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1 Introduction

Theoretical topology is a bit dry but has got tremendous applications over many other fields.
Although topology is a part of mathematics, it has influenced the whole world with strong effects
and incredible applications. Most of the real life problems can be modeled and solved by graph
theoretical concepts. The most important concept in set theory, namely, the relation on a set,
is very useful not only in theoretical studies, but also, in practical applications on a wide scale.
It acts as a key for bridging real life data with mathematical models such as graph theory and
topological structures. Further, these notions affect the process of representing topologies or
topological concepts via relations. When a practical problem has been modelled abstractly as a
relation, its properties may be studied without referring to the original problem domain.

Vertex colouring and edge colouring in graph theory is used in various research areas of
computer Science like data mining, clustering, image segmentation, image capturing, networking
and so on. A data structure can be modeled as a tree in graph theory; network topologies in
computer science can be modeled as standard and special graphs, and the new features of the
original problem can be studied. Graph colouring is used in allocation of resource, scheduling
and so on. Walks, paths and cycles in graph theory are used in many applications such as database
design concepts, travelling salesman problem, resource networking, etc.

Allam et al. [1] studied topological structures induced by binary and preorder relations and
obtained a quasi-discrete topology using a symmetric relation. Salama [11] used dominance
relations and general binary relations to generate topological structures using the lower and upper
approximations and also used the approach of closure and interior operator to induce topological
structures. Lalithambigai and Gnanachandra in [6] described the method of generating topologies
using the adjacency, incidence. non adjacency and non incidence relations on the vertex set of
graphs. Lalithambigai and Gnanachandra in [8] described the method of generating topologies
using the relations: in-valence, out-valence, reachability on the vertex set of digraphs. Gamorez
et al. [3] determined the subbasis for the topologies on the vertex set of graphs that are obtained
by the graph operations viz. the corona, the edge corona, disjunction, symmetric difference,
tensor product and strong tensor product. Nianga and Canoy in [9] described the method of
generating topologies on the vertex set of graphs that are obtained by the graph operations the
complement, the join, the corona, the composition and the cartesian product. Nianga and Canoy
in [10] used the hop neighbourhoods to generate topology on vertex set of graphs and studied
topologies induced by some unary, binary operations on graphs. Lalithambigai et al. [7] explored
the methods of generating topologies on vertex set of graphs using the graph mertics: distance,
detour distance, circular distance and circular detour distance and related the topologies induced
by different metrics for some special graphs. Many authors [4, 5, 12, 13] used various relators
to generalize various topologies. This paper aims to generalize topologies induced by chromatic
partitioning of vertex set of a graph which forms an equivalence relation on the vertex set of
graphs.
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2 Preliminaries

Fundamental definitions and preliminaries of graph theory can be found in the source [2].
An assignment of colours to the vertices of a graph in a way so that no two adjacent vertices

get the same colour is called colouring of the graph. For each colour, the set of all points which
get that colour is independent and is called a colour class. A colouring of a graph G using
at most n colours is called an n-colouring. The chromatic number χ(G) of a graph G is the
minimum number of colours needed to colour G. A graph G is called n-colourable if χ(G) ≤ n.

Each n-colouring of G partitions V (G) into n independent sets called colour classes. Such a
partitioning induced by a χ(G) colouring of G is called a chromatic partitioning. A partition of
V (G) into the smallest possible number of independent sets is called a chromatic partitioning
of G.

Two graphs G1 and G2 are isomorphic if there exists a bijection f : V (G1) −→ V (G2) such
that u, v are adjacent in G1 if and only if f(u), f(v) are adjacent in G2. Two topological spaces
(X, τ1) and (Y, τ2) are homeomorphic if there exists a bijection f : (X, τ1) −→ (Y, τ2) such that
both f and f−1 are continuous.

3 Topology induced by chromatic partition
of a vertex set of graphs

This section, presents the method of generating topologies induced by chromatic partition of
vertex set of graphs.

Definition 3.1. Let G = (V (G), E(G)) be a graph with chromatic number k and let
P = {[S1], [S2], . . . , [Sk]} be a chromatic partition of V (G). The color neighbourhood of a vertex
v of G with respect to P , denoted by CN(v;P), is equal to the colour class in P containing v,
i.e., CN(v;P) = [Si], where v ∈ [Si].

Define operators on the set of all vertex induced subgraphs of G to itself, as follows: For a
vertex induced subgraph H of G, define CL(V (H);P) = {v ∈ V (G) : CN(v;P) ⊆ V (H)}
and CU(V (H);P) = {v ∈ V (G) : CN(v;P) ∩ V (H) ̸= ∅}.

CL(V (H);P) is called colour lower approximation of V (H) with respect to the chromatic
partition P and CU(V (H);P) is called colour upper approximation of V (H) with respect to the
chromatic partition P . CU(V (H);P) − CL(V (H);P) is called colour boundary of V (H) and
is denoted by CB(V (H);P).

Observation 3.2. (i) For every v ∈ CL(V (H);P), CN(v;P) ⊆ V (H), and so CN(v;P) ∩
V (H) ̸= ∅. Hence v ∈ CU(V (H);P) and so CL(V (H);P) ⊆ CU(V (H);P).
(ii) Since v ∈ CN(v;P), it follows that v ∈ V (H) implies v ∈ V (H) ∩ CN(v;P). Hence
V (H) ⊆ CU(V (H);P).

