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Abstract: In this article we focus on the solutions of a congruence equation: “
(
2n
n

)
≡ 2n mod n”.

Using the main result of this article and the SageMath software, we improve largely the number
of known solutions. Furthermore, we prove that some famous numbers like even perfect numbers
and Wieferich primes are connected to solutions of this equation.
Keywords: Perfect numbers, Wieferich primes, Binomial coefficient, Algorithmic number theory,
Wolstenholme converse problem.
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1 Introduction

The search for properties that characterize prime numbers is intense, given their fundamental
importance.

A classical theorem in number theory is the Wolstenholme’s Theorem.
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(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



Theorem 1.1 (Wolstenholme). Let p > 3 be a prime number, then p3 |
(
2p
p

)
− 2.

A natural question is the reciprocal conclusion of the Theorem 1.1.

Conjecture 1. If n > 3 and n3 |
(
2n−1
n−1

)
− 1 then n is a prime number.

The Conjecture 1 is known as Wolstenholme’s converse problem which if true will characterize
the prime numbers. This conjecture was proposed by J. P. Jones and remains open. See [8, p. 23]
and [4, p. 84]. In [5], McIntosh verified that this holds for all n < 109.

We are interested in problems related to Conjecture 1. Using the Theorem 1.1 and Fermat’s
Little Theorem we arrive at the congruence equation:

(
2p
p

)
≡ 2p mod p, which is valid for primes.

We can ask for solutions to the same congruence equation in the case of composite integers. That
is, which are the composite integers n that satisfy the following equation?(

2n

n

)
≡ 2n mod n.

In [7] sequence id:A084699 shows that the known solutions of this equation are

12, 30, 56, 424, 992, 16256, 58288, 119984, 356992, 1194649,

9973504, 12327121, 13141696, 22891184, 67100672, 233850649.

In the next sections, we make use of Theorem 2.1 and computational effort to find some new
solutions and we were able to relate the set of solutions with some famous numbers such as
Mersenne primes, even perfect numbers, and Wieferich primes.

2 Solutions and perfect numbers

The relation of the Equation (1) and the very famous class of numbers as even perfect numbers,
Mersenne primes, and Wieferich primes, appears to us in a very interesting way. Our initial aim
with this article was to obtain new values to the sequence id:A084699 (see [7]). For this, we
use the result proved in this article, Theorem 2.1. In particular, item b) enabled a more efficient
implementation than the direct test on Equation (1).

In this article, we show an algorithm implemented in SageMath, in order to generate solutions
to this equation. The algorithm is based on the following theorem:

Theorem 2.1. Let n = 2kp, where p is an odd prime and k ∈ N, then n is solution of the equation(
2n

n

)
≡ 2n mod n (1)

if and only if p satisfies the following conditions:

a) p divides
(
2k+1

2k

)
− 22

k;

b) p has at least k digits 1’s in its binary expansion.

706



Proof. Since gcd(2k, p) = 1, the Equation (1) is equivalent to the system:(
2n

n

)
≡ 2n mod p, (2)(

2n

n

)
≡ 2n mod 2k. (3)

Using the left-hand side of Equation (2), by Babbage’s Theorem (see page 68, Exercise 2.5.10
of [3]), we have (

2n

n

)
≡

(
2 · 2kp
2kp

)
≡

(
2k+1

2k

)
mod p.

Using the right-hand side of Equation (2), by Fermat’s Little Theorem,

2n ≡
(
22

k
)p

≡ 22
k

mod p.

Consequently, the Equation (2) is equivalent to(
2k+1

2k

)
≡ 22

k

mod p,

which is equivalent to item a). Now, using the right-hand side of Equation (3), since n = 2kp,
it is clear that 2n ≡ 0 mod 2k. Let vp(n) the p-adic valuation of n. Since v2

((
2n
n

))
= v2

((
2p
p

))
,

by Kummer’s Theorem (see [3], p. 99, Theorem 3.7), v2
((

2n
n

))
is the number of 1’s in binary

expansion of p. Then the Equation (3) is satisfied if and only if item b) is satisfied, i.e., p has at
least k digits 1’s in binary expansion.

In addition to the solutions available at [7] (sequence id:A084699), using Theorem 2.1 and
some implementation on SageMath, we discovered two more numbers:

217 × 131071 = 17179738112 and 219 × 524287 = 274877382656.

