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1 Introduction

Combinatorial identities comprise a vast area of number theory. A comprehensive summary
of methods and techniques for finding and proving identities was first given by Riordan in [6].
Fibonacci numbers were studied in ancient and medieval India circa A.D. 600, [7]. Fibonacci and
Lucas numbers [1–5] are also closely related to binomial coefficients. A study of Pascal’s triangle
reveals many patterns that are related to such numbers, including the identity
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Fn+1 =

⌊n/2⌋∑
i=0

(
n− i

i

)
.

In [1, 4] results were given for Fibonacci numbers in terms of binomial coefficients. In [2]
identities with Fibonacci and Lucas numbers in terms of sums of binomial coefficients were also
given.

The motivation for the present work begins with the linear recurrence relation for the Fibonacci
numbers

Fn+2 − Fn+1 − Fn = 0, n = 0, 1, 2, ..., (1.1)

with F0 = 0, F1 = 1. Binet’s formula gives

Fn = (ϕn − (−1/ϕ)n)/
√
5, (1.2)

where ϕ = (1 +
√
5)/2 is the golden ratio. Similarly, for the Lucas numbers

Ln = ϕn + (−1/ϕ)n, (1.3)

where L0 = 2, L1 = 1.

The approach of the present paper is to add a non-homogeneous term to (1.1). The goal of the
paper is to find combinatorial identities involving the Fibonacci and Lucas numbers.

In the present work we consider the linear non-homogeneous recurrence equation with a
binomial coefficient:

cwn+2 − bwn+1 − wn =

(
k + n+ 2

k

)
, n, k = 0, 1, 2, ..., (1.4)

where b and c are nonzero real numbers. In [3], a solution for (1.4) that depends on k, n

was derived with certain initial conditions. The generating function for (1.4) was also found.
Examples and the theory of generating functions can be found in [8].

Let b = c = 1 in (1.4). The following solution is considered

wn = α1r
n + α2s

n + pk(n) (1.5)

where r, s are the zeros of the characteristic equation, α1, α2 are real constants and pk(n) is the
particular solution. Combinatorial identities are presented in section 2 for the Fibonacci numbers
that are used to compute α1, α2 in (1.5). An expression for pk(n), denoted by pk,n for convenience,
is given in [9]. A solution is formulated which combined with the solution from [3] yields the
following

F2k+n+3 =
n∑

i=0

Fi+1

(
n+ k − i

k

)
+

k∑
i=1

F2i

(
n+ k − i+ 2

n+ 2

)
+

(
n+ k + 2

k

)
. (1.6)

Other identities include

L2k+3 =
k∑

i=1

F2i(3k + 4− 3i) + 3k + 4, (1.7)

and
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F2k+n+3 =
k∑

i=1

F2i[Fn+2k + Fn+3 − iFn+2] + Fn+2k + Fn+3

with a corresponding expression for L2k+n+3.

In Section 2 results are formulated for the Fibonacci numbers. These identities are used, along
with an explicit expression for pk,n, in solving (1.4) with b = c = 1 in section 3. Several lemmas
related to binomial coefficients are derived in Section 3. In Section 4, a theorem is proved by
mathematical induction and several identities for the Fibonacci and Lucas numbers are given.

2 Basic results

In this section we present results that give representation for the odd and even indexed Fibonacci
numbers. Lemma 2.1 and Lemma 2.3 give two different representations for the odd indexed
Fibonacci numbers while Lemma 2.4 gives two representations for the even indexed Fibonacci
numbers. This leads to the fact that such representations are not unique and leaves the door open
for finding other forms.

Lemma 2.1.

F2k+3 =
k∑

i=1

F2i(k + 2− i) + k + 2. (2.1)

Proof. The result is true for k = 0. Assume it is true for k. Then for k + 1 we have
k+1∑
i=1

F2i(k + 3− i) + k + 3 =
k+1∑
i=1

F2i(k + 2− i+ 1) + k + 2 + 1

=
k∑

i=1

F2i(k + 2− i) + k + 2 + F2k+2 +
k+1∑
i=1

F2i + 1

= F2(k+1)+2 +
k+1∑
i=1

F2i + 1 = F2(k+1)+2 + F2(k+1)+1

= F2(k+1)+3.

Lemma 2.2.

