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1 Introduction

The classical sequence of Fibonacci numbers {Fn}n≥0 defined by the usual recurrence relation
Fn+1 = Fn + Fn−1, for n ≥ 1, with initial conditions F0 = 0, F1 = 1, is one of the most known
sequences of integers widely studied, as well as the sequence of Pell numbers {Pn}n≥0 defined
by the recurrence relation Pn+1 = 2Pn + Pn−1, for n ≥ 1, and the initial conditions P0 = 0,
P1 = 1. What is intriguing about these two sequences are their various applications. In this
context, it is natural that several generalizations appear in the literature (see for example, [8, 11,
17, 18, 22, 23]). Specifically, we are interested here in one type of extensions of the q-analogues
generalizations (see more in [8, 21, 22]). Among these generalizations, it was considered in [21]
the q-Pell sequence {Pn(q)}n≥0, which concerns a class of polynomials in the variable q (*),
satisfying the linear difference equation of the second order with variable coefficients, given by

Pn+1(q) = (1− q2 + q2n−1)Pn(q) + q2Pn−1(q), (1)

where P0(q) = 1 and P1(q) = 1 + q3. Note that, for q = 1, the family of 1-Pell sequences
{Pn(1)}n≥0 described by (1), is nothing else that but the sequence of Fibonacci numbers, namely,
Pn(1) = Fn+1. Another generalization was introduced by Santos and Sills in [22], where the
q-Pell sequence {Pn(q)}n≥0 satisfies by the following recursive relation,

Pn+1(q) = (1 + qn+1)Pn(q) + qnPn−1(q), (2)

where P0(q)=1 and P1(q)=1+q. The sequence (2) was a motivation for studying a combinatorial
interpretation in terms of weighted tilings of q-Pell sequence, as it was shown in [8]. In addiction,
the sequences (1) and (2) own an interesting combinatorial interpretation for some series-product
identities, listed by Slater in [24]. These identities are of the so called Rogers–Ramanujan type.

In this study, we are interested in the following generalization of Expressions (1) and (2) with
fixed parameters (q, k),

F
(k)
n+1(q) = f

(k)
1,n(q)F

(k)
n (q) + f

(k)
2,n(q)F

(k)
n−1(q), (3)

where k ∈ N, F (k)
0 (q), F

(k)
1 (q) are the given initial conditions and f

(k)
1,n(q), f

(k)
2,n(q) are variable

coefficients in n. Namely, for the purpose of conciseness related to the results in the literature and
to clarify our two approaches, we would like to specify that the coefficients f

(k)
1,n(q) and f

(k)
2,n(q)

are functions that depend on 3 parameters k, q and n. Since the parameters k and q are fixed, then
the coefficients f (k)

1,n(q) and f
(k)
2,n(q) are variable in n.

In the sequel, we focus our study on the following two cases, the (q, k)-Fibonacci sequences
and the (q, k)-Pell sequences, defined by

F
(k)
n+1(q) = f

(k)
1,n(q)F

(k)
n (q) + f

(k)
2,n(q)F

(k)
n−1(q), (4)

where f (k)
1,n(q) = 1−q2+q2n+2k−1, f (k)

2,n(q) = q2, the initial conditions are F (k)
0 (q) = 1, F (k)

1 (q) =

1 + q2k+1, and
P

(k)
n+1(q) = f

(k)
1,n(q)P

(k)
n (q) + f

(k)
2,nP

(k)
n−1(q), (5)

———————–
* In combinatorial context the variable q is an enumeration parameter, however if the purpose is to study

convergence of q-analogous series, it is common to use 0 < |q| < 1.
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where f
(k)
1,n(q) = 1 + qkn+1 , f

(k)
2,n(q) = qkn and the initial conditions are P

(k)
0 (q) = 1, P

(k)
1 (q) =

1 + qk.

Expressions of type (3) represent a linear difference equation of the second order with variable
coefficients. Several methods and techniques have been developed to solve linear difference
equations with variable coefficients (see, for instance, [1,7,12,14–16,20], and references therein).
This topic continues to attract much attention due to their many applications in mathematics
and applied sciences (see for instance [1, 2, 6, 7]). In [20], Popenda gave explicit formulas
for the general solutions of homogeneous and non-homogeneous second-order linear difference
equations, with arbitrarily varying coefficients, using a direct computation. In [15], Mallik gave
a complete closed form solution of a second order linear homogeneous difference equation with
variable coefficients, solely in terms of the coefficients. He extends his results on the explicit
solution of a second-order linear homogeneous to a linear difference equation of unbounded order
with variable coefficients in [15], and to the nonhomogeneous difference equation with variable
coefficients in [14]. Despite these studies, recently in [1,2] the solutions of the second-order linear
homogeneous difference equations with variable coefficients are exhibited under a representation
based on nested sum and determinantal approaches.

Our main goal is to study the (q, k)-Fibonacci and (q, k)-Pell sequence, {F (k)
n (q)}n≥0 and

{P (k)
n (q)}n≥0, by considering Equations (4) and (5), as a linear difference equation of the second

order with variable coefficients. Therefore, some explicit formulas of these sequences of
polynomial (in q) {F (k)

n (q)}n≥0 and {P (k)
n (q)}n≥0 are established, using the first approach based

on the determinantal form of the tridiagonal matrices, related to the variable coefficients f (k)
1,n(q)

and f
(k)
2,n(q). The second approach consists of expressing the determinantal form of {F (k)

n (q)}n≥0

and {P (k)
n (q)}n≥0 in terms of the nested sums and their related properties. As a consequence,

other formulas of the usual Fibonacci and Pell numbers are deduced. In addition, properties of
some known identities, with closed connections to the q-Pell sequence, are provided. Moreover,
the generalized Cassini identities for (q, k)-Fibonacci–Pell sequences are established and a pair
of Rogers–Ramanujan type identities are examined.

The content of this paper is organized as follows. In Sections 2 and 3, we establish new
explicit formulas of the (q, k)-Fibonacci sequences and the (q, k)-Pell sequences, respectively,
using the determinantal tridiagonal approach and the generalized combinatorial nested sums
approach. Section 4 concerns the Cassini type identity for the (q, k)-Pell and the (q, k)-Fibonacci
sequences, in addition other identities are provided. In Section 5 we study the analytic and
combinatorial aspect of two Rogers–Ramanujan identities and the related q-analogous of
Fibonacci and Pell sequences. Finally, some concluding remarks and perspectives are furnished
in Section 6.

