
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2023, Volume 29, Number 4, 682–694
DOI: 10.7546/nntdm.2023.29.4.682-694

Almost balancers, almost cobalancers, almost
Lucas-balancers and almost Lucas-cobalancers

Ahmet Tekcan1 and Esra Zeynep Türkmen2

1 Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Türkiye

e-mails: tekcan@uludag.edu.tr
2 Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Türkiye

e-mails: 502211004@ogr.uludag.edu.tr

Received: 24 November 2022 Revised: 9 May 2023
Accepted: 6 November 2023 Online First: 13 November 2023

Abstract: In this work, the general terms of almost balancers, almost cobalancers, almost Lucas-
balancers and almost Lucas-cobalancers of first and second type are determined in terms of
balancing and Lucas-balancing numbers. Later some relations on all almost balancing numbers
and all almost balancers are obtained. Further the general terms of all balancing numbers, Pell
numbers and Pell–Lucas number are determined in terms of almost balancers, almost Lucas-
balancers, almost cobalancers and almost Lucas-cobalancers of first and second type.
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1 Introduction

Behera and Panda ([2]) defined that a positive integer n is called a balancing number if the
Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.1)

holds for some positive integer r which is called balancer corresponding to n.

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



Panda and Ray ([12]) defined that a positive integer n is called a cobalancing number if the
Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.2)

holds for some positive integer r which is called cobalancer corresponding to n.
Let Bn denote the n-th balancing number and let bn denote the n-th cobalancing number.

Then Bn is a balancing number iff 8B2
n + 1 is a perfect square and bn is a cobalancing number

iff 8b2n + 8bn + 1 is a perfect square. Thus Cn =
√

8B2
n + 1 and cn =

√
8b2n + 8bn + 1 are

integers which are called the n-th Lucas-balancing number and n-th Lucas-cobalancing number,
respectively. (Here one can note that Lucas-balancers and Lucas-cobalancers are not defined in
the literature before. But anyways, one can see that if Rn is the n-th balancer, then 8R2

n+8Rn+1

is a perfect square and if rn is the n-th cobalancer, then 8r2n + 1 is a perfect square. Thus
CRn =

√
8R2

n + 8Rn + 1 and crn =
√

8r2n + 1 are integers which may be called n-th Lucas-
balancer and the n-th Lucas-cobalancer, respectively). (see also [4, 9, 11, 14]).

Balancing numbers and their generalizations have been investigated by several authors from
many aspects (see [5, 6, 7, 8, 15, 16, 17, 20, 21]). Recently, almost balancing numbers defined
by Panda and Panda in [13]. A natural number n is called an almost balancing number if the
Diophantine equation

|[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− [1 + 2 + · · ·+ (n− 1)]| = 1 (1.3)

holds for some positive integer r which is called the almost balancer. In [10], Panda defined that
a positive integer n is called an almost cobalancing number if the Diophantine equation

|[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− (1 + 2 + · · ·+ n)| = 1 (1.4)

holds for some positive integer r which is called an almost cobalancer (see also [18, 19, 23]).

2 Almost balancers and almost Lucas-balancers

In this section, we try to determine the general terms of almost balancers and almost Lucas-
balancers of first and second type. From (1.3), we have two cases:

Case 1: If [(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− [1 + 2 + · · ·+ (n− 1)] = 1, then n is called an
almost balancing number of first type and r is called an almost balancer of first type and in this
case

r =
−2n− 1 +

√
8n2 + 9

2
and n =

2r + 1 +
√
8r2 + 8r − 7

2
. (2.1)

Let B∗
n denote the n-th almost balancing number of first type and let R∗

n denote the n-th almost
balancer of first type. Then from (2.1), B∗

n is an almost balancing number of first type iff
8(B∗

n)
2 + 9 is a perfect square and R∗

n is an almost balancer of first type iff 8(R∗
n)

2 + 8R∗
n − 7 is

a perfect square. Thus

C∗
n =

√
8(B∗

n)
2 + 9 and CR∗

n =
√

8(R∗
n)

2 + 8R∗
n − 7 (2.2)

are integers which are called the n-th almost Lucas-balancing number of first type and the n-th
almost Lucas-balancer of first type, respectively.
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Case 2: If [(n+1)+ (n+2)+ · · ·+ (n+ r)]− [1 + 2+ · · ·+ (n− 1)] = −1, then n is called an
almost balancing number of second type and r is called an almost balancer of second type and in
this case

r =
−2n− 1 +

√
8n2 − 7

2
and n =

2r + 1 +
√
8r2 + 8r + 9

2
. (2.3)