Definition 3.3. Let G be a graph and P be a chromatic partition of V (G). A vertex induced
subgraph H of G is said to be P determinable if CL(V (H);P) = CU(V (H);P).
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Example 3.4. Consider the following graph.
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Let P = {{1, 4}, {2, 3, 5}, {6}} be a chromatic partition of V (G).
If H is a vertex induced subgraph of G with V (H) = {1, 2, 3, 4}, then CL(V (H);P) = {1, 4}
and CU(V (H);P) = {1, 2, 3, 4, 5}. So, H is not P-determinable.
If W is a vertex induced subgraph of G with V (W ) = {1, 4}, then CL(V (W );P) = {1, 4} and
CU(V (W );P) = {1, 4}. So W is P-determinable.
But W is not P ′-determinable where P ′

= {{1, 5}, {2, 3, 6}, {4}}, since CL(V (W );P ′
) = {4}

and CU(V (W );P ′
) = {1, 5, 4}.

The definition of the colour lower approximation and colour upper approximation of V (H)

ensures the following observations:

Observation 3.5.
(i) For a null graph G on n vertices, CN(v;P) = V (G) for all v ∈ V (G), where P is the

unique chromatic partition of the null graph G. So, for all vertex induced subgraphs H

with |V (H)| < n,CL(V (H);P) = ∅ and CU(V (H);P) = V (G).

(ii) In a complete graph, Kn, on n vertices, CN(v;P) = {v} for all v ∈ V (Kn), where P is
the unique chromatic partition of Kn. So, CL(V (H);P) = CU(V (H);P) = V (H) for
every vertex induced subgraph H of Kn. Hence every vertex induced subgraph of Kn is
P- determinable.

(iii) Consider the cycle graph, Cn, on n vertices where n is even. The chromatic number of Cn,
when n is even, is 2. Let P = {[S1], [S2]} be the chromatic partition of V (Cn). Let H be
the vertex induced subgraph of Cn.
If |V (H)| = 1, then CL(V (H);P) = ∅ and CU(V (H);P) = [Si], where [Si], i = 1 or 2,
is the colour class containing V (H).
If |V (H)| < n

2
, then CL(V (H);P) = ∅.

Let |V (H)| = n
2
. If V (H) = [Si], i = 1 or 2, then CL(V (H);P) = V (H); otherwise

CL(V (H);P) = ∅.
If |V (H)| = n − 1, then V (H) = [Si] ∪ A, where A ⊆ V (G) − [Si], i = 1 or 2. Hence
CL(V (H);P) = [Si], i = 1 or 2.
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If |V (H)| > 1 and V (H) ⊆ [Si], i = 1 or 2, then CU(V (H);P) = [Si], i = 1 or 2.
If |V (H)| > 1 and V (H) ∩ [Si] ̸= ∅, for i = 1, 2, then CU(V (H);P) = V (Cn).

(iv) Consider the cycle graph, Cn, on n vertices where n is odd. The chromatic number of Cn,
when n is odd, is 3. Let P = {[S1], [S2], [S3]} be the chromatic partition of V (Cn) where
[S3] is a singleton. For C3, if H is a vertex induced subgraph of C3 with |V (H)| = 1, then
CL(V (H);P) = [Si], where [Si] is the color class containing V (H).
For n ≥ 5, let H be the vertex induced subgraph of Cn. If |V (H)| = 1 and V (H) ⊆ [Si],

i = 1 or 2, then CL(V (H);P) = ∅.
If |V (H)| = 1 and V (H) = [S3], then CL(V (H);P) = [S3].
If |V (H)| = 1, then CU(V (H);P) = [Si], where [Si], i = 1, 2 or 3, is the colour class
containing V (H).
If |V (H)| < [n

2
], then CL(V (H);P) = ∅.

Let |V (H)| = [n
2
]. If V (H) = [Si], i = 1 or 2, then CL(V (H);P) = V (H); otherwise

CL(V (H);P) = ∅.
If |V (H)| = n− 1, then V (H) = [Si] ∪ A, where A ⊆ V (G)− [Si], i = 1, 2 or 3. Hence
CL(V (H);P) = [Si], i = 1, 2 or 3.
If |V (H)| > 1 and V (H) ⊆ [Si], i = 1, 2 or 3, then CU(V (H);P) = [Si], i = 1, 2 or 3.
If |V (H)| > 1 and V (H) ∩ [Si] ̸= ∅ for i = 1,2,3, then CU(V (H);P) = V (Cn).

(v) For a path graph Pn the chromatic index is 2. Let P={[S1], [S2]}, where [S1]={v1, v3, . . .}
and [S2] = {v2, v4, . . .} be a chromatic partition of V (Pn).
If H is a vertex induced subgraph such that either V (H) = [Si], i = 1 or 2, or V (H) =

[Si] ∪ A, where A ⊆ V (G)− [Si], i = 1 or 2, then CL(V (H);P) = [Si], i = 1 or 2. In all
other cases, CL(V (H);P) = ∅.
If |V (H)| < n and V (H) ⊆ [Si], i = 1 or 2, or V (H) ∩ [Si] ̸= ∅ for i = 1, 2, then
CU(V (H);P) = [Si], i = 1 or 2.