1 +
(k + 2)(k − 1)

2
=

k∑
i=1

F2i

[(
k + 2− i

k + 1− i

)
−
(
k + 2− i

k − i

)]
. (2.2)

Proof. The result is true for k = 1. Assume it is true for k. The left hand side simplifies as

1 +
(k + 3)k

2
= 1 +

(k + 2 + 1)k − 1 + 1

2

= 1 +
(k + 2)(k − 1)

2
+

k + 2 + k − 1 + 1

2

= 1 +
(k + 2)(k − 1)

2
+ k + 1

=
k∑

i=1

F2i

[(
k + 2− i

k + 1− i

)
−
(
k + 2− i

k − i

)]
+ k + 1.

(2.3)
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The last result follows from applying the induction assumption on (2.3). Replace now k by
k + 1 on the right hand side of (2.2) to find that

k+1∑
i=1

F2i

[(
k + 3− i

k + 2− i

)
−

(
k + 3− i

k + 1− i

)]
=

k+1∑
i=1

F2i −
k∑

i=1

F2i

(
k + 2− i

k − i

)

= F2(k+1)+1 − 1−
k∑

i=1

F2i

(
k + 2− i

k − i

)
.

(2.4)

The equivalence between (2.3) and (2.4) is shown.

F2(k+1)+1 − 1−
k∑

i=1

F2i

(
k + 2− i

k − i

)
=

k∑
i=1

F2i

[(
k + 2− i

k + 1− i

)
−
(
k + 2− i

k − i

)]
+ k + 1.

Simplifying the last expression yields

F2(k+1)+1 =
k∑

i=1

F2i(k + 2− i) + k + 2 (2.5)

which follows from Lemma 2.1.

Lemma 2.3.

F2k+3 = 1 +

(
k + 2

k

)
+

k∑
i=1

F2i

(
k + 2− i

k − i

)
. (2.6)

Proof. By Lemma 2.1, it suffices to show,
k∑

i=1

F2i(k + 2− i) + k + 2 = 1 +

(
k + 2

k

)
+

k∑
i=1

F2i

(
k + 2− i

k − i

)
. (2.7)

Rearranging terms in (2.7) gives

k∑
i=1

F2i

[(
k + 2− i

k + 1− i

)
−

(
k + 2− i

k − i

)]
= 1 +

(
k + 2

k

)
− (k + 2)

= 1 +
(k + 1)(k + 2)

2
− 2(k + 2)

2

= 1 +
(k + 2)(k − 1)

2
.

Apply Lemma 2.2.

Lemma 2.4.

F2(k+1) =

(
k + 3

k

)
+

k∑
i=1

F2i

[(
k + 3− i

k − i

)
−
(
k + 2− i

k + 1− i

)]
, (2.8)

F2(k+2) = k + 2 +

(
k + 3

k

)
+

k∑
i=1

F2i

(
k + 3− i

k − i

)
. (2.9)
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Proof. The difference between (2.9) and (2.8) yields Lemma 2.1. Hence it suffices to prove (2.8)
by employing the recursive definition

F2(k+2) = F2k+3 + F2(k+1).

Using induction on (2.8): the result is true for k = 1. Assume it is true for k. With k + 1 in place
of k in (2.8) yields (

k + 4

k + 1

)
+

k+1∑
i=1

F2i

[(
k + 4− i

k + 1− i

)
−
(
k + 3− i

k + 2− i

)]
. (2.10)

Applying the induction hypothesis and (2.9) yields

k + 2 +

(
k + 3

k

)
+

k∑
i=1

F2i

(
k + 3− i

k − i

)

=

(
k + 4

k + 1

)
+

k+1∑
i=1

F2i

[(
k + 4− i

k + 1− i

)
−
(
k + 3− i

k + 2− i

)]
.

Simplifying and combining terms gives

k + 2 +

(
k + 3

k

)
−

(
k + 4

k + 1

)
=

k∑
i=1

F2i

[(
k + 4− i

k + 1− i

)
−
(
k + 3− i

k − i

)
−
(
k + 3− i

k + 2− i

)]
− F2(k+1)

or,

k + 2 +
(k + 3)(k + 2) [k + 1− (k + 4)]

6

=
k∑

i=1

F2i

[(
k + 4− i

k + 1− i

)
−
(
k + 3− i

k − i

)
−
(
k + 3− i

k + 2− i

)]
− F2(k+1).