Let B∗∗
n denote the n-th almost balancing number of second type and let R∗∗

n denote the n-th
almost balancer of second type. Then from (2.3), B∗∗

n is an almost balancing number of second
type iff 8(B∗∗

n )2 − 7 is a perfect square and R∗∗
n is an almost balancer of second type iff

8(R∗∗
n )2 + 8R∗∗

n + 9 is a perfect square. Thus

C∗∗
n =

√
8(B∗∗

n )2 − 7 and CR∗∗
n =

√
8(R∗∗

n )2 + 8R∗∗
n + 9 (2.4)

are integers which are called the n-th almost Lucas-balancing number of second type and the
n-th almost Lucas-balancer of second type, respectively. (Just as Lucas-balancers or almost
Lucas-balancers have not been defined before, we have defined almost Lucas-balancer of first
and second type for the first time here, as we defined balcobalancing numbers in [22] for the first
time before).

From (2.2), we note that R∗
n is an almost balancer of first type iff 8(R∗

n)
2+8R∗

n−7 is a perfect
square. So we set

8(R∗
n)

2 + 8R∗
n − 7 = y2

for some integer y ≥ 1. Then
2(2R∗

n + 1)2 − 9 = y2,

and taking x = 2R∗
n + 1, we get the Pell equation (see [1])

2x2 − y2 = 9. (2.5)

Similarly from (2.4), we note that R∗∗
n is an almost balancer of second type iff 8(R∗∗

n )2+8R∗∗
n +9

is a perfect square. So we set
8(R∗∗

n )2 + 8R∗∗
n + 9 = y2

for some integer y ≥ 1. Then
2(2R∗∗

n + 1)2 + 7 = y2

and taking x = 2R∗∗
n + 1, we get the Pell equation

2x2 − y2 = −7. (2.6)

Let Ω denote the set of all integer solutions of (2.5) and (2.6). Then

Theorem 2.1. The set of all integer solutions of (2.5) is

Ω = {(−6Bn + 3Cn, 12Bn − 3Cn) : n ≥ 1},

and the set of all integer solutions of (2.6) is

Ω = {(6Bn−1 + Cn−1, 4Bn−1 + 3Cn−1) : n ≥ 1} ∪ {(6Bn − Cn,−4Bn + 3Cn) : n ≥ 1}.
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Proof. For the Pell equation in (2.5), the indefinite form is F = (2, 0,−1) of discriminant ∆ = 8.
So τ8 = 3 + 2

√
2 and the set of representatives is Rep = {[±3 3]} (see [3]). Here [3 − 3]Mn

generates all integer solutions (xn, yn) for n ≥ 1, where M =

[
3 4

2 3

]
. Since the n-th power of

M is Mn =

[
Cn 4Bn

2Bn Cn

]
, we conclude that Ω = {(−6Bn + 3Cn, 12Bn − 3Cn) : n ≥ 1}.

For the second Pell equation in (2.6), the set of representatives is Rep = {[±1 3]}. Here
[1 3]Mn−1 generates all integer solutions (x2n−1, y2n−1) and [−1 3]Mn generates all integer
solutions (x2n, y2n) for n ≥ 1. So

Ω = {(6Bn−1 + Cn−1, 4Bn−1 + 3Cn−1) : n ≥ 1} ∪ {(6Bn − Cn,−4Bn + 3Cn) : n ≥ 1}.

This completes the proof.

From Theorem 2.1, we can give the following theorem.

Theorem 2.2. The general terms of almost balancers and almost Lucas-balancers of first type
are

R∗
n =

−6Bn + 3Cn − 1

2
, CR∗

n = 12Bn − 3Cn

for n ≥ 1, and of second type are

R∗∗
2n−1 =

6Bn−1 − Cn−1 − 1

2
, CR∗∗

2n−1 = −4Bn−1 + 3Cn−1

R∗∗
2n =

6Bn−1 + Cn−1 − 1

2
, CR∗∗

2n = 4Bn−1 + 3Cn−1

for n ≥ 1.