2 Some explicit formulas of the (q, k)-Fibonacci sequence

2.1 Solution of (4) by a determinantal approach

Let us consider the linear difference equation of the second order with variable coefficients (4)
defining the (q, k)-Fibonacci sequence, namely,
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F
(k)
n+1(q) = f

(k)
1,n(q)F

(k)
n (q) + f

(k)
2,n(q)F

(k)
n−1(q),

where F
(k)
0 (q) = 1, F (k)

1 (q) = 1 + q2k+1 and f
(k)
1,n(q) = 1 − q2 + q2n+2k−1, f (k)

2,n(q) = q2, of the
linear difference equation (4) is given by[

F
(k)
n (q)

F
(k)
n+1(q)

]
=

[
0 1

q2 1− q2 + q2n+2k−1

][
F

(k)
n−1(q)

F
(k)
n (q)

]
, (6)

whose vector of initial conditions is
[

1

1 + q

]
. Let M = {L(k)

q (n)}n≥0 be the family of matrices

defined by

L(k)
q (n) =

[
0 1

q2 1− q2 + q2n+2k−1

]
. (7)

Since for a fixed q, k and every positive integer n we have det(L
(k)
q (n)) = −q2 ̸= 0, this implies

that the matrices L(k)
q (n) are invertible matrices of order 2. Then, we can apply the process of the

companion factorization to the matrix L
(k)
q (n) = (lk,ni,j )1≤i,j≤2 improved in [1, 3]. This process

consists of exhibiting the compact formulas for the entries of the transition matrix related to the
matrices L

(k)
q (n) = (lk,ni,j )1≤i,j≤2, described as follows. First, we denote lk,n1,1 = ak,n = 0, lk,n1,2 =

bk,n = 1, lk,n2,1 = ck,n = q2 and lk,n2,2 = dk,n = 1 − q2 + q2n+2k−1. Observe that for each matrix
L
(k)
q (n) we have ak,n = 0. Then, the coefficients of the associated difference equation are given

by p
(k)
1 (n) = dk,n, p

(k)
2 (n) = − ck,n

ck,n−1
, n ̸= 0, p

(k)
2 (0) = ck,0, namely,[

F
(k)
n+1(q)

F
(k)
n+2(q)

]
=

[
0 1

p
(k)
2 (n) p

(k)
1 (n)

][
F

(k)
n (q)

F
(k)
n+1(q)

]
. (8)

In this context, we consider the linear matrix equation x
(k)
q (n + 1) = L

(k)
q (n)x

(k)
q (n), where

x
(k)
q (n) =

[
F

(k)
n (q)

F
(k)
n+1(q)

]
. Thus, the associated transition matrix is given in the form T

(k)
q (n) =

L
(k)
q (n− 1) · · ·L(k)

q (1)L
(k)
q (0), and in the sequel, it will be denoted as follows

T (k)
q (n) =

∗,n−1∏
h=0

L(k)
q (h).

Therefore, at step n we have[
F

(k)
n (q)

F
(k)
n+1(q)

]
=

∗,n−1∏
h=0

L(k)
q (h)

[
1

1 + q2k+1

]
= T (k)

q (n)

[
1

1 + q2k+1

]
, (9)

where T
(k)
q (n) =

∏∗,n−1
j=0

[
0 1

q2 1− q2 + q2j+2k−1

]
is a square matrix of order 2, which is not

explicitly determined. In order to establish an explicit form of the matrix T
(k)
q (n), we apply [1,

Lemma 2.1],
which allows us to derive that the equation (9) is equivalent to the matrix equation −F

(k)
n (q)

ck,n−1

F
(k)
n+1(q)

 =

 − 1

ck,n−1

0

0 1

 ∗,n∏
i=1

[
0 1

− ck,i
ck,i−1

dk,i

][
0 1

ck,0 dk,0

][
1

1 + q2k+1

]
, (10)

where ck,0 = l02,1 = q2,− ck,i
ck,i−1

= −1, if i ̸= 0, and dk,i = 1− q2 + q2i+2k−1.
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Solving Equation (4) is equivalent to solving the matrix equations (8)–(10). This process
requires us to determine the explicit formula of the transition matrix T

(k)
q (n). Now, in the aim to

provide an explicit formula of the right side of Expression (10), we consider the determinantal
form of the canonical solutions of (4). More precisely, following [12], the canonical solutions
ϕ
(0)
n (q, k) and ϕ

(1)
n (q, k) of Equation (4), with initial conditions

ϕ
(0)
0 (q, k) = 0, ϕ

(0)
1 (q, k) = 1 and ϕ

(1)
0 (q, k) = 1, ϕ

(1)
1 (q, k) = 0,

are given under the following determinant of a special tridiagonal matrix

ϕ(0)
n (q, k) = det



p
(k)
1 (0) p

(k)
2 (1) 0 · · · 0

−1 p
(k)
1 (1) p

(k)
2 (2) · · · 0

... . . . . . . . . . ...

0 · · · . . . p
(k)
1 (n− 3) p

(k)
2 (n− 2)

0 · · · · · · −1 p
(k)
1 (n− 2)


, (11)

ϕ(1)
n (q, k) = det



p
(k)
2 (0) 0 0 · · · 0

−1 p
(k)
1 (1) p

(k)
2 (2) · · · 0

... . . . . . . . . . ...

0 · · · . . . p
(k)
1 (n− 3) p

(k)
2 (n− 2)

0 · · · · · · −1 p
(k)
1 (n− 2)


. (12)

Indeed, let us apply the result of [1, Theorem 3.2] to the solutions of Equation (4), with
variables coefficients defined by p

(k)
2 (0) = q2, and p2(n) = −1, p

(k)
1 (n) = 1 − q2 + q2n+2k−1,

if n ̸= 0. Then, by direct application of [1, Theorem 3.2] (with ak,n = 0), we get the following
matrix representation of Equation (4).

Theorem 2.1. Under the preceding data, the solution of the matrix Equation (10), is given by −F
(k)
n (q)

cn−1

F
(k)
n+1(q)

 =

 −F
(k)
0 (q, k)

cn−1

ϕ
(1)
n (q, k)− F

(k)
1 (q, k)

cn−1

ϕ
(0)
n (q, k)

F
(k)
0 (q)ϕ

(1)
n+1(q, k) + F

(k)
1 (q)ϕ

(0)
n+1(q, k)

 , (13)

where ϕ
(0)
n (q, k) and ϕ

(1)
n (q, k) are the canonical solutions of (4) formulated by Expressions (11)

and (12).

As a consequence of Theorem 2.1, we can formulate the following corollary.

Corollary 2.1. (Determinantal form of F
(k)
n (q)) The determinantal explicit expression of the

(n+ 1)-th term of the (q, k)-Fibonacci sequence defined as in Equation (4), is given by

F
(k)
n+1(q) = F

(k)
0 (q)ϕ

(1)
n+1(q, k) + F

(k)
1 (q)ϕ

(0)
n+1(q, k),

where F
(k)
0 (q) = 1 and F

(k)
1 (q) = 1 + q2k+1 are the initial conditions of (4) and ϕ

(0)
n (q, k),

ϕ
(1)
n (q, k) are the canonical solutions of (4) given by Expressions (11) and (12).
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As an application we are considering two special cases. For k = 0 we get

F
(0)
n+1(q) = (1− q2 + q2n−1)F (0)

n (q) + q2F
(0)
n−1(q), (14)

with initial conditions F (0)
0 (q) = 1, F (0)

1 (q) = 1 + q. For k = 1 we derive

F
(1)
n+1(q) = (1− q2 + q2n+1)F (1)

n (q) + q2F
(1)
n−1(q), (15)

with initial conditions F (1)
0 (q) = 1, F (1)

1 (q) = 1 + q3.

Applying Corollary 2.1 for k = 0, we obtain the determinantal explicit formula for Expression
(14) given by

F
(0)
n+1(q) = F

(0)
0 (q)ϕ

(1)
n+1(q, 0) + F

(k)
1 (q)ϕ

(0)
n+1(q, 0),

where F
(0)
0 (q) = 1, F (0)

1 (q) = 1 + q are the initial conditions of (4) and ϕ
(0)
n (q, 0), ϕ(1)

n (q, 0) are
the canonical solutions (11) and (12) of Equation (4). Similarly, replacing k = 1 in Corollary 2.1
we get the determinantal explicit formula for Expression (15) given by

F
(1)
n+1(q) = F

(1)
0 (q)ϕ

(1)
n+1(q, 1) + F

(k)
1 (q)ϕ

(0)
n+1(q, 1),

where F
(0)
0 (q) = 1 and F

(0)
1 (q) = 1 + q3 are the initial conditions of (4) and ϕ

(0)
n (q, 1), ϕ(1)

n (q, 1)

are the canonical solutions of (4) expressed by (11) and (12).
The determinantal expressions of the canonical solutions (11) and (12) of Equations (4), can

be expressed with the aid of the nested sums. Therefore, we can obtain another explicit expression
for the n-th term of the (q, k)-Fibonacci sequence, as given in Equation (4).