(vi) Let G be a complete bipartite graph with bipartition (V1, V2) and V1 = {v1, v2, . . . , vn},
V2 = {u1, u2, . . . , um}.
Let P = {[S1], [S2]} be the chromatic partition of V (G). If H is a vertex induced subgraph
of G with V (H) ⊆ V1; |V (H)| < n, then CL(V (H);P) = ∅ and CU(V (H);P) = V1

and if V (H) ⊆ V2; |V (H)| < m, then CL(V (H);P) = ∅ and CU(V (H);P) = V2.
If V (H) = V1 or V2, then CL(V (H);P) = CU(V (H);P) = V1 or V2. Hence the vertex
induced subgraphs whose vertex set is either V1 or V2 are P-determinable.

The following proposition presents the properties of the colour lower approximation and the
colour upper approximation of V (H).

Proposition 3.6. Let G be a graph with P = {[S1], [S2], . . . , [Sk]} as the chromatic partition of
V (G). Let H and W be two vertex induced subgraphs of G. Then the following holds:

i. CU(V (H ∪W );P) = CU(V (H);P) ∪ CU(V (W );P) and
CU(V (H ∩W );P) ⊆ CU(V (H);P) ∪ CU(V (W );P).
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ii. CL(V (H ∪W );P) ⊇ CL(V (H);P) ∪ CL(V (W );P) and
CL(V (H ∩W );P) ⊆ CL(V (H);P) ∩ CL(V (W );P).

iii. CL(CU(V (H);P);P) ⊆ CU(V (H);P); and
CU(CL(V (H);P);P) ⊆ CL(V (H);P).

Proof. i. Let v ∈ CU(V (H ∪W );P). Then CN(v;P) ∩ V (H ∪W ) ̸= ∅. So CN(v;P) ∩
(V (H) ∪ V (W )) ̸= ∅. Hence {CN(v;P) ∩ V (H)} ∪ {CN(v;P) ∩ V (W )} ̸= ∅. So
CN(v;P) ∩ V (H) ̸= ∅ or CN(v;P) ∩ V (W ) ̸= ∅.
In either of the cases, v ∈ CU(V (H);P) ∪ CU(V (W );P). Thus CU(V (H ∪W );P) ⊆
CU(V (H);P) ∪ CU(V (W );P).
Let v ∈ CU(V (H);P)∪CU(V (W );P). Then v ∈ CU(V (H);P) or v ∈ CU(V (W );P).
So CN(v;P) ∩ V (H) ̸= ∅ or CN(v;P) ∩ V (W ) ̸= ∅. Hence (CN(v;P) ∩ V (H)) ∪
(CN(v;P) ∩ V (W )) ̸= ∅. So CN(v;P) ∩ (V (H) ∪ V (W )) ̸= ∅ and v ∈ CU(V (H ∪
W );P). Thus CU(V (H);P)∪CU(V (W );P) ⊆ CU(V (H ∪W );P). Hence CU(V (H ∪
W );P) = CU(V (H);P) ∪ CU(V (W );P).

ii. Let v ∈ CU(V (H∩W );P). Then CN(v;P)∩V (H∩W ) ̸= ∅. So CN(v;P)∩V (H) ̸= ∅
or CN(v;P) ∩ V (W ) ̸= ∅. Hence v ∈ CU(V (H);P) or v ∈ CU(V (W );P). Hence
v ∈ CU(V (H);P) ∪ CU(V (W );P). Thus CU(V (H ∩ W );P) ⊆ CU(V (H);P) ∪
CU(V (W );P).
Let v ∈ CL(V (H);P)∪CL(V (W );P). Then CN(v;P) ⊆ V (H) or CN(v;P) ⊆ V (W ).
So CN(v;P) ⊆ V (H)∪ V (W ). Thus CN(v;P) ⊆ V (H ∪W ). So v ∈ CL(V (H ∪W )).
Hence CL(V (H ∪W );P) ⊇ CL(V (H);P) ∪ CL(V (W );P).
Let v ∈ CL(V (H ∩ W );P). Then CN(v;P) ⊆ V (H ∩ W ). So CN(v;P) ⊆ V (H) ∩
V (W ). Thus CN(v;P) ⊆ V (H) and CN(v;P) ⊆ V (W ). So v ∈ CL(V (H);P) ∩
CL(V (W );P). Hence CL(V (H ∩W );P) ⊆ CL(V (H);P) ∩ CL(V (W );P).

iii. Let v ∈ CL(CU(V (H);P);P). Then CN(v;P) ⊆ CU(V (H));P). Since v ∈ CN(v;P),

v ∈ CU(V (H));P). Hence CL(CU(V (H);P);P) ⊆ CU(V (H));P).
Let v ∈ CU(CL(V (H);P);P). So CN(v;P)∩CL(V (H);P) ̸= ∅. Let u ∈ CN(v;P)∩
CL(V (H);P). So u ∈ CN(v;P) and u ∈ CL(V (H);P). Now, u ∈ CL(V (H);P) ⇒
CN(u;P) ⊆ V (H). Since u ∈ CN(v;P), CN(u;P) = CN(v;P). So CN(v;P) ⊆
V (H). Thus v ∈ CL(V (H);P). Hence CU(CL(V (H);P);P) ⊆ CL(V (H);P).