Proof. We proved in Theorem 2.1 that the set of all integer solutions of (2.5) is

Ω = {(−6Bn + 3Cn, 12Bn − 3Cn) : n ≥ 1}.

Since x = 2R∗
n + 1, we get

R∗
n =

−6Bn + 3Cn − 1

2
.

Thus from (2.2), we deduce that

CR∗
n =

√
8(R∗

n)
2 + 8R∗

n − 7

=

√
8

(
−6Bn + 3Cn − 1

2

)2

+ 8

(
−6Bn + 3Cn − 1

2

)
− 7

=
√

9(C2
n − 1)− 72BnCn + 18(8B2

n + 1)− 9

=
√

144B2
n − 72BnCn + 9C2

n

= 12Bn − 3Cn.

The others can be proved similarly.
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3 Almost cobalancers and almost Lucas-cobalancers

In this section, we try to determine the general terms of almost cobalancers and almost Lucas-
cobalancers of first and second type. From (1.4), we have two cases:

Case 1: If [(n+1)+ (n+2)+ · · ·+ (n+ r)]− (1 + 2+ · · ·+ n) = 1, then n is called an almost
cobalancing number of first type and r is called an almost cobalancer of first type and in this case

r =
−2n− 1 +

√
8n2 + 8n+ 9

2
and n =

2r − 1 +
√
8r2 − 7

2
. (3.1)

Let b∗n denote the n-th almost cobalancing number of first type and let r∗n denote the n-th almost
cobalancer of first type. Then from (3.1), b∗n is an almost cobalancing number of first type iff
8(b∗n)

2 + 8b∗n + 9 is a perfect square and r∗n is an almost cobalancer of first type iff 8(r∗n)
2 − 7 is a

perfect square. Thus

c∗n =
√

8(b∗n)
2 + 8b∗n + 9 and cr∗n =

√
8(r∗n)

2 − 7 (3.2)

are integers which are called the n-th almost Lucas-cobalancing number of first type and the n-th
almost Lucas-cobalancer of first type, respectively.

Case 2: If [(n + 1) + (n + 2) + · · · + (n + r)] − (1 + 2 + · · · + n) = −1, then n is called an
almost cobalancing number of second type and r is called an almost cobalancer of second type
and in this case

r =
−2n− 1 +

√
8n2 + 8n− 7

2
and n =

2r − 1 +
√
8r2 + 9

2
. (3.3)

Let b∗∗n denote the n-th almost cobalancing number of second type and let r∗∗n denote the n-th
almost cobalancer of second type. Then from (3.3), b∗∗n is an almost cobalancing number of
second type iff 8(b∗∗n )2 + 8b∗∗n − 7 is a perfect square and r∗∗n is an almost cobalancer of second
type iff 8(r∗∗n )2 + 9 is a perfect square. Thus

c∗∗n =
√

8(b∗∗n )2 + 8b∗∗n − 7 and cr∗∗n =
√

8(r∗∗n )2 + 9 (3.4)

are integers which are called the n-th almost Lucas-cobalancing number of second type and the
n-th almost Lucas-cobalancer of second type, respectively. (Just as Lucas-cobalancers or almost
Lucas-cobalancers have not been defined before, we have defined almost Lucas-cobalancer of
first and second type for the first time here).

From (3.2), we note that r∗n is an almost cobalancer of first type iff 8(r∗n)
2 − 7 is a perfect

square. So we set
8(r∗n)

2 − 7 = y2

for some integer y ≥ 1. Taking x = r∗n, we get the Pell equation

8x2 − y2 = 7. (3.5)

Similarly from (3.4), we note that r∗∗n is an almost cobalancer of second type iff 8(r∗∗n )2 + 9 is a
perfect square. So we set

8(r∗∗n )2 + 9 = y2

for some integer y ≥ 1. Taking x = r∗∗n , we get the Pell equation

8x2 − y2 = −9. (3.6)
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For the set of all integer solutions of (3.5) and (3.6), we can give the following theorem.

Theorem 3.1. The set of all integer solutions of (3.5) is

Ω = {(Bn−1 + Cn−1, 8Bn−1 + Cn−1) : n ≥ 1} ∪ {(−Bn + Cn, 8Bn − Cn) : n ≥ 1},

and the set of all integer solutions of (3.6) is Ω = {(3Bn, 3Cn) : n ≥ 1}.

