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Abstract: In this paper we present a new approach to solving the general monic quartic equation.
Moreover, we show that each quartic equation could be considered as a quasi-reciprocal equation,
after a suitable translation of the variable.
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1 Introduction and historical data

Let
f(x) = x4 + ax3 + bx2 + cx+ d ∈ C[x].

The question for solving the equation
f(x) = 0 (1)

has a long history. There are known three fundamental ways to solve (1). They are based on
Vieta’s substitution x = z − a

4
, which transforms (1) into the depressed equation

h(z) = z4 + pz2 + qz + r = 0, (2)

where the coefficients p, q, r depend on a, b, c, d.
The Italian mathematician Ludovico Ferrari (1522–1565) solved (2) with the help of the

method known as Ferrari’s method (see [4]). After Ferrari, the French mathematician René
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Descartes (1596–1650) proposed another method for solving (2), using factorisation of h(z) with
the help of two quadratic polynomials (see [9] and [7], p. 361). The third way for solving
(2) was proposed by the Swiss mathematician Leonhard Euler (1707–1783). His method is a
generalization of Hüdde’s method for solving the trinomial cubic equation

x3 + px+ q = 0

(see [7], pp. 358–360).
We shall describe the above three ways for solving (2) in the appendix of this paper.
A general approach to solving (1) and other algebraic equations (using symmetric functions

of their roots) was developed by the French mathematician Joseph-Louis Lagrange (1736–1813)
(see [7], pp. 363–368, and [5]).

More details about solving (1) are contained in [10] and [11].
The topic for the quartic equation and its solving is still actual (see for example [1–3, 6]).

In [8] a review of the known algorithms for solving (1) is made and a universal algorithm that
generalizes them is proposed.

2 Our approach to solving (1)

An essential difference between our approach to solving (1) and the ways mentioned above is that
we keep the term y3, which plays a fundamental role. First, we substitute in (1)

x = y + λ, (3)

where λ ∈ C is an arbitrary parameter, and we obtain

g(y) = y4 + A(λ)y3 +B(λ)y2 + C(λ)y +D(λ) = 0 (4)

with:

D(λ) = f(λ) = λ4 + aλ3 + bλ2 + cλ+ d; (5)

C(λ) =
f ′(λ)

1!
= f ′(λ) = 4λ3 + 3aλ2 + 2bλ+ c; (6)

B(λ) =
f ′′(λ)

2!
= 6λ2 + 3aλ+ b; (7)

A(λ) =
f ′′′(λ)

3!
= 4λ+ a. (8)

Let λ satisfy the equation:
(4λ+ a2)f(λ) = (f ′(λ))2,

which is equivalent to the equation

(A(λ))2D(λ) = (C(λ))2. (9)

Using (5), (6), (8), after computation (9) yields the following cubic equation with respect to λ:

(a3 − 4ab+ 8c)λ3 + (a2b− 4b2 + 2ac+ 16d)λ2 + (a2c+ 8ad− 4bc)λ+ a2d− c2 = 0. (10)

Now we shall consider some cases:
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1) λ0 = −a
4

is a root with multiplicity 3 of (10).

Hence, A(λ0) = 0 and (9) implies C(λ0) = 0. Then for λ = λ0 (4) yields

y4 +B(λ0)y
2 +D(λ0) = 0. (11)

Since (11) is a biquadratic equation, it is trivial to be solved. Let yi, i = 1, 2, 3, 4 are all
roots of (11). Then, from (3) we obtain that

xi = −a

4
+ yi, i = 1, 2, 3, 4,

are all roots of (1);

2) The Equation (10) has a root λ∗ different from −a
4
.

Then A(λ∗) ̸= 0.

Now we consider the following subcases.

2.1) For each root λ of the Equation (10), such that λ ̸= −a
4
, D(λ) = 0 (in particular,

D(λ∗) = 0).

Then (9) implies C(λ∗) = 0 and (4) for λ = λ∗ yields

y4 + A(λ∗)y3 +B(λ∗)y2 = 0. (12)

The Equation (12) has roots y1 = 0, y2 = 0, while its roots y3 and y4 satisfy the
quadratic equation

y2 + A(λ∗)y +B(λ∗) = 0.

Then (3) implies that
xi = yi + λ∗, i = 1, 2, 3, 4,

are all roots of (1).

The main subcase of Case 2) is:

2.2) There exists a root λ̃ of the Equation (10), such that λ̃ ̸= −a
4

(i.e., A(λ̃) ̸= 0) and
C(λ̃) ̸= 0.

Then for λ = λ̃ we rewrite (9) in the form

D(λ̃) =
(C(λ̃))2

(A(λ̃))2
. (13)

Since C(λ̃) ̸= 0, then D(λ̃) ̸= 0. Therefore, y = 0 is not a root of the equation

y4 + A(λ̃)y3 +B(λ̃)y2 + C(λ̃)y +D(λ̃) = 0. (14)

This gives us the possibility to divide both sides of (14) by y2 (like in the case of
reciprocal equations of degree 4) and obtain

y2 +D(λ̃)
1

y2
+ A(λ̃)

(
y +

C(λ̃)

A(λ̃)

1

y

)
+B(λ̃) = 0. (15)
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We must note that the Equation (14) is not a reciprocal equation, but it is similar, since
the method for its solving is almost the same. For this reason we call (14) quasi-reciprocal
equation. To solve (15), we set

z = y +
C(λ̃)

A(λ̃)
· 1
y
. (16)

Hence, (16) yields

z2 = y2 +
(C(λ̃))2

(A(λ̃))2
· 1

y2
+ 2

C(λ̃)

A(λ̃)

and from (13) we obtain

z2 = y2 +D(λ̃)
1

y2
+ 2

C(λ̃)

A(λ̃)
.