The left-hand side simplifies to −1
2
(k + 2)(k + 1) = −

(
k+2
k

)
. Hence

−
(
k + 2

k

)
=

k∑
i=1

F2i

[(
k + 4− i

k + 1− i

)
−
(
k + 3− i

k − i

)
−

(
k + 3− i

k + 2− i

)]
− F2(k+1) (2.11)

Using the identity (
k + 4− i

k + 1− i

)
=

(
k + 3− i

k + 1− i

)
+

(
k + 3− i

k − i

)
(2.11) can be written as(

k + 2

k

)
=

k∑
i=1

F2i

[(
k + 3− i

k + 2− i

)
−
(
k + 3− i

k + 1− i

)]
+ F2(k+1). (2.12)
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The binomial coefficient difference on the right-hand side of (2.12) can be simplified to

(
k + 3− i

k + 2− i

)
−

(
k + 3− i

k + 1− i

)
=

(
k + 2− i

k + 2− i

)
+

(
k + 2− i

k + 1− i

)
−
(
k + 2− i

k + 1− i

)
−
(
k + 2− i

k − i

)
= 1−

(
k + 2− i

k − i

)
.

Thus, (2.12) becomes (
k + 2

k

)
=

k∑
i=1

F2i

[
1−

(
k + 2− i

k − i

)]
+ F2(k+1)

=
k+1∑
i=1

F2i −
k∑

i=1

F2i

(
k + 2− i

k − i

)

= F2(k+1)+1 −
k∑

i=1

F2i

(
k + 2− i

k − i

)
− 1

or, by Lemma 2.1(
k + 2

k

)
− (k + 1) =

1

2
k(k + 1) =

k∑
i=1

F2i

[(
k + 2− i

k + 1− i

)
−

(
k + 2− i

k − i

)]
(2.13)

which is true by Lemma 2.2.

3 Lemmas and solution

In this section, (1.4) is recast as a non-homogeneous, doubly indexed, second order linear
recurrence relation whose right hand side is a binomial coefficient denoted as bk,n. Denote also
wn := wk,n in (1.4) and (1.5) to show dependence of wn on k. Several properties of bk,n, wk,n are
also proved. Let

bk,n =

(
n+ k + 2

k

)
, n, k ∈ {0} ∪ N (3.1)

Define

wk,n =
n∑

i=0

wk−1,i, n ≥ 0, k ≥ 1, wk,0 = 1,∀k ≥ 0, w0,1 = 2. (3.2)

Consider
w0,n+2 − w0,n+1 − w0,n = b0,n = 1, n ≥ 0. (3.3)

Recurrence relations and identities satisfied by bk,n and wk,n are also given in the results that
follow.

Lemma 3.1. Let bk,n be defined as in (3.1). Then the following hold true.

bk+1,n+1 = bk,n+1 + bk+1,n, (3.4)
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(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
k + n+ 2

k

)
=

(
n+ k + 2 + 1

k + 1

)
= bk+1,n, (3.5)(

n+ 2

0

)
+

(
n+ 3

1

)
+ . . .+

(
n+ k + 2

k

)
=

(
n+ k + 2 + 1

k

)
= bk,n+1. (3.6)

Recurrence relations and properties satisfied by wk,n are given in Lemmas 3.2–3.7.

Lemma 3.2. Let wk,n be defined as in (3.2). Then

wk,1 = k + 2, k ≥ 0. (3.7)

Proof. This follows immediately from (3.1) and (3.2),

wk,1 = wk−1,0 + wk−1,1 = k + 2.

Lemma 3.3.
wk, n+1 = wk,n + wk−1,n+1, n ≥ 0, k ≥ 1. (3.8)

Proof. From (3.2)

wk,n+1 =
n+1∑
i=0

wk−1,i =
n∑

i=0

wk−1,i + wk−1,n+1 = wk,n + wk−1,n+1.

Lemma 3.4.
wk,n = wk, n−1 + wk−1,n, n, k ≥ 1. (3.9)

Proof. This follows from (3.2), and note that

wk+1,n−1 + wk,n =
n−1∑
i=1

wk,i + wk,n = wk+1,n + wk,n − wk,n = wk+1,n.

Lemma 3.5. bk,n is well-defined, that is

wk+1,n+2 − wk+1,n+1 − wk+1,n = bk+1,n. (3.10)

Proof. Consider the following

n+2∑
i=0

wk,i −
n+1∑
i=0

wk,i −
n∑

i=0

wk,i = wk,0 + wk,1 − wk,0 +
n∑

i=0

bk,i. (3.11)

From (3.1), (3.2) and (3.5), (3.11) becomes

wk+1,n+2 − wk+1,n+1 − wk+1,n = bk+1,n. (3.12)

This completes the proof.

A non-homogeneous recurrence relation for wk,n is given in Lemmas 3.6 and 3.7.