Proof. For the Pell equation in (3.5), the indefinite form is F = (8, 0,−1) of discriminant
∆ = 32. So τ32 = 3 +

√
8 and the set of representatives is Rep = {[±1 1]}. Here

[1 1]Mn−1 generates all integer solutions (x2n−1, y2n−1) and [1 − 1]Mn generates all integer

solutions (x2n, y2n) for n ≥ 1, where M =

[
3 8

1 3

]
. Since the n-th power of M is Mn =[

Cn 8Bn

Bn Cn

]
for n ≥ 1, we get

Ω = {(Bn−1 + Cn−1, 8Bn−1 + Cn−1) : n ≥ 1} ∪ {(−Bn + Cn, 8Bn − Cn) : n ≥ 1}.

For the second Pell equation in (3.6), the set of representatives is Rep = {[0 3]} and [0 3]Mn

generates all integer solutions (xn, yn) for n ≥ 1. Thus Ω = {(3Bn, 3Cn) : n ≥ 1}.

From Theorem 3.1, we can give the following theorem.

Theorem 3.2. The general terms of almost cobalancers and almost Lucas-cobalancers of first
type are

r∗2n−1 = Bn−1 + Cn−1, cr
∗
2n−1 = 8Bn−1 + Cn−1, r

∗
2n = −Bn + Cn, cr

∗
2n = 8Bn − Cn

for n ≥ 1, and of second type are

r∗∗n = 3Bn−1, cr
∗∗
n = 3Cn−1

for n ≥ 1.

Proof. We proved in Theorem 3.1 that the set of all integer solutions of (3.5) is

Ω = {(Bn−1 + Cn−1, 8Bn−1 + Cn−1) : n ≥ 1} ∪ {(−Bn + Cn, 8Bn − Cn) : n ≥ 1}.

Since x = r∗n, we get
r∗2n−1 = Bn−1 + Cn−1.

Thus from (3.2), we observe that

cr∗2n−1 =
√
8(r∗2n−1)

2 − 7

=
√

8(Bn−1 + Cn−1)2 − 7

=
√
C2

n−1 − 1 + 16Bn−1Cn−1 + 8(8B2
n−1 + 1)− 7

=
√
64B2

n−1 + 16Bn−1Cn−1 + C2
n−1

= 8Bn−1 + Cn−1.

The others can be proved similarly.
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4 Balancing numbers and almost balancers,
almost cobalancers, almost Lucas-balancers,
almost Lucas-cobalancers

We can give the general terms of balancing, cobalancing, Lucas-balancing and Lucas-cobalancing
numbers in terms of almost balancers, almost cobalancers, almost Lucas-balancers and almost
Lucas-cobalancers of first and second type as follows.

Theorem 4.1. For the general terms of balancing, cobalancing, Lucas-balancing and Lucas-
cobalancing numbers, we have:

1. They can be given in terms of almost balancers and almost Lucas-balancers of first type to
be

Bn =
2R∗

n + CR∗
n + 1

6
, bn =

R∗
n − 1

3
, Cn =

4R∗
n + CR∗

n + 2

3

for n ≥ 1 and

cn =
2(R∗

n +R∗
n−1) + CR∗

n + CR∗
n−1 + 2

6

for n ≥ 2.

2. They can be given in terms of almost balancers and almost Lucas-balancers of second type
to be

Bn =


6R∗∗

2n+1+CR∗∗
2n+1+3

14

6R∗∗
2n+2−CR∗∗

2n+2+3

14

bn =


−R∗∗

2n+1+CR∗∗
2n+1−4

7

−5R∗∗
2n+2+2CR∗∗

2n+2−6

7

Cn =


4R∗∗

2n+1+3CR∗∗
2n+1+2

7

−4R∗∗
2n+2+3CR∗∗

2n+2−2

7

cn =


6(R∗∗

2n+1+R∗∗
2n−1)+CR∗∗

2n+1+CR∗∗
2n−1+6

14

6(R∗∗
2n+2+R∗∗

2n)−(CR∗∗
2n+2+CR∗∗

2n)+6

14

for n ≥ 1.