Theorem 2.1 and Corollary 2.1 allow us to deduce an explicit formula of the entries of
the transition matrix in terms of the determinantal approach. Using these results, in the next
subsection we will discuss the solution in terms of the combinatorial nested sum.

2.2 Generalized combinatorial approach for solving (4)

Recently, for linear difference equations of the second order with variable coefficients, expressions
of type (11) and (12) of the determinantal solutions have been also described using nested sums
in [1, 2]. To achieve this connection, with the determinantal solutions of Equation (4), let us
consider the following coefficients

α(j) ≡ α(k, j) =
p
(k)
2 (j)

p
(k)
1 (j − 1)p

(k)
1 (j)

=
−1

(1 + q2 + q2j+2k−3)(1 + q2 + q2j+2k−1)
.

Then, Expression (11) of the canonical solution ϕ(0)
n (q, k), takes the form,

ϕ(0)
n (q, k) =

(
n−2∏
i=0

(1 + q2 + q2k+2i−1)

) ⌊n−1
2

⌋∑
m=0

∆(0)
m (n), (16)

where ∆
(0)
m (n) is the nested sum in the form

∆(0)
m (n) =

n−2∑
j1=2(m−1)+1

α(j1)

 j1−2∑
j2=2(m−2)+1

α(j2)

(
. . .

(
jm−1−2∑
jm=1

α(jm)

)
. . .

) . (17)
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In the same way, with the aid of the nested sums, the expansion of the canonical solution (12)
of Equation (2), is given by

ϕ(1)
n (q, k) = q2

(
n−2∏
i=1

(1 + q2 + q2k+2i−1)

) ⌊n−2
2

⌋∑
m=0

∆(1)
m (n), (18)

where the nested sum ∆
(1)
m (n) is expressed by

∆(1)
m (n) =

n−2∑
j1=2(m−1)+2

α(j1)

 j1−2∑
j2=2(m−2)+2

α(j2)

(
. . .

(
jm−1−2∑
jm=2

α(jm)

)
. . .

) . (19)

Therefore, Expression (13) of Theorem 2.1 and Expressions (16), (18), allow us to obtain the
following result.

Theorem 2.2. (Generalized combinatorial form of F (k)
n (q)) The n-th element of (q, k)-Fibonacci

sequences in terms of fundamental matrix of the difference equation (4) is given by

F (k)
n (q) = q2

(
n−2∏
i=1

(1 + q2 + q2k+2i−1)

) ⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

(20)

+ (1 + q2k+1)

(
n−2∏
i=0

(1 + q2 + q2k+2i−1)

) ⌊n−1
2

⌋∑
m=0

∆(0)
m (n),

where ∆(0)
m (n) and ∆

(1)
m (n) are the nested sums given as in Expressions (17) and (19), respectively.

Theorem 2.2 is a generalized combinatorial formula for F (k)
n (q). For k = q = 1, Expressions

(14) and (15) allow us to show that F (1)
n (1) takes the form

F (1)
n (1) = Fn+1.

Hence, as a consequence of Expression (20), a new formula for the Fibonacci numbers can be
provided in terms of the nested sums (17) and (19), as follows,

Fn+1 = 3(n−2)

⌊n−2
2

⌋∑
m=0

∆(1)
m (n) + 2 · 3(n−1)

⌊n−1
2

⌋∑
m=0

∆(0)
m (n).

Since q = 1 we obtain α(j) =
p
(1)
2 (j)

p
(1)
1 (j−1)p

(1)
1 (j)

= −1
9
, for all j ≥ 1. Then, for k = 0 or k = 1 and

q = 1, the fundamental solutions are given by

ϕ(0)
n (1, 0) = ϕ(0)

n (1, 1) = 3n−1

⌊n−1
2

⌋∑
m=0

∆(0)
m (n) =

⌊n−1
2

⌋∑
m=0

(−1)m
(
n− 1−m

m

)
3n−1−2m,

ϕ(1)
n (1, 0) = ϕ(1)

n (1, 1) = 3n−2

⌊n−2
2

⌋∑
m=0

∆(1)
m (n) =

⌊n−1
2

⌋∑
m=0

(−1)m
(
n− 2−m

m

)
3n−2−2m.

Moreover, a direct computation permits us to derive the following corollary.
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Corollary 2.2. The formula of the usual Fibonacci numbers Fn, in terms of nested sums and
combinatorial identity, is as follows,

Fn+1 = 3(n−2)

⌊n−2
2

⌋∑
m=0

∆(1)
m (n) + 6

⌊n−1
2

⌋∑
m=0

∆(0)
m (n)

 , (21)

where

∆(0)
m (n) =

(
−1

9

)m n−2∑
j1=2(m−1)+1

 j1−2∑
j2=2(m−2)+1

(
. . .

(
jm−1−2∑
jm=1

1

)
. . .

)
=

(−1)m

9m

(
n− 1−m

m

)
,

and

∆(1)
m (n) =

(
−1

9

)m n−2∑
j1=2(m−2)+2

 j1−2∑
j2=2(m−2)+1

(
. . .

(
jm−1−2∑
jm=1

1

)
. . .

)
=

(−1)m

9m

(
n− 2−m

m

)
.

The result of Corollary 2.2 allows us to obtain a new expression of the Fibonacci numbers in
terms of nested sums. It seems to us that the formula (21) is not known in the literature.

3 Explicit formulas of the (q, k)-Pell sequence

3.1 Solution of the generalized Equation (5) by a determinantal approach

Let us first recall the Equation (5), which defines the sequence (q, k)-Pell, whose elements are
denoted P

(k)
n (q), namely,

P
(k)
n+1(q) = f

(k)
1,n(q)P

(k)
n (q) + f

(k)
2,nP

(k)
n−1(q),

where f
(k)
1,n(q) = 1 + qkn+1 and f

(k)
2,n(q) = qkn, and the initial conditions are P

(k)
0 (q) = 1 and

P
(k)
1 (q) = 1 + qk. Replacing k = 1 in Expression (5), we recovered Expression (2), namely,

P
(1)
n+1(q) = (1 + qn+1)P (1)

n (q) + qnP
(1)
n−1(q),

where P
(1)
0 (q) = 1 and P

(1)
1 (q) = 1 + q are the initial conditions. The matrix formulation of

Equation (5), defining the P
(k)
n (q), is presented as follows[

P
(k)
n (q)

P
(1)
n+1(q)

]
=

[
0 1

qkn 1 + qkn+1

][
P

(k)
n−1(q)

P
(k)
n (q)

]
, (22)

where
[

1

1 + qk

]
is the vector of initial conditions.
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For every fixed positive numbers n, k ∈ N, let M = {L(k)
q (n)}n≥0 be the family of matrices

defined by L
(k)
q (n) = (lk,ni,j )1≤i,j≤2 =

[
0 1

qkn 1 + qkn+1

]
. For studying the matrix Equation (22)

we utilize the same method as described in Section 2, by denoting lk,n1,1 = ak,n = 0, lk,n1,2 = bk,n =

1, lk,n2,1 = ck,n = qkn and lk,n2,2 = dk,n = 1 + qkn+1. Then, the coefficients of the associated
difference equation are given by p

(k)
1 (n) = dk,n, p

(k)
2 (n) = − ck,n

ck,n−1
, n ̸= 0, p

(k)
2 (0) = ck,0, namely,[

P
(k)
q (n+ 1)

P
(k)
q (n+ 2)

]
=

[
0 1

p
(k)
2 (n) p

(k)
1 (n)

][
P

(k)
q (n)

P
(k)
q (n+ 1)

]
.