The algorithm code follows:

Algorithm 2.1.
1 def algorithm_theo2(start, end):

2 '''spbin is the sum of the digits of p in base 2'''

3 p = start

4 while (p<=end):

5 p = next_prime(p)

6 spbin = sum(p.digits(base=2))

7 for k in range(1,spbin+1):

8 if (binomial(2ˆ(k+1),2ˆ(k))-2ˆ(2ˆk)).mod(p)==0:

9 print('2ˆ%d x %d = %d' %(k, p, (2ˆk)*p))

10 algorithm_theo2(2, 10ˆ6)

The Algorithm 2.1 searches for primes p such that(
2k+1

2k

)
− 22

k ≡ 0 mod p,

in which k varies from 1 to the sum of the digits of p in base 2. In all computational tests, we used
a PC with a Core i5 1135G7 processor and this routine took 55 seconds to compute.
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Factoring the solutions found, we verify that the Mersenne primes are related to a solution in
the way of the next theorem.

Theorem 2.2. If m is an even perfect number, then n = 2m satisfies the Equation (1).

Proof. If m is an even perfect number, then m = 2p−1 · q with p and q = 2p − 1 prime numbers.
Like the proof of Theorem 2.1, Equation (1) is equivalent to the system(

2p+1

2p

)
≡ 22

p

mod q, (4)(
2q

q

)
≡ 2q mod 2p. (5)

Now, we consider two cases.
Case 1: If p = 2, the congruence is immediate.
Case 2: If p > 2, the q-adic expansion of 2p = 2p − 1 + 1 = q + 1 and 2p+1 = 2q + 2 by Lucas’s
Theorem (see [1], page 95) the left-hand side of Equation (4)(

2p+1

2p

)
≡

(
2q + 2

q + 1

)
≡

(
2

1

)
·
(
2

1

)
≡ 4 mod q.

Now look to the right-hand side and applying Fermat’s Little Theorem

22
p

= 2 · 22p−1 = 2 · 2q ≡ 4 mod q

and this verifies the Equation (4).
In Equation (5), applying Kummer’s Theorem for the left-hand side we have v2

((
2q
q

))
= p,

then 2p |
(
2q
q

)
. For the right-hand side, p < q ⇒ 2p | 2q. Hence 2p divides both sides of the

Equation (5).

2.1 Using Pollard’s Rho algorithm for prime factorization

Pollard’s Rho (see [2]) algorithm for prime factorization is particularly fast for a large composite
number with small prime factors. Algorithm 2.2 uses Pollard’s Rho algorithm to search for some
prime factors of

(
2k+1

2k

)
− 22

k and proceeds like Algorithm 2.1 to verify the second condition of
Theorem 2.1. Using Algorithm 2.2, we found 8 previously unknown solutions to Equation (1).

Algorithm 2.2.
1 def algorithm_theo2_pollard_rho(start, end, pmax):

2 '''spbin is the sum of the digits of p in base 2'''

3 k = start

4 while (k<=end):

5 rk = (binomial(2ˆ(k+1),2ˆ(k))-2ˆ(2ˆk))

6 prime_list=partial_factoring(rk, pmax)

7 for p in prime_list:

8 if rk%p ==0:

9 spbin = sum(ZZ(p).digits(base=2))

10 if spbin >= k:

11 print('2ˆ%d x %d = %d' %(k, p, (2ˆk)*p))

12 k=k+1
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Line 6 of Algorithm 2.2 calls the function partial_factoring that can be found in
Appendix 5. This function uses the method is_primewhich employs a strong pseudo-primality
test. Using the Algorithm 2.2, we found the following previously unknown solutions to Equation (1):

1. 25 × 29558453816897149,

2. 26 × 52917841,

3. 26 × 41811313718690881087,

4. 27 × 326653838319686945891577906833524101155696807553436546433716230841,

5. 28 × 129020293739,

6. 29 × 1466765681,

7. 210 × 412707874957531,

8. 211 × 559115197117.

To find the first 6 solutions we used parameters start=3, end=9 and pmax=10ˆ8. That is,
we used the command: algorithm_theo2_pollard_rho(3, 9, 10ˆ8).

It was necessary to use 2.1 seconds to get the solutions. To find the last two solutions required
3 minutes and 33 seconds. The parameters were: start=10, end=11 and pmax=10ˆ4.

3 A generalization and Wieferich primes

We can observe that it is possible to generalize Theorem 2.1 for any positive integer, in the next
Theorem 3.1. It is noteworthy that using this theorem, we show that the Wieferich prime numbers
are uniquely determined by Equation (1).

Theorem 3.1. Let n = 2kp1 · · · ps, where pj are different prime numbers and nj =
n
pj

, then n is
solution of the equation (

2n

n

)
≡ 2n mod n (6)

if and only if the following conditions are satisfied:

a) pj divides
(
2nj

nj

)
− 2nj ;

b) p1 · · · ps has at least k digits 1’s in its binary expansion.

Proof. Is the same as in Theorem 2.1 applied to this more general framework.

Definition 3.1. A Wieferich prime is a prime number p such that p2 divides 2p−1 − 1.