3. They can be given in terms of almost cobalancers and almost Lucas-cobalancers of first
type to be

Bn =


r∗2n+cr∗2n

7

−r∗2n+1+cr∗2n+1

7

bn =


6r∗2n−cr∗2n−7

14

10r∗2n+1−3cr∗2n+1−7

14

Cn =


8r∗2n+cr∗2n

7

8r∗2n+1−cr∗2n+1

7

for n ≥ 1 and

cn =


r∗2n+r∗2n−2+cr∗2n+cr∗2n−2

7
, n ≥ 2

−r∗2n+1−r∗2n−1+cr∗2n+1+cr∗2n−1

7
, n ≥ 1.
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4. They can be given in terms of almost cobalancers and almost Lucas-cobalancers of second
type to be

Bn =
r∗∗n+1

3
, bn =

−2r∗∗n+1 + cr∗∗n+1 − 3

6
, Cn =

cr∗∗n+1

3
and cn =

r∗∗n+1 + r∗∗n
3

for n ≥ 1.

Proof. (1) From Theorem 2.2, we notice that R∗
n = −6Bn+3Cn−1

2
and CR∗

n = 12Bn − 3Cn. Thus
from the system of equations −6Bn + 3Cn = 2R∗

n + 1 and 12Bn − 3Cn = CR∗
n, we get

Bn =
2R∗

n + CR∗
n + 1

6
and Cn =

4R∗
n + CR∗

n + 2

3
.

Since bn = −2Bn+Cn−1
2

, we easily get

bn =
−2Bn + Cn − 1

2
=

−2(2R
∗
n+CR∗

n+1
6

) + (4R
∗
n+CR∗

n+2
3

)− 1

2
=

R∗
n − 1

3

and since cn = Bn +Bn−1 we conclude that

cn = Bn +Bn−1 =
2(R∗

n +R∗
n−1) + CR∗

n + CR∗
n−1 + 2

6

as we wanted. The others can be proved similarly.

Recall that every balancing number is a cobalancer and every cobalancing number is a balancer,
that is,

Bn = rn+1 and Rn = bn

for n ≥ 1. Similarly we can give the following result.

Theorem 4.2. For the integer sequences mentioned above, we have

B∗
n = r∗∗n+1, b

∗
n = R∗∗

n+2, C
∗
n = cr∗∗n+1, c

∗
n = CR∗∗

n+2

B∗∗
n = r∗n, b

∗∗
n = R∗

n, C
∗∗
n = cr∗n, c

∗∗
n = CR∗

n

for n ≥ 1.

Proof. Since B∗
n = 3Bn and also r∗∗n = 3Bn−1 by Theorem 3.2, we get B∗

n = r∗∗n+1. Since
b∗2n = 2bn+1 − bn, we easily get

b∗2n = 2bn+1 − bn

= 2(
α2n+1 − β2n+1

4
√
2

− 1

2
)− (

α2n−1 − β2n−1

4
√
2

− 1

2
)

= α2n(
6

8
√
2
+

1

4
) + β2n(

−6

8
√
2
+

1

4
)− 1

2

=
6(α

2n−β2n

4
√
2

) + α2n+β2n

2
− 1

2

=
6Bn + Cn − 1

2

= R∗∗
2n+2

by Theorem 2.2. Similarly it can be shown that b∗2n−1 = 4bn − bn−1 + 1 = 6Bn−Cn−1
2

= R∗∗
2n+1.

Thus b∗n = R∗∗
n+2 for every n ≥ 1. The other cases can be proved similarly.
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Further we can give the general terms of almost balancers, almost Lucas-balancers, almost
cobalancers and almost Lucas-cobalancers of first type in terms of almost balancers and almost
Lucas-balancers of second type as follows:

Theorem 4.3. The general terms of almost balancers, almost Lucas-balancers, almost cobalancers
and almost Lucas-cobalancers of first type are

R∗
n =


−3R∗∗

2n+1+3CR∗∗
2n+1−5

7

−15R∗∗
2n+2+6CR∗∗

2n+2−11

7

CR∗
n =


48R∗∗

2n+1−6CR∗∗
2n+1+24

14

48R∗∗
2n+2−15CR∗∗

2n+2+24

7

r∗2n−1 =


14R∗∗

2n−1+7CR∗∗
2n−1+7

14

−2R∗∗
2n+5CR∗∗

2n−1

14

r∗2n =


2R∗∗

2n+1+5CR∗∗
2n+1+1

14

−14R∗∗
2n+2+7CR∗∗

2n+2−7

14

cr∗2n−1 =


28R∗∗

2n−1+7CR∗∗
2n−1+14

7

20R∗∗
2n−CR∗∗

2n+10

7

cr∗2n =


20R∗∗

2n+1+CR∗∗
2n+1+10

7

28R∗∗
2n+2−7CR∗∗

2n+2+14

7

for n ≥ 1.