Therefore, the transition matrix is defined by T
(k)
q (n) = L

(k)
q (n − 1) · · ·L(k)

q (1)L
(k)
q (0) and

denoted as follows T (k)
q (n) =

∗,n−1∏
j=0

L(k)
q (j). Thus, at step n we have,[

P
(k)
n (q)

P
(k)
n+1(q)

]
=

∗,n−1∏
j=0

L(k)
q (j)

[
1

1 + qk

]
= T (k)

q (n)

[
1

1 + qk

]
. (23)

Applying Lemma 2.1 of [1], we obtain −P
(k)
n (q)

qk(n−1)

P
(k)
n+1(q)

 =

 − 1

ck,n−1

0

0 1

 ∗,n∏
i=1

[
0 1

− ck,i
ck,i−1

dk,i

][
0 1

ck,0 dk,0

][
1

1 + qk

]
, (24)

where ck,0 = 1,− ck,i
ck,i−1

= −qk, if i ≥ 1, and di = 1 + qki+1.

Similarly, solving Equation (5) is equivalent to solving the matrix equations (22)–(24). In the
aim to give an explicit formula of the right side of Expression (24), we consider the determinantal
form of canonical solutions of (5). More precisely, following [12], the canonical solutions
ϕ
(0)
n (q, k) and ϕ

(1)
n (q, k) of Equation (5), with initial conditions ϕ(0)

0 (q, k) = 0, ϕ
(0)
1 (q, k) = 1 and

ϕ
(1)
0 (q, k) = 1, ϕ(1)

1 (q, k) = 0, are given under the following determinant of a special tridiagonal
matrix, namely,

ϕ(0)
n (q, k) = det



p
(k)
1 (0) p

(k)
2 (1) 0 · · · 0

−1 p
(k)
1 (1) p

(k)
2 (2) · · · 0

... . . . . . . . . . ...

0 · · · . . . p
(k)
1 (n− 3) p

(k)
2 (n− 2)

0 · · · · · · −1 p
(k)
1 (n− 2)


, (25)

ϕ(1)
n (q, k) = det



p
(k)
2 (0) 0 0 · · · 0

−1 p
(k)
1 (1) p

(k)
2 (2) · · · 0

... . . . . . . . . . ...

0 · · · . . . p
(k)
1 (n− 3) p

(k)
2 (n− 2)

0 · · · · · · −1 p
(k)
1 (n− 2)


, (26)

with p
(k)
1 (j) = 1 + qkj+1, p

(k)
2 (j) = −qk, j > 0, p

(k)
2 (0) = 1. Indeed, let us apply [1, Theorem

3.2] to the solutions of Equation (5). That is, by direct application of [1, Theorem 3.2], we get
the solution of the matrix representation of Equation (5).
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Theorem 3.1. Under the preceding data, the solution of the matrix Equation (24), is given by −P
(k)
n (q)

cn−1

P
(k)
n+1(q)

 =

 −P
(k)
0

cn−1

ϕ
(1)
n (q, k)− P

(k)
1

cn−1

ϕ
(0)
n (q, k)

P
(k)
0 ϕ

(1)
n+1(q, k) + P

(k)
1 ϕ

(0)
n+1(q, k)

 , (27)

where P
(k)
0 = 1, P

(k)
1 = 1 + qk are the initial conditions of (5) and ϕ

(0)
n (q, k), ϕ

(1)
n (q, k) are the

canonical solutions of (5) expressed under the formulas (25) and (26).

As a consequence of Theorem 3.1, we can formulate the following proposition.

Proposition 3.1. (The determinantal form of the P
(k)
n (q)) The determinantal explicit expression

of the (n+ 1)-th element of (q, k)-Pell sequence, defined as in Equation (5), is given by

P
(k)
n+1(q) = P

(k)
0 ϕ

(1)
n+1(q, k) + P

(k)
1 ϕ

(0)
n+1(q, k),

where P
(k)
0 = 1 and P

(k)
1 = 1 + qk are the initial conditions of (5) and ϕ

(0)
n (q, k) and ϕ

(1)
n (q, k)

are the canonical solutions of (5) expressed under the formulas (25) and (26).

Now, let us apply result Theorem 3.1 to the solutions of Equation (2). Indeed, for k = 1, we
get the following corollary.

Corollary 3.1. The determinantal explicit expression of the (n+1)-th element of q-Pell sequence,
defined as in Equation (2), is given by

P
(1)
n+1(q) = P

(1)
0 ϕ

(1)
n+1(q, 1) + P

(1)
1 ϕ

(0)
n+1(q, 1),

where P0 = 1, P1 = 1 + q are the initial conditions of (2) and ϕ
(0)
n (q, 1), ϕ(1)

n (q, 1) are the
canonical solutions of (2) expressed by (25) and (26) for k = 1.

The determinantal expressions of the canonical solutions (25) and (26) of Equation (5) can be
expressed through nested sums. That is, via Theorem 3.1, we can deduce an explicit formula of
the entries of the transition matrix in terms of combinatorial nested sum approach. In addition,
we can derive another explicit formula of the n-th element P (k)

n (q) of the (q, k)-Pell sequence.
This will be discussed in the next subsection.

3.2 Generalized combinatorial approach for solving (5)

It was established in [1, 2] that the expressions of the determinantal solutions of linear difference
equations of the second order with variable coefficients can be described using nested sums.
To realize this connection, with the determinantal solutions of Equation (5), let us consider the
following coefficients

α(j) ≡ α(k, j) =
p
(k)
2 (j)

p
(k)
1 (j − 1)p

(k)
1 (j)

=
−qk

(1 + qkj+1)(1 + qk(j−1)+1)
.

Then, the canonical solution (25) of Equation (5) is given by

ϕ(0)
n (q, k) =

(
n−2∏
i=0

(1 + qki+1)

) ⌊n−1
2

⌋∑
m=0

∆(0)
m (n), (28)

where ∆
(0)
m (n), for every fixed m and n, is the nested sum
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∆(0)
m (n) =

n−2∑
j1=2(m−1)+1

α(j1)

 j1−2∑
j2=2(m−2)+1

α(j2)

(
. . .

(
jm−1−2∑
jm=1

α(jm)

)
. . .

) . (29)

Similarly, with the aid of the nested sums, the expansion of the canonical solution (26) of the
Equation (5), is given by

ϕ(1)
n (q, k) =

(
n−2∏
i=1

(1 + qki+1)

) ⌊n−2
2

⌋∑
m=0

∆(1)
m (n), (30)

where ∆
(1)
m (n), with fixed integers m and n, is the nested sum

∆(1)
m (n) =

n−2∑
j1=2(m−1)+2

α(j1)

 j1−2∑
j2=2(m−2)+2

α(j2)

(
. . .

(
jm−1−2∑
jm=2

α(jm)

)
. . .