Theorem 3.7. Let G be a graph with P = {[S1], [S2], . . . , [Sk]} as a chromatic partition of V (G).
Then the following statements hold:

(i) CL(V (H);P) ⊆ V (H) for any vertex induced subgraphs H of G.

(ii) If H and W are vertex induced subgraphs of G such that V (H) ⊆ V (W ), then CL(V (H);P)

⊆ CL(V (W );P).

(iii) CL(CL(V (H);P);P) = CL(V (H);P).
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Proof. (i) Let v ∈ CL(V (H);P). So CN(v;P) ⊆ V (H). Since v ∈ CN(v;P), it follows
that v ∈ V (H). Thus CL(V (H);P) ⊆ V (H).

(ii) Let v ∈ CL(V (H);P). So CN(v;P) ⊆ V (H) ⊆ V (W ), which implies v ∈ CL(V (W );P).
Thus CL(V (H);P) ⊆ CL(V (W );P).

(iii) By the definition of CL(V (H);P), it can be observed that CL(V (H);P) = ∪{[Si] : [Si] ⊆
V (H)} where [Si] are the colour classes. Hence it follows that CL(CL(V (H);P);P) =

CL(V (H);P).

The above theorem proves that CL(V (H);P) is an interior operator on V (G) for every vertex
induced subgraph H and every chromatic partition P of V (G). The operator CL(V (H)) induces
a topology on V (G) as given in the following definition.

Definition 3.8. Let G be a graph with chromatic partition P = [S1], [S2], . . . , [Sk]}. Let τCG (P)

denote the topology on V (G) induced by CL(V (H);P). For any vertex induced subgraph H of
G, V (H) ∈ τCG (P) if and only if CL(V (H);P) = V (H). The topology τCG (P) is called the
graph chromatic topology and the pair (V (G), τCG (P)) is called the graph chromatic topological
space. The vertex induced subgraphs H of G with V (H) ∈ τCG (P) are said to be open. The
vertex induced subgraphs W of G are said to be closed if V (G)− V (W ) ∈ τCG (P).

Example 3.9. Consider the following graph.

1
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Let P = {{1, 7}, {2, 5}, {3, 6}, {4}}.
τCG (P) = {∅, {1, 7}, {2, 5}, {3, 6}, {4}, {1, 7, 2, 5}, {1, 7, 3, 6}, {1, 7, 4}, {2, 5, 3, 6}, {2, 5, 4},
{3, 6, 4}, {2, 5, 3, 6, 4}, {1, 7, 3, 6, 4}, {1, 7, 2, 5, 4}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

Remark 3.10. 1. Let G be a graph with chromatic partition P = {[S1], [S2], . . . , [Sk]}. Then
{[Si] : 1 ≤ i ≤ χ(G)} is a basis for the topology τCG (P).

2. τCG (P) on vertex set of complete graphs are discrete topologies and τCG (P) on vertex set of
null graphs are indiscrete topologies.

3. A vertex induced subgraph H with V (H) ∈ τCG (P) is both open and closed.

4. Let P ′ and P ′′ be the chromatic partitions of the graphs G1 and G2 respectively. Let τCG1
(P ′

)

and τCG2
(P ′′

) be the graph chromatic topologies on V (G1) and V (G2), respectively. Then
τCG1+G2

(P), where P = P ′ ∪ P ′′ is a graph chromatic topology on V (G1 + G2) which is
finer than τCG1

(P ′
) and τCG2

(P ′′
).
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5. Let P = {[S1], [S2], . . . , [Sk]} be a chromatic partition of vertex set of a graph G. Let
τCG (P) = {Ui}. Let G′ be a graph obtained by subdividing an edge uv of G. Let w be the
new vertex obtained by subdividing the edge uv. If w is assigned a color i, 1 ≤ i ≤ χ(G),
then, on V (G

′
), τC

G
′ (P) = {Fi}, where Fi = Ui∪{w} when [Si] ⊆ Ui ; otherwise, Fi = Ui.

If w is assigned a color j, where j > χ(G), then τCG (P) on V (G) is coarser than τC
G′ (P) on

V (G
′
).

Theorem 3.11. Let G be a graph with chromatic partition P = {[S1], [S2], . . . , [Sk]}. Let τCG (P)

be the topology on V (G) induced by CL(V (H);P). Then the following holds:

(i) CU(V (H);P) = V (G) − (CL(V (G) − V (H));P), that is, CU(V (H);P) is a closure
operator on the topological space (V (G), τCG (P)).

(ii) CL(V (H);P) = V (H) if and only if CU(V (H);P) = V (H).

