Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2023, Volume 29, Number 3, 603–619 DOI: 10.7546/nntdm.2023.29.3.603-619

The group determinants for $\mathbb{Z}_n imes H$

Bishnu Paudel¹ and Chris Pinner²

¹ Department of Mathematics, Kansas State University Manhattan KS 66506, United States e-mail: bpaudel@ksu.edu

² Department of Mathematics, Kansas State University Manhattan KS 66506, United States e-mail: pinner@math.ksu.edu

Received: 22 March 2023 Accepted: 11 August 2023 Revised: 4 August 2023 Online First: 25 August 2023

Abstract: Let \mathbb{Z}_n denote the cyclic group of order *n*. We show how the group determinant for $G = \mathbb{Z}_n \times H$ can be simply written in terms of the group determinant for *H*. We use this to get a complete description of the integer group determinants for $\mathbb{Z}_2 \times D_8$ where D_8 is the dihedral group of order 8, and $\mathbb{Z}_2 \times Q_8$ where Q_8 is the quaternion group of order 8. **Keywords:** Integer group determinant, Dihedral group, Quaternion group. **2020 Mathematics Subject Classification:** 11C20, 15B36; Secondary: 11C08, 43A40.

1 Introduction

At the meeting of the American Mathematical Society in Hayward, California, in April 1977, Olga Taussky-Todd [15] asked whether one could characterize the values of the group determinant when the entries are all integers. There was particular interest in the case of \mathbb{Z}_n , the cyclic group of order n, where the group determinant corresponds to the $n \times n$ circulant determinant. For a prime p, a complete description was obtained for the cyclic groups \mathbb{Z}_p and \mathbb{Z}_{2p} in [11] and [7], and for D_{2p} and D_{4p} in [8] and [1]. Here D_{2n} denotes the dihedral group of order 2n. In general though this quickly becomes a hard problem, with only partial results known even for \mathbb{Z}_{p^2} once

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

 $p \ge 7$ (see [12] and [10]). A complete description has though been obtained for all groups of order less than 16 (see [14] and [13]), and for 6 of the 14 groups of order 16, D_{16} and the five Abelian groups \mathbb{Z}_{16} , $\mathbb{Z}_2 \times \mathbb{Z}_8$, \mathbb{Z}_2^4 , \mathbb{Z}_2^4 and $\mathbb{Z}_2^2 \times \mathbb{Z}_4$ (see [1, 16, 18, 20, 21] and [19]). We write $\mathcal{S}(G)$ for the set of integer group determinants for the group G.

Our goal here is to show how the group determinant for a group of the form $G = \mathbb{Z}_n \times H$ can be straightforwardly related to the group determinants for the group H. We use this to give a complete description for two more non-Abelian groups of order 16, namely $\mathbb{Z}_2 \times D_8$ and $\mathbb{Z}_2 \times Q_8$ where Q_8 is the quaternion group.

Here we shall think of the group determinants as being defined on elements of the group ring $\mathbb{C}[G]$

$$\mathcal{D}_G\left(\sum_{g\in G}a_gg\right) = \det\left(a_{gh^{-1}}\right),$$

although our ultimate interest is of course in the integer group determinants $\mathbb{Z}[G]$. We observe the multiplicative property

$$\mathcal{D}_G(xy) = \mathcal{D}_G(x)\mathcal{D}_G(y), \tag{1.1}$$

/

using that

$$x = \sum_{g \in G} a_g g, \quad y = \sum_{g \in G} b_g g \Rightarrow xy = \sum_{g \in G} \left(\sum_{hk=g} a_h b_k \right) g.$$

Products with \mathbb{Z}_n 2

We show that when $G = \mathbb{Z}_n \times H$ we can write our integer group G-determinant as a product of *n* group *H*-determinants of elements in $\mathbb{Z}[\omega_n][H]$, where $\omega_n := e^{2\pi i/n}$. This is Lemma 1 of [9].