) . (31)

Therefore, Expression (27) of Theorem 3.1 and Expressions (28)-(31), allow us to obtain the
follow result.

Theorem 3.2. (The generalized combinatorial form of the P
(k)
n (q)) The element P (k)

n (q) of the
(q, k)-Pell sequence in terms of fundamental matrix of the difference equation (5) is given in terms
of nested sums as

P (k)
n (q) =

(
n−2∏
i=1

(1 + qki+1)

) ⌊n−2
2

⌋∑
m=0

∆(1)
m (n) + (1 + q)

(
n−2∏
i=0

(1 + qki+1)

) ⌊n−1
2

⌋∑
m=0

∆(0)
m (n), (32)

where ∆
(0)
m (n) and ∆

(1)
m (n) are given as in (29) and (31), respectively.

Theorem 3.2 is a generalized combinatorial formula for the terms of (q, k)-Pell sequence. For
k = q = 1, we show that Expression (2) takes the form,

P
(1)
n+1(1) = 2P (1)

n (1) + P
(1)
n−1(1), (33)

with P
(1)
0 (1) = 1, P

(1)
1 (1) = 2, which is nothing else but the usual sequence Pell numbers

Pn = P
(1)
n (1). As a consequence of Expression (32) a new formula for the usual Pell numbers

can be provided in terms of the nested sums (29) and (31), as follows

Pn = 2n−2

⌊n−2
2

⌋∑
m=0

∆(1)
m (n) + 4

⌊n−1
2

⌋∑
m=0

∆(0)
m (n)

 .

Since for q = 1 we get α(k) =
−1k

(1 + 1kj+1)(1 + 1k(j−1)+1)
= −1

4
, therefore, a direct computation

allows us to derive the following corollary.

Corollary 3.2. (Another combinatorial form of the usual Pell numbers) The formula of the usual
Pell numbers Pn in terms of nested sums is as follows,

Pn = 2n−2

⌊n−2
2

⌋∑
m=0

∆(1)
m (n) + 4

⌊n−1
2

⌋∑
m=0

∆(0)
m (n)

 ,

where
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∆(0)
m (n) = −(−1)m

4m

n−2∑
k1=2(m−1)+1

 k1−2∑
k2=2(m−2)+1

(
. . .

(
km−1−2∑
km=1

1

)
. . .

) ,

∆(1)
m (n) =

(−1)m

4m

n−2∑
k1=2(m−2)+2

 k1−2∑
k2=2(m−2)+1

(
. . .

(
km−1−2∑
km=1

1

)
. . .

) .

It seems to us that the results established in this section are not existing in the literature.

4 Applications

4.1 Cassini type identity for (q, k)-Fibonacci sequence and more identities

Let {Fn}n≥0 be the sequence of Fibonacci numbers, generated by the well-known recursive
relation Fn+1 = Fn + Fn−1, with arbitrary initial conditions F0 = α0 and F1 = α1. The Cassini
identity of the Fibonacci numbers is defined as the determinant of the related Casoratian matrix,
namely, ∣∣∣∣∣ Fn−1 Fn

Fn Fn+1

∣∣∣∣∣ = Fn+1Fn−1 − F 2
n = (−1)n,

(for more details see, for instance, [10, 19]). We can observe that[
0 1

1 1

]n
=

[
Fn−1 Fn

Fn Fn+1

]
,

and Tn(1) =

[
0 1

1 2

]n
is nothing else but the transition matrix, related to the matrix formulation

of the Fibonacci numbers. Proceeding in the same way, we can define the element F (k)
n (q) of the

(q, k)-Fibonacci sequence as the determinant of the transition matrix related, namely,

T (k)
q (1) =

∗,n−1∏
j=0

L(k)
q (j),

where the matrices L(k)
q (j) are given by Expression (7) and L

(k)
q (n) =

[
0 1

q2 1− q2 + q2n+2k−1

]
.

By Theorem 2.1 the formula of the transition matrix of the difference equation (4) is given by

T (k)
q (n) =

∗,n−1∏
j=0

L(k)
q (j) =

 ϕ
(1)
n (q, k)

ck,n−1

ϕ
(0)
n (q, k)

ck,n−1

ϕ
(1)
n+1(q, k) ϕ

(0)
n+1(q, k)

 .

On the other side, we have det(L
(k)
q (j)) = −q2. Therefore, the property of the determinant of

product of matrices, namely, det(
m∏
i=1

Ai) =
m∏
i=1

det(Ai), permits us to have the following property

on the Cassini identity type for the F
(k)
n (q).
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Proposition 4.1. ((q, k)-Cassini identity for (4): Determinantal approach) For the n-th term of
the (q, k)-Fibonacci sequence (4), we have the following identity,

detT (k)
q (n) = − 1

ck,n−1

[
F

(k)
0 (q)ϕ(1)

n (q, k)ϕ
(0)
n+1(q, k)− F

(k)
1 (q)ϕ

(1)
n+1(q, k)ϕ

(0)
n (q, k)

]
= (−1)nq2n,

or equivalently,

ϕ(1)
n (q, k)ϕ

(0)
n+1(q, k)− (1 + q2k+1)ϕ

(1)
n+1(q, k)ϕ

(0)
n (q, k) = (−1)n+1q2nck,n−1, (34)

where ck,0 = q2, ck,i = ck,i−1, and ϕ
(0)
n (q, k), ϕ

(1)
n (q, k) are the canonical solutions of (4)

expressed under the determinantal form (11) and (12).

The Identity (34) represents a Cassini identity type for the (q, k)-Fibonacci sequence, it is
called the (q, k)-Cassini identity related to the (q, k)-Fibonacci sequence. On the other side,
Expressions (28) and (31) show that the canonical solutions (11) and (12) of Equation (4), are
expressed in terms of the nested sums. Then, we have,

ϕ(1)
n (q, k)ϕ

(0)
n+1(q, k) =

(
n−2∏
i=1

(1 + qi+1)

) ⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

(
n−1∏
i=0

(1 + qi+1)

) ⌊n
2
⌋∑

m=0

∆(0)
m (n+ 1)

= (1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

⌊n
2
⌋∑

m=0

∆(0)
m (n+ 1),

and

ϕ
(1)
n+1(q, k)ϕ

(0)
n (q, k) =

(
n−1∏
i=1

(1 + qi+1)

) ⌊n−1
2

⌋∑
m=0

∆(1)
m (n+ 1).

(
n−2∏
i=0

(1 + qi+1)

) ⌊n−1
2

⌋∑
m=0

∆(0)
m (n)

= (1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ⌊n−1
2

⌋∑
m=0

∆(1)
m (n+ 1)

⌊n−1
2

⌋∑
m=0

∆(0)
m (n).

Therefore, the (q, k)-Cassini identity related to the (q, k)-Fibonacci sequence can be expressed
in terms of the nested sums. Indeed, we have the following result.