Proof. (i). v ∈ CU(V (H);P) ⇔ CN(v;P) ∩ V (H) ̸= ∅
⇔ there exists u ∈ CN(v;P) and u ∈ V (H)

⇔ there exists u ∈ CN(v;P) and u /∈ V (G)− V (H)

⇔ CN(v;P) ⊈ V (G)− V (H)

⇔ v /∈ CL(V (G)− V (H);P)

⇔ v ∈ V (G)− (CL(V (G)− V (H));P)

Hence CU(V (H);P) = V (G)− (CL(V (G)− V (H));P).
(ii). Assume that CL(V (H);P) = V (H).

By (i), CU(V (H);P) = V (G)− (CL(V (G)−V (H));P) = V (G)− (V (G)−V (H)) = V (H).
Conversely, assume that CU(V (H);P) = V (H).
V (H) = V (G) − (V (G) − V (H)) = V (G) − (CU(V (G) − V (H));P) = V (G) − (V (G) −
(CL(V (H));P)) = CL(V (H);P).

The following theorem characterizes the determinable subgraph in terms of topology τCG (P).

Theorem 3.12. Let G be a graph with chromatic partition P = {[S1], [S2], . . . , [Sk]}. For every
vertex induced subgraphs H of G, the following statements are equivalent:
(i) H is P-determinable.
(ii) V (H) ∈ τCG (P) i.e., CL(V (H);P) = V (H)

(iii) V (G)− V (H) ∈ τCG (P). i.e., CU(V (H);P) = V (H)

Proof. (i) ⇒ (ii) By Theorem 3.7, CL(V (H);P) ⊆ V (H). Now, v /∈ CL(V (H);P) and H is
P-determinable implies v /∈ CU(V (H);P). So, CN(v;P) ∩ V (H) = ∅. Since v ∈ CN(v;P),
it follows that v /∈ V (H). Hence V (H) ⊆ CL(V (H);P).
(ii) ⇒ (iii) By Theorem 3.7, CL(V (G)− V (H);P) ⊆ V (G)− V (H). Now, v /∈ CL(V (G)−
V (H);P) implies v ∈ V (G) − (CL(V (G) − V (H);P)), which implies v ∈ CU(V (H);P),
which implies CN(v;P) ∩ V (H) ̸= ∅. Hence there exists u ∈ CN(v;P) and u ∈ V (H).
So u ∈ CN(v;P) and u ∈ CL(V (H);P). Hence CN(v;P) = CN(u;P) and CN(u;P) ⊆
V (H). Thus CN(v;P) ⊆ V (H), which implies v ∈ V (H). So v /∈ V (G) − V (H). Hence
V (G)− V (H) ⊆ CL(V (G)− V (H);P).
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(iii) ⇒ (i) By hypothesis, CL(V (G)−V (H);P) = V (G)−V (H) ⇒ V (G)−(CU(V (H);P)) =

V (G) − V (H) ⇒ CU(V (H);P) = V (H). By Theorem 3.11, CL(V (H);P) = V (H). So
CL(V (H);P) = CU(V (H)). Hence H is P-determinable.

Theorem 3.13. In a graph chromatic topological space (V (G), τCG (P)), the following holds for
every vertex induced subgraph H:

(i) CU(CL(V (H);P);P) = (CB(V (H);P))c when (CB(V (H);P)c ⊆ CU(V (H);P).

(ii) CU(CB(V (H);P);P) = (CL(V (H);P))c when (CL(V (H);P))c ⊆ CU(V (H);P).

Proof. (i) Let v ∈ CU(CL(V (H);P);P). So, CN(v;P) ∩ V (H) ̸= ∅. Hence there exists
u ∈ CN(v;P) and CN(u;P) ⊆ V (H). Since u ∈ CN(v;P), CN(u;P) = CN(v;P).
So, v ∈ CL(V (H);P). Since (CB(V (H);P))c ⊆ CU(V (H);P) and CL(V (H);P) ⊆
CU(V (H);P), v ∈ (CB(V (H);P))c, which implies CU(CL(V (H);P);P) ⊆
(CB(V (H);P))c.
Let v ∈ (CB(V (H);P))c. Since (CB(V (H);P))c ⊆ CU(V (H);P) and CL(V (H);P) ⊆
CU(V (H);P), v ∈ CL(V (H);P). Also v ∈ CN(v;P). So CN(v;P)∩CL(V (H);P) ̸=
∅. Hence v ∈ CU(CL(V (H);P);P).
Thus CU(CL(V (H);P);P) = (CB(V (H);P))c.

(ii) Let v ∈ CU(CB(V (H);P);P). So, CN(v;P) ∩ CB(V (H);P) ̸= ∅. Hence there exists
u ∈ CN(v;P) and u ∈ CB(V (H);P). So, u ∈ CN(v;P) and u /∈ CL(V (H);P).
Since u ∈ CN(v;P), CN(u;P) = CN(v;P). So, CN(v;P) ⊈ V (H). Hence v /∈
CL(V (H);P) which gives v ∈ (CL(V (H);P))c. Hence CU(CB(V (H);P);P) ⊆
(CL(V (H);P))c.
Let v ∈ (CL(V (H);P))c. Since (CL(V (H);P))c ⊆ CU(V (H);P), v ∈ CU(V (H);P).
So, v ∈ CB(V (H);P). So, CN(v;P) ∩ CB(V (H);P) ̸= ∅. Hence,
v ∈ CU(CB(V (H);P);P) which gives (CL(V (H);P))c ⊆ CU(CB(V (H);P);P).
Thus, CU(CB(V (H);P);P) = (CL(V (H);P))c.