Proof. Note that Bn =
6R∗∗

2n+1+CR∗∗
2n+1+3

14
and Cn =

4R∗∗
2n+1+3CR∗∗

2n+1+2

7
by (2) of Theorem 4.1.

Thus from Theorem 2.2, we get

R∗
n =

−6Bn + 3Cn − 1

2

=
−6(

6R∗∗
2n+1+CR∗∗

2n+1+3

14
) + 3(

4R∗∗
2n+1+3CR∗∗

2n+1+2

7
)− 1

2

=
−3R∗∗

2n+1 + 3CR∗∗
2n+1 − 5

7

as we claimed. The other cases can be proved similarly.

Conversely, we can give the general terms of almost balancers, almost Lucas-balancers, almost
cobalancers and almost Lucas-cobalancers of second type in terms of almost cobalancers and
almost Lucas-cobalancers of first type as follows:

Theorem 4.4. The general terms of almost balancers, almost Lucas-balancers, almost cobalancers
and almost Lucas-cobalancers of second type are

R∗∗
2n−1 =


−2r∗2n−2+5cr∗2n−2−7

14
, n ≥ 2

−14r∗2n−1+7cr∗2n−1−7

14
, n ≥ 1

R∗∗
2n =


14r∗2n−2+7cr∗2n−2−7

14
, n ≥ 2

2r∗2n−1+5cr∗2n−1−7

14
, n ≥ 1

CR∗∗
2n−1 =


20r∗2n−2−cr∗2n−2

7
, n ≥ 2

28r∗2n−1−7cr∗2n−1

7
, n ≥ 1

CR∗∗
2n =


28r∗2n−2+7cr∗2n−2

7
, n ≥ 2

20r∗2n−1+cr∗2n−1

7
, n ≥ 1

r∗∗n =


3r∗2n−2+3cr∗2n−2

7
, n ≥ 2

−3r∗2n−1+3cr∗2n−1

7
, n ≥ 1

cr∗∗n =


24r∗2n−2+3cr∗2n−2

7
, n ≥ 2

24r∗2n−1−3cr∗2n−1

7
, n ≥ 1.

Proof. It can be proved as in the same way that Theorem 4.3 was proved.
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Thus from Theorems 4.3 and 4.4, we construct a one to one correspondece between almost
balancers, almost Lucas-balancers, almost cobalancers, almost Lucas-cobalancers of first type
and of second type.

5 Pell numbers, Pell–Lucas numbers and almost balancers,
almost cobalancers, almost Lucas-balancers,
almost Lucas-cobalancers

Let α = 1+
√
2 and β = 1−

√
2 be the roots of the characteristic equation for Pell and Pell–Lucas

numbers which are the numbers defined by P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 and Q0 = Q1 =

2, Qn = 2Qn−1 + Qn−2 for n ≥ 2. Ray ([14]) derived some nice results on balancing numbers
and Pell numbers his Ph.D. thesis. He proved that the general terms of even and odd ordered Pell
numbers can be given in terms of balancing and cobalancing numbers, namely, P2n = 2Bn and
P2n−1 = 2bn + 1. Similarly we can give the following theorem.

Theorem 5.1. The general terms of even and odd ordered Pell numbers can be given in terms of
almost balancers, almost cabalancers, almost Lucas-balancers and almost Lucas-cobalancers of
first type to be

P2n−1 =


2R∗

n+1
3

10r∗2n+1−3cr∗2n+1

7

P2n =


2R∗

n+CR∗
n+1

3

−2r∗2n+1+2cr∗2n+1

7

for n ≥ 1, or of second type to be

P2n−1 =

 R∗∗
2n+1 −R∗∗

2n

−2r∗∗n+1+cr∗∗n+1

3

P2n =


6R∗∗

2n+1+CR∗∗
2n+1+3

7

2r∗∗n+1

3

for n ≥ 1.