Proposition 4.2. ((q, k)-Cassini identity for (4): Nested sum approach) For the (q, k)-Fibonacci
sequence (4), we have the following identity

ϕ(1)
n (q, k)ϕ

(0)
n+1(q, k)− (1 + q)ϕ

(1)
n+1(q, k)ϕ

(0)
n (q, k) = (−1)n+1q2nck,n−1,

where ck,0 = q2, ck,i = ck,i−1, and

ϕ(1)
n (q, k)ϕ

(0)
n+1(q, k) = (1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

⌊n
2
⌋∑

m=0

∆(0)
m (n+ 1),

ϕ
(1)
n+1(q, k)ϕ

(0)
n (q, k) = (1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ⌊n−1
2

⌋∑
m=0

∆(1)
m (n+ 1)

⌊n−1
2

⌋∑
m=0

∆(0)
m (n).
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with ∆
(0)
m (n) and ∆

(1)
m (n) being given by (17) and (19), or equivalently,

⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

⌊n
2
⌋∑

m=0

∆(0)
m (n+ 1)−

⌊n−1
2

⌋∑
m=0

∆(1)
m (n+ 1)

⌊n−1
2

⌋∑
m=0

∆(0)
m (n)

= (−1)n+1 q
n(n−1)

2

(1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ck,n−1.

It seems to us that the identities in Proposition 4.1 and Proposition 4.2, related to the
(q, k)-Cassini identities, are not existing in the literature.

4.2 Cassini type identity for (q, k)-Pell sequence and more identities

For the usual sequence of Pell numbers {Pn}n≥0 defined by (33), with arbitrary initial conditions
P0 = α0 and P1 = α1, the Cassini identity related to the Pell numbers is defined as the determinant
of the related Casoratian matrix, namely,∣∣∣∣∣ Pn−1 Pn

Pn Pn+1

∣∣∣∣∣ = Pn+1Pn−1 − P 2
n = (−1)n

(for more details see, for instance, [10, 19]). We can observe that[
0 1

1 2

]n
=

[
Pn−1 Pn

Pn Pn+1

]
,

and Tn(1) =

[
0 1

1 2

]n
is nothing else but the matrix formulation of the usual Pell numbers (33).

Proceeding in the same way, we can define the element P (k)
n (q) of the (q, k)-Pell sequence as the

determinant of the transition matrix related the q-Pell sequence (5), namely,

Tq(n) =

∗,n−1∏
j=0

[
0 1

qkj 1 + qkj+1

]
.

Since detL(k)
q (j) =

∣∣∣∣∣ 0 1

qkj 1 + qkj+1

∣∣∣∣∣ = −qkj , we derive that

detT (k)
q (n) =

∗,n−1∏
j=0

detL(k)
q (j) = (−1)nq

kn(n−1)
2 .

On the other side, by Theorem 3.1 the formula of the transition matrix of the difference
equation (5) is defined by

T (k)
q (n) =

∗,n−1∏
j=0

L(k)
q (j) =

[
−P

(k)
0 (q)

ck,n−1
ϕ
(1)
n (q, k) −P

(k)
1 (q)

ck,n−1
ϕ
(0)
n (q), k

ϕ
(1)
n+1(q, k) ϕ

(0)
n+1(q, k)

]
.

Therefore, we have the following property on the Cassini identity for the (q, k)-Pell sequence.
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Proposition 4.3. ((q, k)-Cassini identity for (5): Determinantal approach) For the element P (k)
n (q)

of the (q, k)-Pell sequence we have the following identity,

detT (k)
q (n) = − 1

ck,n−1

[
P

(k)
0 (q)ϕ(1)

n (q, k)ϕ
(0)
n+1(q, k)− P

(k)
1 (q)ϕ

(1)
n+1(q, k)ϕ

(0)
n (q, k)

]
= (−1)nq

kn(n−1)
2 ,

or equivalently,

ϕ(1)
n (q, k)ϕ

(0)
n+1(q, k)− (1 + qk)ϕ

(1)
n+1(q, k)ϕ

(0)
n (q, k) = (−1)n+1q

kn(n−1)
2 ck,n−1, (35)

where ck,0 = 1, ck,i = qkck,i−1, and ϕ
(0)
n (q, k), ϕ(1)

n (q, k) are the canonical solutions of (5)
expressed under the determinantal form (25) and (26).

The identity (35) represents a Cassini identity for the (q, k)-Pell sequence, it is called the
(q, k)-Cassini identity related to the (q, k)-Pell sequence.

On the other side, Expressions (28)–(31) show that the canonical solutions (25) and (26) of
Equation (5), are expressed in the terms of nested sums. Then, we have,

ϕ(1)
n (q, k)ϕ

(0)
n+1(q, k) =

(
n−2∏
i=1

(1 + qi+1)

) ⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

(
n−1∏
i=0

(1 + qi+1)

) ⌊n
2
⌋∑

m=0

∆(0)
m (n+ 1)

= (1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

⌊n
2
⌋∑

m=0

∆(0)
m (n+ 1),

and

ϕ
(1)
n+1(q, k)ϕ

(0)
n (q, k) =

(
n−1∏
i=1

(1 + qi+1)

) ⌊n−1
2

⌋∑
m=0

∆(1)
m (n+ 1).

(
n−2∏
i=0

(1 + qi+1)

) ⌊n−1
2

⌋∑
m=0

∆(0)
m (n)

= (1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ⌊n−1
2

⌋∑
m=0

∆(1)
m (n+ 1)

⌊n−1
2

⌋∑
m=0

∆(0)
m (n).

Therefore, the (q, k)-Cassini identity (35) can be expressed in the terms of nested sums.
Indeed, we have the following result.

Proposition 4.4. ((q, k)-Cassini identity for (5): Nested sums approach) For the (q, k)-Pell sequence
we have the following identity,

ϕ(1)
n (q, k)ϕ

(0)
n+1(q, k)− (1 + q)ϕ

(1)
n+1(q, k)ϕ

(0)
n (q, k) = (−1)n+1q

kn(n−1)
2 ck,n−1,

where ck,0 = 1, ck,i = qkck,i−1, and

ϕ(1)
n (q, k)ϕ

(0)
n+1(q, k) = (1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

⌊n
2
⌋∑

m=0

∆(0)
m (n+ 1),

ϕ
(1)
n+1(q, k)ϕ

(0)
n (q, k) = (1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ⌊n−1
2

⌋∑
m=0

∆(1)
m (n+ 1)

⌊n−1
2

⌋∑
m=0

∆(0)
m (n).

with ∆
(0)
m (n) and ∆

(1)
m (n) are given by (29) and (31), or equivalently,
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⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

⌊n
2
⌋∑

m=0

∆(0)
m (n+ 1)−

⌊n−1
2

⌋∑
m=0

∆(1)
m (n+ 1)

⌊n−1
2

⌋∑
m=0

∆(0)
m (n)

(36)

= (−1)n+1 q
kn(n−1)

2

(1 + q)(1 + qn)

(
n−2∏
i=1

(1 + qi+1)

)2 ck,n−1.

It seems to us that the identities in Proposition 4.3 and Proposition 4.4, related to the
(q, k)-Cassini identities expressed in the forms (35) and (36), are not existing in the literature.

5 (q, k)-Fibonacci–Pell sequence and the Rogers–Ramanujan
identities

5.1 Slater identities and the (q, k)-Fibonacci–Pell sequences

Slater in [24] presented a list of 130 identities of the Rogers–Ramanujan type via Bailey pairs.
In [21], Santos obtained extensions for 74 of the series that appear in the 130 Rogers–Ramanujan
type identities listed by Slater. He proved some of these identities, using the so-called Andrews
Method (see [4]). This method consists in considering an associated function of two variables
f(q, t) such that f(q, t) satisfies a first order non-homogeneous equation in q (functional equation
in q) and is a generating function of a sequence {Pn(q)}n∈N, namely, f(q, t) =

∑∞
n=0 Pn(q)t

n,

where Pn(q) is a polynomial in q, with lim
n→∞

Pn(q) equal than an infinite product in q.