The following example illustrates that equality does not hold in Theorem 3.13 when
(CB(V (H);P))c ⊈ CU(V (H);P) or (CL(V (H);P))c ⊈ CU(V (H);P).

Example 3.14. Consider the following graph.

1

2

3

4

5
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Let P = {{1, 3, 5}, {2}, {4}}
Let V (H) = {1, 2, 3}.
CU(V (H);P) = {1, 2, 3, 5};CL(V (H);P) = {2};CB(V (H);P) = {1, 3, 5}.
(CL(V (H);P))c = {1, 3, 4, 5} and (CB(V (H);P))c = {2, 4}.
CU(CL(V (H);P);P) = {2} ≠ {2, 4};CU(CB(V (H);P)) = {1, 3, 5} ≠ {1, 3, 4, 5}.

Theorem 3.15. Let G1 and G2 be two graphs with the chromatic partitions P1 and P2 respectively.
If the graphs G1 and G2 are isomorphic, then the chromatic topological spaces (V (G1), τ

C
G1
(P1))

and (V (G2), τ
C
G2
(P2)) are homeomorphic.

Proof. Since G1 and G2 are isomorphic, there exists a bijection f : V (G1) −→ V (G2) such that
u, v are adjacent in G1 if and only if f(u), f(v) are adjacent in G2. Clearly, χ(G1) = χ(G2).
Let χ(G1) = χ(G2) = χ. For all i = 1, 2, . . . , χ, if [Si] = {v1, v2, . . . , vn} in G1, then in G2,
[Si] = {f(v1), f(v2), . . . , f(vn)}. Hence, it is easy to prove f and f−1 are continuous. Thus,
(V (G1), τ

C
G1
(P1)) and (V (G2), τ

C
G2
(P2)) are homeomorphic.

Corollary 3.16. If G is self complementary, then the chromatic topological spaces (V (G), τCG (P))

and (V (Gc), τCGc(P)) are homeomorphic.

Proof. Since G is self complementary, G and Gc are isomorphic. Hence by Theorem 3.15,
(V (G), τCG (P)) and (V (Gc), τCGc(P)) are homeomorphic.

4 Some new subgraphs with respect
to graph chromatic topology

This section establishes some new subgraphs with respect to the topologies induced by chromatic
partition of vertex set of graphs and explores some of their properties.

Definition 4.1. Let (V (G), τCG (P)) be the graph chromatic topological space. Pivot of a vertex
induced subgraph H,PV (H;P), is defined as PV (H;P) = ∩{V (W ) : W is a vertex induced
subgraph of G; V(W) ∈ τCG (P) and V (H) ⊆ V (W )}

Example 4.2. Consider the following graph.

1

23

45

6

Let P = {{1, 5}, {2, 3, 6}, {4}}
τCG (P) = {∅, {1, 5}, {2, 3, 6}, {4}, {1, 2, 3, 5, 6}, {1, 4, 5}, {2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}}
Let V (H) = {1, 2, 3}. PV (H;P) = {1, 2, 3, 5, 6}.
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The definition of Pivot of a vertex induced subgraph ensures the following observations:

Observation 4.3. Let G be a graph with chromatic partition P = {[S1], [S2], . . . , [Sk]}. Let H
be a vertex induced subgraph of G. Then the following holds:

1. If V (H) = {vi}, then PV (H;P) = [Si] where [Si] is the colour class containing vi.

2. If V (H) ∈ τCG (P), then PV (H;P) = V (H).

3. In all the other cases, PV (H;P) is the union of the colour classes containing the vertices
of H .

Definition 4.4. Let G be a graph with chromatic partition P . A vertex induced subgraph H of G
is said to be a P− pivotic subgraph if PV (H;P) = V (H).

Remark 4.5. A vertex induced subgraph H of a graph G with V (H) ∈ τCG (P) is P− pivotic.

Definition 4.6. Let G be a graph with chromatic partition P . A vertex induced subgraph H of G
is said to be a chromatic free subgraph with respect to P if v /∈ CU(V (H) − {v};P) for every
v ∈ V (H).

Example 4.7. Consider the following graph.

1

2

3

45

Let P = {{1, 3}, {2, 4}, {5}}
τCG (P) = {∅, {1, 3}, {2, 4{, {5}, {1, 2, 3, 4}, {1, 3, 5}, {2, 4, 5}, {1, 2, 3, 4, 5}}
Let V (H) = {2, 3}.
CU({3};P) = {1, 3};CU({2};P) = {2, 4}. So, H is a chromatic free subgraph of G.
Let V (H) = {1, 3}.
CU({3};P) = {1, 3} and 1 ∈ CU({3};P). So H is not a chromatic free subgraph of G.