Theorem 2.1. If $G = \mathbb{Z}_n \times H$ then for any a_{ih} in \mathbb{C}

$$\mathcal{D}_G\left(\sum_{i=0}^{n-1}\sum_{h\in H}a_{ih}(i,h)\right) = \prod_{y^n=1}\mathcal{D}_H\left(\sum_{h\in H}\left(\sum_{i=0}^{n-1}a_{ih}y^i\right)h\right).$$
(2.1)

Results of this flavour have been obtained before [17], but here we do not need to assume that *H* is Abelian.

Proof. One way to see this is to use Frobenius' factorisation [5] of the group determinant in terms of the irreducible, non-isomorphic, representations ρ of G (see for example [2] or [6])

$$\mathcal{D}_G\left(\sum_{g\in G} a_g g\right) = \prod_{\rho} \det\left(\sum_{g\in G} a_g \rho(g)\right)^{\deg(\rho)}.$$

Observe that every representation ρ for H extends to n representations for G

$$\rho_y(i,h) = y^i \rho(h),$$

where y runs through the *n*-th roots of unity.

More directly we can alternatively follow Newman's proof [11] of the factorization of the group determinant for $G = \mathbb{Z}_n$. Newman observes that the group matrix M for $\sum_{i \in \mathbb{Z}_n} A_i i$, that is the circulant matrix with first row $A_0, A_1, \ldots, A_{n-1}$, takes the form

$$M = A_0 I_n + A_1 P + \dots + A_{n-1} P^{n-1}, \quad P = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Now P has eigenvalues $y, y^n = 1$, so the matrix M will have the same eigenvectors as P but with eigenvalues

$$A_0 + A_1 y + \dots + A_{n-1} y^{n-1}, \quad y = 1, \omega_n, \omega_n^2, \dots, \omega_n^{n-1}.$$
 (2.2)

Hence the matrix of eigenvectors B will yield a diagonal matrix $B^{-1}MB$ with the values (2.2) down the diagonal.

Now suppose that $H = \{h_1, \ldots, h_m\}$ and order the elements so that the first row of the $G = \mathbb{Z}_n \times H$ group matrix \mathcal{M} for $\sum_{i \in \mathbb{Z}_n, h \in H} a_{ih}(i, h)$ consists of the

$$a_{0h_1}, \ldots, a_{0h_m}, a_{1h_1}, \ldots, a_{1h_m}, \ldots, a_{(n-1)h_1}, \ldots, a_{(n-1)h_m}$$

Then it is not hard to see that first m rows of our G group matrix \mathcal{M} will consists of $m \times m$ blocks $A_0, A_1, \ldots, A_{n-1}$, where A_i is the group H matrix associated to $\sum_{h \in H} a_{ih}h$, and the subsequent rows the same blocks cyclically permuted.

Hence if we take the $n \times n$ matrix B and replace each entry a_{ij} with the $m \times m$ block $a_{ij}I_m$ we obtain an $nm \times nm$ matrix \mathcal{B} , where $\mathcal{B}^{-1}\mathcal{M}\mathcal{B}$ will now be a block matrix with entries the same linear combinations of the blocks A_i as occured for the elements in $B^{-1}MB$; that is blocks (2.2) down the diagonal and zeros elsewhere. The result is then plain.

Notice that if we start with an integer G group determinant, then we can assemble the n determinants in (2.1) into $\tau(n)$ integers by combining the primitive dth roots of unity, $d \mid n$. If H is Abelian, then these will be integer H group determinants

$$\prod_{\substack{y=\omega_d^j\\\gcd(j,d)=1}} \mathcal{D}_H\left(\sum_{h\in H} \left(\sum_{i=0}^{n-1} a_{ih} y^i\right) h\right) = \mathcal{D}_H\left(\prod_{\substack{y=\omega_d^j\\\gcd(j,d)=1}} \sum_{h\in H} \left(\sum_{i=0}^{n-1} a_{ih} y^i\right) h\right), \quad (2.3)$$

since the resulting coefficients will be symmetric expressions in the conjugates and hence in \mathbb{Z} . In particular, an integer $G = \mathbb{Z}_n \times H$ group determinant is an integer group H determinant, though this can be seen more directly (if $H = \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$, then the G group determinant reduces to a product of an integer polynomial $F(y, x_1, \ldots, x_k)$ over the n, n_1, \ldots, n_k th roots of unity and $\prod_{y^n=1} F(y, x_1, \ldots, x_k)$ is just an integer polynomial in one less variable; see also [16, Theorem 1.4]). If H is non-Abelian, then the process (2.3) may leave elements in $\mathbb{Z}[\omega_d][H]$, and we are unable to say that an integer G group determinant must be an integer H group determinant, except for the case when n = 2.