Santos presented in [21], using the Andrews Method, the combinatorial relation between the
function of two variables f(q, t) and the linear difference equation of type (1) and (2). In [9],
Craveiro established many results about the combinatorial extensions and interpretations for the
Fibonacci, Pell and Jacobsthal numbers, and proved the 37-th and 38-th Slater identities. In this
section, we are interested in to study the 16-th and 12-th Slater identities and their parametric
extension, namely,

+∞∑
n=0

qn
2+2n

(q4; q4)n
=

(−q; q2)∞
(q2; q2)∞

∞∏
n=0

(1− q5n+5)(1− q5n+2)(1− q5n+1), (37)

(−q2; q2)∞
(q2; q2)∞

∞∏
n=0

(1− q4n+4)(1− q4n+2)(1− q4n+2) = 1 + 2
∞∑
n=1

(−q; q)n−1q
n(n+1)

2

(q; q)n
, (38)

where (a; q)n = (1 − a)(1 − aq) · (1 − aqn−1) and (a; q)∞ = lim
n→+∞

(a; q)n. More precisely, we

establish determinantal and combinatorial explicit formulas for the (q, k)-Fibonacci sequence and
the (q, k)-Pell sequence, with parameters q = 1, and k = 0 and k = 1, using the previous related
results from , Sections 2 and 3.

5.2 The Slater identity 16 and (q, k)-Fibonacci sequence

In the present subsection, we consider the results of previous Section 2, with the aim to study
the Slater Identities 16, 20, their parameterized extension, , and their related (q, k)-Fibonacci
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sequence. Santos in [21] established that the generating function f(q, t) associated with Identity
37, is given by

f16(q, t) =
+∞∑
n=0

t2nqn
2+2n

(t; q2)n+1(−tq2; q2)n
.

In addition, it was proved in [21] that the function f16(q, t) is the generating function of the
sequence {F (1)

n (q)}n≥0, namely, we have the following series

f16(q, t) =
+∞∑
n=0

F (1)
n (t)tn.

Consider the parameterized extension of f16(q, t), defined as follows,

f20−4k(q, t) =
∞∑
n=0

tnqn
2+2kn

(1− t)(t2q4; q4)n
, (39)

where k is a positive integer parameter. We show easily that when we set k = 0 and k = 1, we
get the functions of two variables f20(q, t) and f16(q, t), respectively. Moreover, we observe that
both functions are associated with (q, k)-Fibonacci sequence given (respectively) by Equations
(14) and (15), studied as special cases given in Section 2.

On the other side, a long straightforward computation on Expression (39) allows us to show
that the function f20−4k(q, t) satisfies the following functional equation,

(1− t)(1 + tq2)f20−4k(q, t) = 1 + tq2 + tq2k+1f20−4k(tq
2, q). (40)

By replacing the representative series f20−4k(q, t) =
∞∑
n=0

F (k)
n (q)tn of f20−4k(q, t) in Expression

(40), we obtain

(1 + tq2 − t− t2q2)
∞∑
n=0

F (k)
n (q)tn = 1 + tq2 + tq2k+1

∞∑
n=0

F (k)
n (tq2)n,

or
∞∑
n=0

F (k)
n (q)tn +

∞∑
n=1

q2F
(k)
n−1(q)t

n −
∞∑
n=1

F
(k)
n−1(q)t

n −
∞∑
n=2

q2F
(k)
n−2(q)t

n

= 1 + tq2 +
∞∑
n=1

F
(k)
n−1(q)t

nq2n+2k−1.

Comparing the coefficients of tn in both sides of the preceding equality, we get
F

(k)
0 (q) = 1,

F
(k)
1 (q) = 1 + q2k+1,

F
(k)
n (q) = (1 − q2 + q2n−1+2k)F

(k)
n−1(q) + q2F

(k)
n−2(q).

(41)

An immediate observation shows that the sequence {F (k)
n (q)}n≥0 satisfies Equation (4). When

k = 0, Santos in [21] established an explicit formula for the F
(0)
n (q) given in (41), as follows,

F (0)
n (q) =

∞∑
j=−∞

q10j
2+jU(n, 5j)−

∞∑
j=−∞

q10j
2+11j+3U(n, 5j + 2),

where the following notation was adopted:
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U(m,A) = U(m,A, q) = T0(m,A, q) + T0(m,A+ 1, q), (42)

with

T0(m,A) = T0(m,A, q) =
m∑
j=0

(−1)j

[
m

j

]
q2

[
2m− 2j

m− A− j

]
, (43)

where [
N

M

]
q

=

[
N

M

]
=

(1− qN)(1− qN−1) · · · (1− qN−M+1)

(1− qM)(1− qM−1)(1− q)

is the Gauss polynomial. In addition, Santos conjectured the explicit formula for F (1)
n (q), with

the aid of the formula

c(n, q) =
∞∑

j=−∞

q10j
2+3jU(n, 5j)−

∞∑
j=−∞

q10j
2+13j+4U(n, 5j + 3), (44)

and showed that c(n, q) = F
(1)
n−1(q), such that

F
(1)
0 (q) = 1,

F
(1)
1 (q) = 1 + q3,

F
(1)
n (q) = (1 − q2 + q2n+1)F

(1)
n−1(q) + q2F

(1)
n−2(q),

(45)

(for more details, see [21]). In [9, Theorem 1.2.1] the identity c(n, q) = F
(1)
n−1(q), was proved.

Theorem 5.1. [9, Theorem 1.2.1] When k = 1, the expression c(n, q) = F
(1)
n−1(q) as in (44),

satisfies the recurrence relation (45) with the same initial conditions.

The proof of the Theorem 5.1 is established showing that the sequence {F (1)
n−1(q)}n≥0 given in

(44) satisfies the same relation of recurrence given in (45), with the same initial conditions. That
is, we consider the following expression

U(n+ 1, A)− (1− q2 + q2n+1)U(n,A)− q2U(n− 1, A), (46)

for A and n positive integer numbers. Making n → n + 1 in Expression (46) and replacing by
Expressions (42) −−(43) with some immediate cancellations and replaces, we get the result.

In the context of the previous discussion, comparing Expressions (20) and (44) allows us to
obtain the following result.

Theorem 5.2. For every positive integer n, it is verified the identity

F
(1)
n−1(q) =

∞∑
j=−∞

q10j
2+3jU(n, 5j)−

∞∑
j=−∞

q10j
2+13j+4U(n, 5j + 3)

= q2

(
n−2∏
i=1

(1 + q2 + q2k+2i−1)

) ⌊n−2
2

⌋∑
m=0

∆(1)
m (n)

+ (1 + q2k+1)

(
n−2∏
i=0

(1 + q2 + q2k+2i−1)

) ⌊n−1
2

⌋∑
m=0

∆(0)
m (n),

where ∆
(0)
m (n) and ∆

(1)
m (n) are given as in (17) and (19), respectively.
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It follows from Theorem 5.1 an explicit formula for the Fibonacci numbers in terms of
trinomial coefficients, since

lim
q→1

F
(1)
n−1(q) = Fn,

where Fn is the n-th Fibonacci number. Indeed, when q → 1 we derive the form,

lim
q→1

{
∞∑

j=−∞

q10j
2+3jU(n, 5j)−

∞∑
j=−∞

q10j
2+13j+4U(n, 5j + 3)

}
=

∞∑
j=−∞

{(
n+ 1

5j + 1

)
2

−

(
n+ 1

5j + 3

)
2

}
,

where
(
n

j

)
2

=
∑
h≥0

(−1)h

(
n

h

)(
2n− 2h

n− j − h

)
. Therefore, we show that the Fibonacci numbers

can be expressed in the form

Fn =
∞∑

j=−∞

{(
n+ 1

5j + 1

)
2

−

(
n+ 1

5j + 3

)
2

}
.

