . 100 . . . 0 (4.2)
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where the last one is in the m-th position and it is followed by m consecutive zeros. Then k is an
antisymmetric number of size m, in fact the largest possible, and

1

k
=

22m−1 + 22m−2 + · · ·+ 22m−m

22m

∞∑
k=0

1

(22m)k
=

2m

2m + 1
. (4.3)

On the other hand, if k is the counterpart of Equation (4.2), that is, an antisymmetric number of
size m, such that

1

k
= 0.00 . . . 011 . . . 1 (4.4)

then 1/k is the smallest possible number with k antisymmetric of size m and

1

k
=

2m−1 + 2m−2 + · · ·+ 21 + 20

22m

∞∑
k=0

1

(22m)k
=

1

2m + 1
. (4.5)

Lemma 4.1. Let k ≥ 2 be an integer. If k is antisymmetric of size m for some integer m ≥ 1, then
1
k
= l

2m+1
where l is an integer satisfying 1 ≤ l ≤ 2m. Furthermore, for every l ∈ {1, 2, . . . , 2m},

l
2m+1

is antisymmetric of size less than or equal to m.

Proof. Let k ≥ 2 be an antisymmetric integer of size m ∈ N, that is,

1

k
= 0.a1 . . . amâ1 . . . âm

where âi = 1 − ai for every i ∈ {1, 2, . . . ,m} = M . We define J ⊆ M such that ai = 1 for
every i ∈ J and ai = 0 for every i ∈ M \ J . If J = ∅, then M \ J = M , which is the case given
in Equation (4.4), and by Equation (4.5), 1

k
= 1

2m+1
. If J = M , then M \ J = ∅, which is the

case given in Equation (4.2), and by Equation (4.3), 1
k
= 2m

2m+1
.

So, assume that ∅ ⊊ J ⊊ M and let J = {u1, . . . , us} with 1 ≤ u1 < · · · < us ≤ m where
1 ≤ s < m. And let M \ J = {v1, . . . , vr} where 1 ≤ v1 < · · · < vr ≤ m and 1 ≤ r < m.
Clearly J ∩ (M \ J) = ∅, so s+ r = m. Then

1

k
= 0.a1 . . . amâ1 . . . âm

=
∞∑
i=0

1

22mi+u1
+ · · ·+

∞∑
i=0

1

22mi+us
+

∞∑
i=0

1

22mi+m+v1
+ · · ·+

∞∑
i=0

1

22mi+m+vr

=
1

2m + 1

[
s∑

j=1

2m−uj + 1

]
.

If l =
s∑

i=1

2m−ui + 1, then 1 ≤ l ≤ 2m.

For the converse, we have these observations:

i) For each l ∈ {1, . . . , 2m − 1}, l =
∑
k∈Ω

2k where Ω ⊆ {0, . . . ,m− 1} and Ω ̸= ∅.

ii) For each l ∈ {1, . . . , 2m − 1}, l+1
2m+1

has an antisymmetric binary expansion. In fact,

let l ∈ {1, . . . , 2m − 1}, then l =
∑
k∈J

2k with J ⊆ {0, . . . ,m − 1} = N . Then

J = {i1, . . . , ir} with 0 ≤ i1 < · · · < ir ≤ m − 1 for some 1 ≤ r ≤ m. Observe that
S = m− J := {m− ir, . . . ,m− i1} ⊆ {1, . . . ,m} = M .
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Let ai = 1 for every i ∈ S, ai = 0 for every i ∈ M \ S and âi = 1 − ai for every i ∈ M.

We note that 2m −
∑

j∈N\J

2j = l + 1 because 2m − 1 =
m−1∑
k=0

2k, so 2m =
m−1∑
k=0

2k + 1 and

2m −
∑

j∈N\J

2j =
m−1∑
k=0

2k −
∑

j∈N\J

2j + 1 =
∑
j∈J

2j + 1 = l + 1. Then, using Equation (4.1)

0.a1 . . . amâ1 . . . âm =

2m−1∑
k=0

2k −
∑
j∈J

2j −
∑

j∈N\J

2m+j

22m
Sm

=

2m

2m −
∑

j∈N\J

2j

− (l + 1)

22m − 1

=
(l + 1) (2m − 1)

(2m + 1)(2m − 1)
=

l + 1

2m + 1
.

Note that if 2m is not the shortest period of l+1
2m+1

, then in any way it has an antisymmetric
binary expansion.

iii) 1
2m+1

has an antisymmetric binary expansion of size m. See Equations (4.4) and (4.5).

Let m = 3, 1
k
= 0.a1a2a3â1â2â3 = 0.101010 = 6

23+1
. But k is an antisymmetric number with

size m = 1, since 1
k
= 0.10 = 2

21+1
.

The following remark gives us a similar version of Midy’s Theorem but with binary expansions,
see [16].

Remark 4.1. Let p be a prime number with period of size 2m, that is, 1
p
= 0.b1 . . . b2m with

m ≥ 1. Then p is an antisymmetric number of size m.

Proof. Let p be a prime number such that 1
p

has a binary expansion with period of size 2m. Then
2m is the smallest number such that p|(22m − 1).

We have that p|(22m − 1) = (2m − 1)(2m + 1). Using properties of prime numbers we have
that p|2m +1 or p|2m − 1. The case p|2m − 1 is impossible. Then p|2m +1 and using Lemma 4.1
we have that p is an antisymmetric number of size m.

Now let m be a positive integer and let qm := 2m + 1. Then qm is an odd integer for every
m ≥ 1. Let {r1, r2, . . . , rk(m)} be the prime decomposition of qm, then qm = r1 · r2 · · · rk(m)

where we assume that 2 ≤ r1 ≤ r2 ≤ · · · ≤ rk(m), and k(m) is a positive integer depending
on m. In Table 2 we give the prime decomposition of qm = 2m + 1 for values of m between 1

and 10. In addition, we give the binary expansion of the new primes of qm
In Table 7 we included all binary expansions of the reciprocal primes 1

p
up to p = 521. The

last column indicates if the primes are short (S) or long (L), see Definition 2.5.
There exist different sieves based on the prime decomposition, for example of numbers of the

form 10n − 1. This sieve does not include p = 2 and p = 5, since 10 = 2 · 5, see [24].
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m prime decomposition of qm=2m+1 expansion of 1/q for new q prime
1 3 1/3 = 0.0 · 1
2 5 1/5 = 0.00 · 11
3 3 · 3 it does not exist
4 17 1/17 = 0.0000 · 1111
5 3 · 11 1/11 = 3/33 = 0.00010 · 11101
6 5 · 13 1/13 = 5/65 = 0.000100 · 111011
7 3 · 43 1/43 = 3/129 = 0.0000010 · 1111101
8 257 1/257 = 0.00000000 · 11111111
9 3 · 3 · 3 · 19 1/19 = 0.000011010 · 111100101
10 5 · 5 · 41 1/41=25/1025=0.0000011000 · 1111100111

Table 2. Binary expansion of the first ten antisymmetric numbers.

Using the order given by the size of the binary period of the reciprocals of prime numbers we
have found new primes whose decimal expression have more of 200 digits, so it may be useful in
order to generate security codes in cryptography. Also using the new sieve we can study properties
of the prime numbers using probabilistic and statistical methods, see for example Figure 1.

Tables 3, 4, 5, 6 and 7, and some final notes on antisymmetric numbers and Fermat’s numbers
are available on internet at https://sites.google.com/ciencias.unam.mx/

binary-expansions/inicio .
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