3 The group $\mathbb{Z}_2 \times D_8$

Notice that when n = 2 we can write an integer $\mathbb{Z}_2 \times H$ group determinant as a product of two integer H group determinants:

$$\mathcal{D}_{\mathbb{Z}_{2}\times H}\left(\sum_{h\in H}a_{h}(0,h)+\sum_{h\in H}b_{h}(1,h)\right)=\mathcal{D}_{H}\left(\sum_{h\in H}(a_{h}+b_{h})h\right)\mathcal{D}_{H}\left(\sum_{h\in H}(a_{h}-b_{h})h\right)$$

In the case of $H = D_8 = \langle F, R | F^2 = 1, R^4 = 1, RF = FR^3 \rangle$ we take the coefficients of the group elements $(0, R^j)$, $(1, R^j)$, $(0, FR^j)$ and $(1, FR^j)$, as the coefficients of x^j in four cubics, f_1, f_2, g_1 and g_2 respectively. The $\mathbb{Z}_2 \times D_8$ determinant, which we will denote $\mathcal{D}(f_1, f_2, g_1, g_2)$, is then the product of two D_8 determinants, which from [8] or [1] can be written

$$\mathcal{D}(f_1, f_2, g_1, g_2) = \mathcal{D}(1)\mathcal{D}(-1), \quad \mathcal{D}(z) = m_1(z)m_2(z)\ell(z)^2,$$
 (3.1)

where

$$m_1(z) = (f_1(1) + zf_2(1))^2 - (g_1(1) + zg_2(1))^2,$$

$$m_2(z) = (f_1(-1) + zf_2(-1))^2 - (g_1(-1) + zg_2(-1))^2,$$

and

$$\ell(z) = |f_1(i) + zf_2(i)|^2 - |g_1(i) + zg_2(i)|^2.$$
(3.2)

We obtain a complete description of the $\mathbb{Z}_2 \times D_8$ integer group determinants.

Theorem 3.1. For $G = \mathbb{Z}_2 \times D_8$ the set of odd integer group determinants is

$$A := \{ m(m+16k) : m, k \in \mathbb{Z}, m \text{ odd} \}.$$

The even determinants are the $2^{16}m, m \in \mathbb{Z}$.

Notice the set of achieved odd values A consists of all the integers 1 mod 16 and exactly those integers 9 mod 16 which contain a prime $p \equiv \pm 3$ or $\pm 5 \mod 16$. These are the same as the odd values found in [16] for $\mathbb{Z}_2 \times \mathbb{Z}_8$. In fact $\mathcal{S}(\mathbb{Z}_2 \times D_8) \subsetneq \mathcal{S}(\mathbb{Z}_2 \times \mathbb{Z}_8)$. Sets of this type occur for other 2-groups.

Proposition 3.1. The odd integer group determinants for $G = \mathbb{Z}_2 \times \mathbb{Z}_{2^n}$ are the

$$\{m(m+|G|k) : m, k \in \mathbb{Z}, m \text{ odd }\}.$$

The odd integer group determinants for $G = \mathbb{Z}_2^n$ or $\mathbb{Z}_2^n \times \mathbb{Z}_4$ are the $m \equiv 1 \mod |G|$.

Note, for any group the $m \equiv 1 \mod |G|$ are in $\mathcal{S}(G)$, with 1 + k|G| obtained by taking $a_g = 1 + k$ for the identity and $a_g = k$ for the others.

Proof of Theorem 3.1. Achieving the values. We write $H(x) := (x + 1)(x^2 + 1)$.