Moreover, replacing k = 1 in f20−4k(q, t), expressed in the form (39), we derive

f16(q, t) =
∞∑
n=0

tnqn
2+2n

(t; q2)n+1(−tq2; q2)n
=

∞∑
n=0

Qn(q)t
n,

where Qn(q) = F
(1)
n (q). Then, as a consequence of Theorem 5.1, setting q = k = 1, we obtain

the following identity for the n-th Fibonacci numbers Fn.

Corollary 5.1. For every positive integer n, is verified the identity

Fn =
∞∑

j=−∞

{(
n+ 1

5j + 1

)
2

−

(
n+ 1

5j + 3

)
2

}
.

In addition, setting q = k = 1, as a result of Theorems 5.2 and 5.1, we get the following
corollary.

Corollary 5.2. For every positive integer n, is verified the identity

Fn = 3(n−4)

⌊n−4
2

⌋∑
m=0

∆(1)
m (n− 2) + 6

⌊n−3
2

⌋∑
m=0

∆(0)
m (n− 2)

 =
∞∑

j=−∞

{(
n+1
5j+1

)
2
−
(
n+1
5j+3

)
2

}
,

where Fn is the n-th Fibonacci number and

∆(0)
m (n) =

(
−1

9

)m n−2∑
k1=2(m−1)+1

 k1−2∑
k2=2(m−2)+1

(
. . .

(
km−1−2∑
km=1

1

)
. . .

) =
(−1)m

9m

(
n− 1−m

m

)
,

and

∆(1)
m (n) =

(
−1

9

)m n−2∑
k1=2(m−2)+2

 k1−2∑
k2=2(m−2)+1

(
. . .

(
km−1−2∑
km=1

1

)
. . .

) =
(−1)m

9m

(
n− 2−m

m

)
.

It seems to us that the identities given in Theorem 5.2 and Corollary 5.2 are not existing in the
literature.
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5.3 The Slater Identity 12 and (q, k)-Pell sequence

As mentioned above, in the present subsection, we consider the results of previous Section 3, in
the aim to study the Slater Identity 12 and (q, k)-Pell sequence. In [21], is given a list of functions
f(q, t) related to the identities proposed by Slater. Among them, the function of two variables
associated with the Identity 38, is given by

f12(q, t) =
∞∑
n=0

(−t; q)nt
nq

n(n+1)
2

(t; q)n+1

. (47)

A long straightforward computation of the Expression (47), allows us to show that the function
f12(q, t) satisfies the following functional equation

(1− t)f12(q, t) = 1 + (1 + t)tqf12(q, tq). (48)

By substituting the expression f(q, t) =
∞∑
n=0

P (1)
q (n)tn in the functional equation (48), we derive

that P (1)
q (n) satisfies the same recurrence Equation (2), namely,

P
(1)
0 (q) = 1,

P
(1)
1 (q) = 1 + q,

P
(1)
n (q) = (1 + qn) P

(1)
n−1(q) + qn−1P

(1)
n−2(q).

(49)

In [21], a conjecture for an explicit formula for P (1)
n (q) in terms of q-analogous of binomial

and trinomial coefficients was proposed, namely,

c(n, q) = P
(1)
n−1(q) =

∞∑
j=−∞

q8j
2

CT (n, 1 + 8j)−
∞∑

j=−∞

q8j
2−8j+2CT (n, 3− 8j), (50)

where

CT (m,A) =
m∑
j=0

(−q
1
2 )j

[
m

j

]
q

[
2m− 2j

m− A− j

]
q1/2

with

[
N

M

]
q

=
(1− qN)(1− qN−1) · · · (1− qN−M+1)

(1− qM)(1− qM−1)(1− q)
being the Gauss polynomial. This conjecture

was proved in [9], where the result below was established.

Theorem 5.3. [9, Theorem 2.1.1] The formula c(n, q) given in (50) satisfies the recurrence (49),
with the same initial conditions, namely, c(n, q) = P

(1)
n−1(q), for every n ≥ 0.

In the context of the previous discussion, comparing the Expressions (50) and (32) allows us
to obtain the follow result.

Theorem 5.4. For a positive integer n, it is verified the identity

P (1)
n (q) =

∞∑
j=−∞

q8j
2

CT (n+ 1, 1 + 8j)−
∞∑

j=−∞

q8j
2−8j+2CT (n+ 1, 3− 8j)

=

(
n−2∏
i=1

(1 + qi+1)

) ⌊n−2
2

⌋∑
m=0

∆1
m(n) + (1 + q)

(
n−2∏
i=0

(1 + qi+1)

) ⌊n−1
2

⌋∑
m=0

∆0
m(n).
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As a consequence of Theorem 5.3, an explicit formula for the Pell numbers in terms of
trinomial coefficients is provided, since lim

q→1
P

(1)
n−1(q) = Pn, where Pn is the n-th Pell number.

Indeed, when q → 1, the Pell numbers can be written in the form

Pn =
∞∑

j=−∞

{(
n+ 1

1 + 8j

)
2

−

(
n+ 1

3− 8j

)
2

}
.

Then, we derive the following identity for Pell numbers,

Corollary 5.3. For every positive integer n, the n-th Pell number, Pn, verifies the identity

Pn =
∞∑

j=−∞

{(
n+ 1

1 + 8j

)
2

−

(
n+ 1

3− 8j

)
2

}
.

Also, setting q = 1 in Theorem 5.3 and Corollary 3.2, we get the following result,

Corollary 5.4. For every positive integer n, the n-th Pell number, Pn, verifies the identity

Pn = 2n−2

⌊n−2
2

⌋∑
m=0

∆(1)
m (n) + 4

⌊n−1
2

⌋∑
m=0

∆(0)
m (n)

 =
∞∑

j=−∞

{(
n+1
1+8j

)
2
−
(
n+1
3−8j

)
2

}
,

where

∆(0)
m (n) =

1

4m

n−2∑
k1=2(m−1)+1

 k1−2∑
k2=2(m−2)+1

(
. . .

(
km−1−2∑
km=1

1

)
. . .

)
and

∆(1)
m (n) =

1

4m

n−2∑
k1=2(m−2)+2

 k1−2∑
k2=2(m−2)+1

(
. . .

(
km−1−2∑
km=1

1

)
. . .

) .

It seems to us that the equalities given in Theorem 5.4 and Corollary 5.4 are not existing in
the literature.

6 Conclusion and perspective

In this study, we have presented new results regarding the explicit formulas for the (q, k)-Fibonacci
and (q, k)-Pell sequences. Specifically, we have based our construction on two approaches for
solving the Equations (4) and (5) considered as a difference equation of the second order with
variable coefficients, namely, the determinantal and the nested sums approaches. As consequences,
we derived the (q, k)-Cassini identities relativeto (q, k)-Fibonacci and (q, k)-Pell sequences and
the combinatorial interpretations concerned to identities of Rogers– Ramanujan type.

To the best of our knowledge, our results are not existing in the literature. Moreover, our
approaches can be applied to any classes of (q, k)-sequences described by a linear difference
equation of type (3). In addition, the applications as (q, k)-Cassini identities and combinatorial
identities of Rogers–Ramanujan type can be established.
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