Lemma 3.6.
wk,n+3 − wk,n+2 − wk,n+1 = bk,n+1. (3.13)
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Proof. Employing Lemma 3.5 successively yields

wk,n+3 − wk,n+2 − wk,n+1 = wk−1,n+3 − wk−1,n+2 − wk−1,n+1 + bk,n

= wk−2,n+3 − wk−2,n+2 − wk−2,n+1 + bk−1,n + bk,n

= . . . =

= 1 + b1,n + . . .+ bk−1,n + bk,n

= bk,n+1.

Lemma 3.7.
wk+1,n+3 − wk+1,n+2 − wk+1,n+1 = bk+1,n+1. (3.14)

Proof. Add (3.10), (3.13) and apply Lemma 3.4.

Hence
wk,n+2 − wk,n+1 − wk,n = bk,n. (3.15)

For fixed k, (3.15) has the characteristic polynomial given by P (x) = x2 − x− 1 with zeros
ϕ,−1/ϕ where ϕ is the golden ratio. Thus

wk,n = α1

(
1 +
√
5

2

)n

+ α2

(
1−
√
5

2

)n

− pk,n (3.16)

for some polynomial pk,n, the negative sign is taken for convenience. The expression for pk,n is
given in [9]:

pk,n = bk,n +
k∑

i=1

F2ibk−i,n > 0, (3.17)

a polynomial of degree k in n. The technique of undetermined coefficients shows the pattern of
particular solutions pk,n. A property of pk,n is shown in Section 4.

Take n = 0 in (3.16) and employ (3.17) to get

wk,0 = −pk,0 + α1 + α2 = −
(
bk,0 +

k∑
i=1

F2ibk−i,0

)
+ α1 + α2 (3.18)

Also wk,0 = 1. Employing Lemma 1.3, expanding and simplifying (3.18) gives

α1 + α2 = 1 +

(
k + 2

2

)
+ F2

(
k + 2− 1

k − 1

)
+ · · ·+ F2k

(
2

0

)
= F2k+3. (3.19)

Likewise

wk,1 = −
(
bk,1 +

k∑
i=1

F2ibk−i,1

)
+ α1

(
1 +
√
5

2

)
+ α2

(
1−
√
5

2

)
. (3.20)

Or, by using wk,1 = k + 2 and expanding (3.20) we obtain,

α1 + α2

2
+

(
α1 − α2

)√
5

2
= k + 2 +

(
k + 3

k

)
+ F2

(
k + 2

k − 1

)
+ · · ·+ F2k

(
3

0

)
. (3.21)
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Employing Lemma 1.4, (2.9), and (3.19) and the identity 2Fn−Fn−1 = Ln−1, (3.21) simplifies
to

α1 − α2 = −F2k+3 + 2F2(k+2) = L2k+3/
√
5. (3.22)

Solving (3.19), (3.22) for α1, α2 gives,

α1 =
1

2

(
F2k+3 +

L2k+3√
5

)
(3.23)

α2 =
1

2

(
F2k+3 −

L2k+3√
5

)
(3.24)

Employing (3.23), (3.24) in (3.16) yields, for n, k ≥ 0,

wk,n =
1

2

(
F2k+3 +

L2k+3√
5

)(
1 +
√
5

2

)n

+
1

2

(
F2k+3 −

L2k+3√
5

)(
1−
√
5

2

)n

− pk,n (3.25)

In Section 4 identities for the Fibonacci and Lucas numbers and a theorem are given.

4 Theorem and identities

In this section, we formulate and prove the main result that connects wk,n and the Fibonacci
numbers. By definition of Ln = ϕn + (−1/ϕ)n and Fn = 1

√
5(ϕn − (−1/ϕ)n), (3.25) becomes

wk,n =
1

2

(
F2k+3Ln + L2k+3Fn

)
− pk,n = F2k+n+3 − pk,n. (4.1)

The following lemma is required to establish the theorem.

Lemma 4.1.
pk+1,n+1 = pk+1, n + pk,n+1, n, k ≥ 0 (4.2)

Proof. From (3.17)

pk+1, n + pk,n+1 = bk+1,n + bk,n+1 +
k+1∑
i=1

F2ibk+1−i,n +
k∑

i=1

F2ibk−i,n+1.

We have that bk+1,n+1 = bk+1,n + bk,n+1 and bk+1−i,n + bk−i,n+1 = bk+1−i,n+1.