We achieve the values in A with $m = \pm 1, \pm 9 \mod{16}$ from

$$\mathcal{D}(1+kH,kH,kH,kH) = 1 + 16k.$$

We get those with $\pm m \equiv 5 \mod 16$ from (5+16t)(5+16k) achieved with

$$\mathcal{D}(1+x+x^2+(t+k)H, x-x^3+(t-k)H, 1+x+(t+k)H, 1-x^2+(t-k)H)$$

and those with $\pm m \equiv 3 \mod 16$ from (3 + 16t)(3 + 16k) achieved with

$$\mathcal{D}(1+x+(t+k)H, 1+x-x^2-x^3+(t-k)H, 1+x-x^3+(t+k)H, x-x^3+(t-k)H).$$

We achieve the even values $2^{18}m$ using

$$\mathcal{D}(1 + x + x^2 - mH, 1 - x^2 - x^3 - mH, 1 + x - x^3 + mH, x + mH),$$

the $2^{17}(2m+1)$ with

$$\mathcal{D}(1 + x + x^{2} + x^{3} + mH, 1 + x + mH, x + mH, 1 + x^{2} - x^{3} + mH),$$

the $2^{16}(1+4m)$ from

$$\mathcal{D}(1 + x + x^{2} + x^{3} + mH, 1 + x - x^{2} - x^{3} + mH, 1 + x - x^{2} - x^{3} + mH, 1 - x + mH)$$

and the $2^{16}(-1+4m)$ from

$$\mathcal{D}(1 + x + x^2 - mH, 1 + x - x^3 - mH, 1 - x^3 - mH, x - x^2 - mH).$$

The odd values. We show that any odd determinant must lie in A. We know that any $\mathbb{Z}_2 \times D_8$ determinant must be the product of two D_8 determinants, which we can write

$$\mathcal{D}_1 = m_1 m_2 \ell_1^2, \quad \mathcal{D}_2 = m_3 m_4 \ell_2^2 \tag{3.3}$$

with

$$m_1 = f(1)^2 - g(1)^2$$
, $m_2 = f(-1)^2 - g(-1)^2$, $\ell_1 = |f(i)|^2 - |g(i)|^2$,

and

$$m_3 = (f(1) + 2h(1))^2 - (g(1) + 2k(1))^2,$$

$$m_4 = (f(-1) + 2h(-1))^2 - (g(-1) + 2k(-1))^2,$$

$$\ell_2 = |f(i) + 2h(i)|^2 - |g(i) + 2k(i)|^2.$$

Assume that $\mathcal{D}_1\mathcal{D}_2$ is odd. Switching f and g and replacing f by -f as necessary, we shall assume that $f(1) \equiv 1 \mod 4$ and $2 \mid g(1)$. The result will follow once we show that

$$\mathcal{D}_1 \equiv \mathcal{D}_2 \pmod{16}$$
.

We write

$$h(x) = \sum_{i=0}^{3} a_i (x-1)^i, \quad k(x) = \sum_{i=0}^{3} b_i (x-1)^i, \quad f(x) = \sum_{i=0}^{3} c_i (x-1)^i, \quad g(x) = \sum_{i=0}^{3} d_i (x-1)^i,$$

where $c_0 = 1 \mod 4$ and $2 \mid d_0$. Now

$$m_3 - m_1 = 4f(1)h(1) + 4h(1)^2 - 4k(1)g(1) - 4k(1)^2 \equiv 4a_0 + 4a_0^2 - 4b_0d_0 - 4b_0^2 \mod 16,$$

$$m_4 - m_2 = 4f(-1)h(-1) + 4h(-1)^2 - 4k(-1)g(-1) - 4k(-1)^2$$

$$\equiv 4(a_0 - 2a_1 - 2a_0c_1) + 4a_0^2 - 4(b_0d_0 - 2b_0d_1) - 4b_0^2 \mod 16,$$

and

$$\ell_2 - \ell_1 = (2h(i)\overline{f(i)} + 2\overline{h(i)}f(i) + 4|h(i)|^2) - (2k(i)\overline{g(i)} + 2\overline{k(i)}g(i) + 4|k(i)|^2)$$

$$\equiv (4a_0 - 4a_0c_1 - 4a_1 + 4a_0^2) - (-4b_0d_1 + 4b_0^2) \mod 8$$

and

$$\ell_2^2 \equiv \ell_1^2 + 8(a_0 - a_0c_1 - a_1 + a_0^2 + b_0d_1 - b_0^2) \mod 16$$