Remark 4.8. A vertex induced subgraph H with V (H) ∈ τCG (P) is not a chromatic free subgraph
of a graph G.
The converse need not be true. i.e, The vertex set of a vertex induced subgraph which is not a
chromatic free subgraph does not belong to τCG (P)

Example 4.9. Consider the following graph.
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1

23

4

Let P = {{1, 3}, {2, 4}}
τCG (P) = {∅, {1, 3}, {2, 4}, {1, 2, 3, 4}}
Let V (H) = {1, 2, 3}.
CU({2, 3};P) = {1, 2, 3, 4} and 1 ∈ CU({2, 3};P).
So H is not a free subgraph of G with respect to P . But V (H) /∈ τCG (P).

Definition 4.10. Let (V (G), τCG (P)) be the graph chromatic topological space. Let H be a vertex
induced subgraph of G and v ∈ V (G). v is said to be a chromatic adherent vertex of V (H) with
respect to P if M ∩ (V (H) − {v}) ̸= ∅ for every M ∈ τCG (P) containing v. The set of all
chromatic adherent vertices of V (H) is called the chromatic derived set of V (H) with respect to
P and is denoted by CD(V (H);P).

Example 4.11. Consider the following graph.

1

27

3

5 6

4

P = {{1, 3, 6}, {2, 4, 7}, {5}}
τCG (P) = {∅, {1, 3, 6}, {2, 4, 7}, {5}, {1, 6, 3, 5}, {1, 6, 3, 7, 2, 4}, {7, 2, 4, 5}, {1, 2, 3, 4, 5, 6, 7}}
Let V (H) = {1, 2, 3}.
CD(V (H);P) = {1, 3, 4, 6, 7}

Theorem 4.12. In a graph chromatic topological space (V (G), τCG (P), CU(V (H);P) = V (H)∪
CD(V (H);P) for every vertex induced subgraph H of G.

Proof. Let v ∈ V (H) ∪ CD(V (H);P). Then v ∈ V (H) or v ∈ CD(V (H);P). If v ∈ V (H),
then v ∈ CU(V (H);P). Let v /∈ V (H). Then v ∈ CD(V (H);P). So, M ∩ (V (H) −
{v}) ̸= ∅ for every M ∈ τCG (P) containing v. Since v /∈ V (H),M ∩ V (H) ̸= ∅. Hence, v ∈
CU(V (H);P). Therefore, V (H) ∪ CD(V (H);P) ⊆ CU(V (H);P). Let v ∈ CU(V (H);P).
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If v ∈ V (H), then v ∈ V (H) ∪ CD(V (H);P). Let v /∈ V (H). Since v ∈ CU(V (H);P),
V (H) ∩ M ̸= ∅ for every M ∈ τCG (P) containing v. Hence, M ∩ (V (H) − {v}) ̸= ∅. So,
v ∈ CD(V (H);P). Thus v ∈ V (H) ∪ CD(V (H);P). Therefore, CU(V (H);P) ⊆ V (H) ∪
CD(V (H);P). Hence, CU(V (H);P) = V (H) ∪ CD(V (H);P).

Corollary 4.13. For a vertex induced subgraph W , V (W ) ∈ τCG (P) if and only if CD(V (W );P)

⊆ V (W ).

Proof. V (W ) ∈ τCG (P) if and only if CL(V (W );P) = V (W ), if and only if CU(V (W );P) =

V (W ), if and only if V (W ) ∪ CD(V (W );P) = V (W ), if and only if CD(V (W );P)

⊆ V (W ).

Theorem 4.14. Let (V (G), τCG (P)) be a graph chromatic topological space and H , W be vertex
induced subgraphs of G. Then the following holds:

i. If V (H) ⊆ V (W ), then CD(V (H);P) ⊆ CD(V (W );P).

ii. CD(V (H ∪W );P) = CD(V (H);P) ∪ CD(V (W );P).

iii. CD(V (H ∩W );P) ⊆ CD(V (H);P) ∩ CD(V (W );P).

iv. If v ∈ CD(V (H);P), then v ∈ CD(V (H)− {v};P).

Proof. i. Let v ∈ CD(V (H);P). Then, M ∩ (V (H) − {v}) ̸= ∅ for every M ∈ τ cG
containing v. Since V (H) ⊆ V (W ),M ∩ (V (W ) − {v}) ̸= ∅ for every M ∈ τCG (P)

containing v. So, v ∈ CD(V (W );P). Hence CD(V (H);P) ⊆ CD(V (W );P).

ii. As, V (H) ⊆ V (H∪W ) and V (W ) ⊆ V (H∪W ), by (i), CD(V (H);P)∪CD(V (W );P) ⊆
CD(V (H ∪W );P). Let v /∈ CD(V (H);P) ∪CD(V (W );P). Then, v /∈ CD(V (H);P)

and v /∈ CD(V (W );P). So, there exists M and N ∈ τCG (P) containing v such that
M ∩ (V (H) − {v}) = ∅ and N ∩ (V (W ) − {v}) = ∅. Hence it follows that, (M ∩
N) ∩ (V (H) − {v}) = ∅ and (M ∩ N) ∩ (V (W ) − {v}) = ∅. Also, M ∩ N ∈ τCG (P)

and v ∈ M ∩ N . Therefore, (M ∩ N) ∩ ((V (H) ∪ V (W )) − {v}) = ∅. So, v /∈
CD(V (H ∪ W );P). Hence CD(V (H ∪ W );P) ⊆ CD(V (H);P) ∪ CD(V (W );P).
Thus CD(V (H ∪W );P) = CD(V (H);P) ∪ CD(V (W );P).