Proof. Since Pn = αn−βn

2
√
2

, we deduce that

P2n−1 =
α2n−1 − β2n−1

2
√
2

=
α2n(−1 +

√
2) + β2n(1 +

√
2)

2
√
2

= α2n(
−1

2
√
2
+

1

2
) + β2n(

1

2
√
2
+

1

2
)

= −2(
α2n − β2n

4
√
2

) +
α2n + β2n

2

=
2(−6Bn+3Cn−1

2
) + 1

3

=
2R∗

n + 1

3

by Theorem 2.2. The other cases can be proved similarly.
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Also the general terms of even and odd ordered Pell–Lucas numbers can be given in terms of
balancing and cobalancing numbers, namely, Q2n = 4Bn +4bn +2 and Q2n−1 = 4Bn − 4bn − 2.
Similarly we can give the following theorem.

Theorem 5.2. The general terms of even and odd ordered Pell–Lucas numbers can be given
in terms of almost balancers, almost cabalancers, almost Lucas-balancers and almost Lucas-
cobalancers of first type to be

Q2n−1 =


2(R∗

n+R∗
n−1+1)+CR∗

n+CR∗
n−1

3

−2(r∗2n+1+r∗2n−1−cr∗2n+1−cr∗2n−1)

7

Q2n =


2(R∗

n+1+R∗
n+1)

3

10(r∗2n+3+r∗2n+1)−3(cr∗2n+3+cr∗2n+1)

7

for n ≥ 1, 2 or of second type to be

Q2n−1 =


6(R∗∗

2n+1+R∗∗
2n−1+1)+CR∗∗

2n+1+CR∗∗
2n−1

7

2(r∗∗n+1+r∗∗n )

3

Q2n =

 R∗∗
2n+3 −R∗∗

2n+2 +R∗∗
2n+1 −R∗∗

2n

−2(r∗∗n+2+r∗∗n+1)+cr∗∗n+2+cr∗∗n+1

3

for n ≥ 1.

Proof. It can be proved as in the same way that Theorem 5.1 was proved.

6 Sums of almost balancers, almost Lucas-balancers,
almost cobalancers and almost Lucas-cobalancers

Theorem 6.1. The sums of first n-terms of almost balancers and almost Lucas-balancers of first
and second type are

n∑
i=1

R∗
i =

3Bn − n

2
, n ≥ 1

n∑
i=1

CR∗
i =

9Bn − 3Bn−1 − 3

2
, n ≥ 1

n∑
i=1

R∗∗
i =


15Bn−2

2
−3Bn−4

2
−n−3

2
, n ≥ 2 even

34Bn−3
2

−6Bn−5
2

−n−3

2
, n ≥ 1 odd

n∑
i=1

CR∗∗
i =

{
21Bn−2

2
− 3Bn−4

2
+ 3, n ≥ 2 even

48Bn−3
2

− 8Bn−5
2

+ 3, n ≥ 1 odd

and the sums of first n-terms of almost cobalancers and almost Lucas-cobalancers of first and
second type are

n∑
i=1

r∗i =

{
18Bn−2

2
− 3Bn−4

2
, n ≥ 2 even

7Bn−1
2

−Bn−3
2

, n ≥ 1 odd
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n∑
i=1

cr∗i =

{
51Bn−2

2
− 9Bn−4

2
− 3, n ≥ 2 even

20Bn−1
2

− 4Bn−3
2

− 3, n ≥ 1 odd
n∑

i=1

r∗∗i =
15Bn−1 − 3Bn−2 − 3

4
, n ≥ 1

n∑
i=1

cr∗∗i =
21Bn−1 − 3Bn−2 + 3

2
, n ≥ 1.

Proof. Recall that B1 + B2 + · · · + Bn = 5Bn−Bn−1−1
4

and C1 + C2 + · · · + Cn = 7Bn−Bn−1−1
2

.
Thus from Theorem 2.2, we get

n∑
i=1

R∗
i = R∗

1 +R∗
2 + · · ·+R∗

n−1 +R∗
n

=
−6B1 + 3C1 − 1

2
+

−6B2 + 3C2 − 1

2
+ · · ·

+
−6Bn−1 + 3Cn−1 − 1

2
+

−6Bn + 3Cn − 1

2

=
−6(B1 +B2 + · · ·+Bn) + 3(C1 + C2 + · · ·+ Cn)

2
− n

2

=
−6(5Bn−Bn−1−1

4
) + 3(7Bn−Bn−1−1

2
)

2
− n

2

=
3Bn − n

2
.

The others can be proved similarly.
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