Since $m_1, m_2, \ell_1^2 \equiv 1 \mod 4$ we get

$$\mathcal{D}_1 - \mathcal{D}_2 \equiv 4(a_0 + a_0^2 - b_0 d_0 - b_0^2) + 4(a_0 - 2a_1 - 2a_0 c_1 + a_0^2 - b_0 d_0 + 2b_0 d_1 - b_0^2) + 8(a_0 - a_0 c_1 - a_1 + a_0^2 + b_0 d_1 - b_0^2) \equiv 0 \mod 16.$$

The even values. We know from [1] that the even D_8 determinants are divisible by 2^8 . So any even $\mathbb{Z}_2 \times D_8$ determinant $\mathcal{D}_1 \mathcal{D}_2$ must be a multiple of 2^{16} , and all these are achieved.

Proof of Proposition 3.1. Suppose that H is an abelian 2-group and $G = \mathbb{Z}_2 \times H$. Then by [3, Theorem 2.3] we can write the G-determinant as a product of two H-determinants $\mathcal{D} = \mathcal{D}_1 \mathcal{D}_2$ with $\mathcal{D}_2 \equiv \mathcal{D}_1 \mod |G|$, and

$$\mathcal{S}(\mathbb{Z}_2 \times H) \subseteq \{ m(m+k|G|) : m \in \mathcal{S}(H) \}.$$
(3.4)

For $G = \mathbb{Z}_2 \times \mathbb{Z}_t$, $t = 2^n$, the determinants take the form

$$\mathcal{D}_1 = \prod_{x^t=1} F(x, 1),$$
$$\mathcal{D}_2 = \prod_{x^t=1} F(x, -1)$$

for some F(x, y) = f(x) + yh(x), the coefficients of x^i in f and h corresponding to the a_g for g = (0, i) and (1, i) respectively. For an odd positive integer m, taking

$$F(x,y) = \prod_{p^{\alpha} \parallel m} \left(\frac{x^{p}-1}{x-1}\right)^{\alpha} + k(y+1)\left(\frac{x^{t}-1}{x-1}\right)$$

achieves m(m + k|G|).

For $G = \mathbb{Z}_2^n$ all the odd values must be $1 \mod |G|$ by [4, Lemma 2.1]. For $G_n = \mathbb{Z}_2^n \times \mathbb{Z}_4$ observe when n = 1 that $m(m+8k) \equiv m^2 \equiv 1 \mod 8$, and in general that if $m \equiv 1 \mod |G_{n-1}|$ then $m(m+|G_n|k) \equiv m^2 \equiv 1 \mod |G_n|$.

Interestingly, (3.4) also holds for the non-Abelian groups $H = D_8$ and Q_8 .

4 The group $\mathbb{Z}_2 imes Q_8$

A $\mathbb{Z}_2 \times Q_8$ determinant will be a product of two Q_8 determinants, which by [14] can be written in a very similar way to (3.1);

$$\mathcal{D}(f_1, f_2, g_1, g_2) = \mathcal{D}(1)\mathcal{D}(-1), \quad \mathcal{D}(z) = m_1(z)m_2(z)\ell(z)^2,$$
(4.1)

with

$$m_1(z) = (f_1(1) + zf_2(1))^2 - (g_1(1) + zg_2(1))^2,$$

$$m_2(z) = (f_1(-1) + zf_2(-1))^2 - (g_1(-1) + zg_2(-1))^2,$$

but now

$$\ell(z) = |f_1(i) + zf_2(i)|^2 + |g_1(i) + zg_2(i)|^2.$$

Writing $Q_8 = \langle A, B : A^4 = 1, B^2 = A^2, AB = BA^{-1} \rangle$, the coefficient of x^i in the cubic f_1, f_2, g_1 and g_2 , corresponds to the a_g in the $\mathbb{Z}_2 \times Q_8$ group determinant for $g = (0, A^i), (1, A^i), (0, BA^i)$ and $(1, BA^i)$, respectively.