iii. As, V (H)∩V (W ) ⊆ V (H) and V (H)∩V (W ) ⊆ V (W ), by (i), CD(V (H)∩V (W );P) ⊆
CD(V (H);P) and CD(V (H)∩V (W );P) ⊆ CD(V (W );P). So, CD(V (H)∩V (W );P)

⊆ CD(V (H);P) ∩ CD(V (W );P).

iv. Let v ∈ CD(V (H);P). Then, M ∩ (V (H)− {v}) ̸= ∅ for every M ∈ τCG (P) containing
v. As, (V (H)− {v})− {v} = V (H)− {v}, M ∩ ((V (H)− {v})− {v}) ̸= ∅ for every
M ∈ τCG containing v. Hence, v ∈ CD(V (H)− {v};P).

Remark 4.15. Let (V (G), τCG (P)) be a graph chromatic topological space. If H and W are vertex
disjoint vertex induced subgraphs of G, then CD(V (H);P) ∩ CD(V (W );P) ⊆ CD(V (H ∩
W );P) does not hold.
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Theorem 4.16. Let (V (G), τCG (P)) be a graph chromatic topological space. Let H be a vertex
induced subgraph of G such that |V (H)| = 1. Then CD(V (H);P) = CU(V (H);P)− V (H).

Proof. Let u ∈ CD(V (H);P). Then M ∩ (V (H)−{u}) ̸= ∅ for every M ∈ τCG (P) containing
u. Suppose that u ∈ V (H). Then V (H) = {u}. So, M ∩ (V (H) − {u}) = ∅, which is a
contradiction. Thus, u /∈ V (H). Since CD(V (H);P) ⊆ CU(V (H);P), u ∈ CU(V (H);P).
So u ∈ CU(V (H);P)− V (H). Therefore, CD(V (H);P) ⊆ CU(V (H);P)− V (H). Let u ∈
CU(V (H);P)− V (H). Then M ∩ V (H) ̸= ∅ for every M ∈ τCG containing u and u /∈ V (H).
Hence M ∩ (V (H) − {u}) ̸= ∅ for every M ∈ τCG containing u. So, u ∈ CD(V (H);P).
Therefore, CU(V (H);P)− V (H) ⊆ CD(V (H);P). Thus, CD(V (H);P) = CU(V (H);P)−
V (H).

5 Conclusion

In this paper a method of constructing topologies on vertex set of a graph G induced by chromatic
partition of vertex set of the graph is presented. Colour lower approximation and colour upper
approximation of vertex induced subgraphs are introduced and the open and closed sets of the
topology generated by chromatic partition on the vertex set of graphs are acquainted. Some of
the properties of colour lower approximation and colour upper approximation of vertex induced
subgraphs are also explored. It is proved that the chromatic topological spaces associated with the
isomorphic graphs are homeomorphic. Some new subgraphs based on colour upper approximation
and colour lower approximation such as pivotic subgraphs, chromatic free subgraphs, chromatic
derived set of a vertex induced subgraph have been established and some of their properties have
been studied.

References

[1] Allam, A. A., Bakeir, M. Y., & Abo-Tabl, E. A. (2008). Some methods for generating
topologies by relations. Bulletin of the Malaysian Mathematical Sciences Society, 31(1),
35–45.

[2] Chartrand, G., & Zhang, P. (2006). Introduction to Graph Theory. Tata McGraw-Hill, New
Delhi.

[3] Gamorez, A. E., Nianga, C. G. S., & Canoy Jr., S. R. (2019). Topologies induced by
neighborhoods of a graph under some binary operation. European Journal of Pure and
Applied Mathematics, 12(3), 749–755.

[4] Kovacs, Z. (1991). Properties of Relators Generated by Interiors. Diploma Thesis, Lajos
Kosuth University, Debrecen (Hungarian).

[5] Kurdics, J. (1991). Connected and Well-chained Relator Spaces. Doctoral Dissertation,
Lajos Kosuth University, Debrecen (Hungarian).

633



[6] Lalithambigai, K., & Gnanachandra. P. (2023). Topologies induced on Vertex Set of Graphs.
Mapana - Journal of Sciences, 22(1), 35–52.

[7] Lalithambigai, K., & Gnanachandra. P., & Jafari. S. (2023). Topologies induced by Graph
Metrics on the Vertex Set of Graphs. Mathematics for Applications, 12, 73–88.

[8] Lalithambigai, K., & Gnanachandra. P. (2023). Topological Structures on Vertex Set of
Digraphs. Baghdad Science Journal, 20(1 Special Issue), 350–358.

[9] Nianga, C. G. S., & Canoy Jr., S. R. (2019). On topologies induced by some unary and
binary operations. European Journal of Pure and Applied Mathematics, 12(2), 499–505.

[10] Nianga, C. G. S., & Canoy Jr., S. R. (2019). On a finite topological space induced by
hop neighborhoods of a graph. Advances and Applications in Discrete Mathematics, 21(1),
79–89.

[11] Salama, A. S. (2008). Topologies induced by relations with applications. Journal of
Computer Science, 4(10), 877–887.
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