Hence,

y2 +D(λ̃)
1

y2
= z2 − 2

C(λ̃)

A(λ̃)
.

Thus (15) yields the quadratic equation

z2 + A(λ̃)z +B(λ̃)− 2
C(λ̃)

A(λ̃)
= 0. (17)

Let the roots of (17) be zi, i = 1, 2. Then from (16) we obtain

zi = y +
C(λ̃)

A(λ̃)
· 1
y
, i = 1, 2. (18)

Obviously (18) gives us two quadratic equations for y. Let us denote their roots by y1, y2,
y3 and y4. Then from (3) we obtain that

xi = yi + λ̃, i = 1, 2, 3, 4,

are all roots of (1).

3 Conclusion

Our method for solving (1) shows that for every monic quartic equation there exists a translation
of its variable, which turns it into a quasi-reciprocal equation. Moreover, the number of these
translations for our method is not greater than 3 (because of (10)).

An open problem is if there exists a similar method for solving algebraic equations of degree
n ≥ 5.

4 Appendix

4.1 A short description of Ferrari’s method for solving (2)

Ferrari started from the identity

z4 + pz2 + qz + r = (uα(z))
2 − vα(z),
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where:

uα(z) = z2 +
p

2
+ α; vα(z) = 2αz2 − qz +

(
α2 + pα− r +

p2

4

)
and α ∈ C is an arbitrary parameter. After that Ferrari chose such α that the discriminant of vα(z)
is 0, i.e.,

q2 − 4.2α

(
α2 + pα− r +

p2

4

)
= 0.

The above resolvent equation is a qubic equation with respect to α. Let λ is one of its roots.
Then

vλ(z) = 2λ(z − λ)2 =
(√

2λ(z − λ)
)2

=: (wλ(z))
2.

Therefore,
z4 + pz2 + qz + r = (uλ(z))

2 − vλ(z) = (uλ(z))
2 − (wλ(z))

2.

Hence,
z4 + pz2 + qz + r = (uλ(z) + wλ(z))(uλ(z)− wλ(z)).

Therefore, (2) is equivalent to the following two quadratic equations:

uλ(z) + wλ(z) = 0; uλ(z)− wλ(z) = 0.

4.2 A short description of Descartes’ method for solving (2)

To solve (2), Descartes set

z4 + pz2 + qz + r = (z2 + uz + v)(z2 − uz + t), (19)

where u, v, t are unknown coefficients. Hence,

z4 + pz2 + qz + r = z4 + (t+ v − u2)z2 + (ut− uv)z + vt.

Therefore,
t+ v = p+ u2; t− v =

q

u
; vt = r.

Hence,

t =
1

2
(p+ u2 +

q

u
); (20)

v =
1

2
(p+ u2 − q

u
); (21)

vt = r.

After eliminitation of t and v from the above three equalities, Descartes obtained the resolvent
equation

u6 + 2pu4 + (p2 − 4r)u2 − q2 = 0.

The last after substituton u2 = y yields the cubic equation

y3 + 2py2 + (p2 − 4r)y − q2 = 0.
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For an arbitrary root y of the above equation the corresponding u is given by u =
√
y and then

the corresponding t and v are obtained from (20) and (21). For these u, v, t (19) shows that (2) is
reduced to the following two quadratic equations:

z2 + uz + v = 0; z2 − uz + t = 0.

4.3 A short description of Euler’s method for solving (2)

To solve (2), Euler used Hüdde’s substitution (but for three variables):

z = u+ v + w, (22)

where u, v, w are unknown variables. Hence,

z2 = u2 + v2 + w2 + 2(uv + uw + vw);

z4 = (u2 + v2 + w2)2 + 4(u2 + v2 + w2)(uv + uw + vw) + 4(u2v2 + u2w2 + v2w2)

+ 8uvw(u+ v + w).

Eliminating the expression uv + uw + vw from the above two equalities and using (22), Euler
obtained

z4 − 2(u2 + v2 + w2)z2 − 8uvwz + (u2 + v2 + w2)2 − 4(u2v2 + u2w2 + v2w2) = 0.

Comparing the last equation with (2) Euler received:

u2 + v2 + w2 = −p

2
; uvw = −q

8
; u2v2 + u2w2 + v2w2 =

p2 − 4r

16
.

Hence,

u2 + v2 + w2 = −p

2
;

u2v2 + u2w2 + v2w2 =
p2 − 4r

16
;

u2v2w2 =
q2

64
.

Obviously, the above three equalities are Vieta’s formulae for the cubic (resolvent) equation

t3 +
p

2
t2 +

p2 − 4r

16
t− q2

64
= 0

with roots: t1 = u2, t2 = v2; t3 = w2.
Thus, using (22), Euler finally obtained that the roots of (2) are given by

z =
√
t1 +

√
t2 +

√
t3,

where
√
t1,

√
t2,

√
t3 are chosen so that

√
t1
√
t2
√
t3 = −q

8
.
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