The Wieferich primes were defined in 1909 by Arthur Wieferich in his studies of Fermat’s Last
Theorem. There is a lot of connection with this class of primes and important topics in number
theory like ABC conjecture, pseudoprimes, Mersenne primes, and others. Until today, in March
of 2023, there are only two known Wieferich primes, 1093 and 3511.

Theorem 3.2. Let n = p2 with p a prime number. We have that p is a Wieferich prime if and only
if n is a solution of Equation (1).
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Proof. Supposing that p is a Wieferich prime we are going to prove that n is a solution of Equation
(1), that is, (

2p2

p2

)
≡ 2p

2

mod p2. (7)

Using Lucas’s Theorem we have that left-hand side of Equation (7) is(
2p2

p2

)
≡

(
2

1

)
≡ 2 mod p2.

In the right-hand side of (7) note that 2p2 = 2p(p−1) · 2p, by Euler’s Theorem 2p(p−1) ≡ 1 mod p2

then
2p

2 ≡ 2p(p−1) · 2p ≡ 2p ≡ 2p − 2 + 2 ≡ 2 · (2p−1 − 1) + 2 mod p2.

Now apply the hypothesis of p being a Wieferich prime then

2 · (2p−1 − 1) + 2 ≡ 2 mod p2.

Thus, we show that Equation (7) is valid, since both sides are congruent to 2 modulo p2.
For the converse in the same lines we have that 2p ≡ 2 mod p2 simplifying by 2 we obtain

2p−1 ≡ 1 mod p2 which is the definition of a Wieferich prime.

One natural question arose here: How many of the known solutions of Equation (1) are
explained by the theorems of this article? In Table 1 we can see that there is only one previously
known solution (n = 233850649) that cannot be explained by the theorems of this article. All the
new solutions found in this article are of the form 2kp, where p is a prime number. Hence they
are explained by Theorem 2.1.

Solution Solution
factorization

k Ones in bin. exp.
of p1· · ·ps

Theorem

12 22 · 3 2 2 Theorem 2.1
30 2 · 3 · 5 1 4 Theorem 3.1
56 23 · 7 3 3 Theorem 2.1
424 23 · 53 3 4 Theorem 2.1
992 25 · 31 5 5 Theorem 2.1
16256 27 · 127 7 7 Theorem 2.1
58288 24 · 3643 4 8 Theorem 2.1
119984 24 · 7499 4 8 Theorem 2.1
356992 27 · 2789 7 7 Theorem 2.1
1194649 10932 − − Theorem 3.2
9973504 28 · 38959 8 8 Theorem 2.1
12327121 35112 − − Theorem 3.2
13141696 26 · 205339 6 8 Theorem 2.1
22891184 24 · 607 · 2357 4 12 Theorem 3.1
67100672 213 · 8191 13 13 Theorem 2.1
233850649 3919 · 59671 − − ?

Table 1. Prior known solutions of (1) explained by Theorems 2.1 and 3.2.
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4 Conclusion

In this article, we describe algorithms that facilitate the search for solutions to Equation (1), and
with it, we were able to find new solutions. Furthermore we related the set of solutions with
even perfect numbers and Wieferich primes. Much remains to be done, we describe solutions of
the form n = 2kp1p2 · · · pr or n = p2. However, there is a lot to wonder about solutions with
exponents greater than 1.

5 Appendix

In this Appendix we have the functions that are called, directly or indirectly, by Algorithm 2.2.

Algorithm 5.1.
1 def pollard_rho_ref(n):

2 i=1

3 x=randint(0, n-1)

4 y=x

5 k=2

6 while True:

7 i=i+1

8 x=(xˆ2-1)%n

9 d=gcd(y-x, n)

10 if d!= 1 and d!=n:

11 if d.is_prime():

12 return d

13 else:

14 f = list(d.factor())[0][0]

15 return f

16 elif i==k:

17 y=x

18 k=2*k

The Algorithm 5.1 is a SageMath adaptation of the pseudocode of page 976 of [2]. The
differences here are in lines 11 to 15. The original pseudocode prints the value of d, while the
Algorithm 5.1 returns a prime that divides d.

Algorithm 5.2.
1 def partial_factoring(n, max=oo):

2 prime_list=[]

3 while n!=1:

4 if n.is_prime():

5 prime_list.append(n)

6 return prime_list

7 else:

8 p=pollard_rho_ref(n)

9 while n%p==0:

10 n=ZZ(n/p)
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11 prime_list.append(p)

12 if p>=max:

13 return prime_list

The Algorithm 5.2 tries to create a divisor list of n, it has the inputs n and max. This algorithm
stops adding the primes to the list when it finds all the primes of n or when it finds a prime number
greater than the input max. This algorithm executes Algorithm 5.1 to search for primes, divides
n by the prime number found and runs the Algorithm 5.1 again with the new value.
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