Theorem 4.1. Let wk,n and pk,n be defined as in (3.2) and (3.17) respectively. Then

wk,n + pk,n = F2k+n+3. (4.3)

Proof. The proof, which follows by induction on k, n, is included for completeness.
For n = k = 0

w0,0 + p0,0 = 2 = F3.

Likewise,
w0,1 + p0,1 = 3 = F4 and w1,0 + p1,0 = 5 = F5,
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and

F6 = F2+1+3 = 8 = w1,1 + p1,1 = w0,1 + p0,1 + w1,0 + p1,0 = (w0,1 + w1,0) + (p1,0 + p0,1).

The induction hypothesis is that

wk+1,n + pk+1,n = F2(k+1)+n+3 and wk,n+1 + pk,n+1 = F2k+(n+1)+3.

It is required to show that

wk+1,n+1 + pk+1,n+1 = F2(k+1)+(n+1)+3.

Applying the induction hypothesis gives

wk+1,n + pk+1,n = F2(k+1)+n+3, (4.4)

wk,n+1 + pk,n+1 = F2k+n+3+1. (4.5)

Summing (4.4), (4.5) yields

wk+1,n + pk+1,n + wk,n+1 + pk,n+1 = F2k+n+3+3 = F2(k+1)+(n+1)+3, (4.6)

or, by Lemmas 3.4 and 4.1,

wk+1,n+1 + pk+1,n+1 = F2(k+1)+n+4 = F2(k+1)+(n+1)+3. (4.7)

This completes the proof.

From [4], one obtains

wk,n =
n∑

i=0

Fi+1

(
n+ k − i

k

)
. (4.8)

Combining (4.8) with (4.3), (3.17) gives (1.6).

The following lemmas are give representations for the Fibonacci and Lucas numbers.

Lemma 4.2.

F2k+n+3 =
n∑

i=0

Fi+1

(
n+ k − i

k

)
+

k∑
i=1

F2i

(
n+ k − i+ 2

n+ 2

)
+

(
n+ k + 2

k

)
.

Adding (2.8), (2.9) obtains

Lemma 4.3.

L2k+3 = k + 2 + 2

(
k + 3

k

)
+

k∑
i=1

F2i

[
2

(
k + 3− i

k − i

)
−
(
k + 2− i

k + 1− i

)]
.

Replace k + 1← k in (2.1), add (2.1) to (2.6). Use identity Ln = Fn+1 + Fn−1 to get
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Lemma 4.4.

L2(k+2) = k + 4 +

(
k + 2

k

)
+

k∑
i=1

F2i

[(
k + 3− i

1

)
+

(
k + 2− i

k − i

)]
+ 2F2(k+1).

In Lemma 4.2, replacing: n + 1 ← n, n − 1 ← n and adding the resultant equations, for
n ≥ 1 yields

Lemma 4.5.

L2k+n+3 =
n−1∑
i=0

Fi+1

[(
n+ k − i+ 1

k

)
+

(
n+ k − (i+ 1)

k

)]
+ (4.9)

k∑
i=1

[
F2i

(
n+ k − i+ 3

n+ 3

)
+

(
n+ k − i+ 1

n+ 1

)]
+

(
n+ k + 3

k

)
+(

n+ k + 1

k

)
+ kFn+1 + Fn+3.

If n = 0 in (4.9), then

Corollary 4.1.

L2k+3 =
k∑

i=1

F2i

[(
k + 3− i

3

)
+

(
k + 1− i

1

)]
+

(
k + 3

k

)
+ 2k + 3.

Algebraic elimination between Corollary 4.1 and Lemma 4.3 gives

Corollary 4.2.

L2k+3 =
k∑

i=1

F2i(3k + 4− 3i) + 3k + 4.

Corollary 4.3.

F2k+n+3 =
k∑

i=1

F2i[Fn+2k + Fn+3 − iFn+2] + Fn+2k + Fn+3.

Proof. Multiply Fn by terms in Corollary 4.2 and Ln by terms in Lemma 1.1, then sum and
simplify.

The next corollary follows from Corollary 4.3.

Corollary 4.4.

L2k+n+3 =
k∑

i=1

F2i [Ln+2k + Ln+3 − iLn+2] + Ln+2k + Ln+3.
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5 Conclusion

The present work contributes to the list of known identities for the Fibonacci and Lucas numbers
with original results. An initial-value problem for a class of non-homogeneous linear recurrence
relations is solved. Future work involves finding new Fibonacci and Lucas number identities and,
a particular solution pk,n in (1.5) that corresponds with a larger or different set of values for b, c
in (1.4).
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