We obtain a complete description of the $\mathbb{Z}_2 \times Q_8$ integer group determinants.

Theorem 4.1. When $G = \mathbb{Z}_2 \times Q_8$ the odd integer group determinants are the integers 1 mod 16, plus the integers 9 mod 16 of the form

$$s_1 s_2 (\ell_1 \ell_2)^2$$
, $s_1, s_2 \equiv -3 \mod 8$, $\ell_1, \ell_2 \equiv 3 \mod 4$,

for some s_1, s_2 *in* \mathbb{Z} *and* ℓ_1, ℓ_2 *in* \mathbb{N} *, with*

$$s_1 \equiv s_2 \mod 16 \quad and \quad \ell_1 \equiv \ell_2 \mod 8 \tag{4.2}$$

or

$$s_1 \equiv s_2 + 8 \mod 16 \quad and \quad \ell_1 \equiv \ell_2 + 4 \mod 8.$$
 (4.3)

The even values are the $2^{18}m$, m in \mathbb{Z} , the

$$2^{17}(2m+1)p^2, \quad m \in \mathbb{Z}, \ p \equiv 3 \bmod 4,$$

the $2^{16}m$ with $m \equiv 1, 3 \text{ or } 5 \mod 8$, and those with $m \equiv 7 \mod 8$ of the form

$$2^{16}(8t-1)\ell^2, \ t \in \mathbb{Z}, \ \ell \in \mathbb{N}, \ \ell \equiv 1 \bmod 4, \ \ell \ge 5,$$
(4.4)

or

$$(8t+3)(8k-3)2^{16}, \ t,k \in \mathbb{Z}.$$
(4.5)

For the three non-Abelian groups of order 16 whose $\mathcal{S}(G)$ is now known we have:

$$\mathcal{S}(\mathbb{Z}_2 \times Q_8) \subsetneq \mathcal{S}(\mathbb{Z}_2 \times D_8) \subsetneq \mathcal{S}(D_{16}) = \{4m+1 : m \in \mathbb{Z}\} \cup \{2^{10}m : m \in \mathbb{Z}\}$$

Proof. Achieving the odd values. We write $H(x) := (x + 1)(x^2 + 1)$.

We achieve the values $1 \mod 16$ from

$$\mathcal{D}(1+kH, kH, kH, kH) = 1 + 16k.$$

To achieve the specified values 9 mod 16 we write the ℓ_i as a sum of four squares. Notice that since they are 3 mod 4, we must have three of them, say, A_i, B_i, C_i , odd and one, D_i , even, with $2 \parallel D_i$ if $\ell_i \equiv 7 \mod 8$ and $4 \mid D_i$ if $\ell_i \equiv 3 \mod 8$. Hence with a choice of sign we can write

$$\ell_i = A_i^2 + B_i^2 + C_i^2 + D_i^2$$
, A_i, B_i, C_i odd, D_i even,

with

$$A_1 \equiv A_2 \mod 4$$
, $B_1 \equiv B_2 \mod 4$, $C_1 \equiv C_2 \mod 4$,

and

$$D_1 \equiv D_2 \mod 4$$
 if $\ell_1 \equiv \ell_2 \mod 8$,

and

$$D_1 \equiv D_2 + 2 \pmod{4}$$
 if $\ell_1 \equiv \ell_2 + 4 \pmod{8}$.

In the case $\ell_1 \equiv \ell_2 \mod 8$ we get $(8m-3)(8k-3)(\ell_1\ell_2)^2$, $m \equiv k \mod 2$, from

$$f_{1} = \frac{1}{4}(D_{1} + D_{2}) + \frac{1}{4}(B_{1} + B_{2} - 2)x - \frac{1}{4}(D_{1} + D_{2})x^{2} - \frac{1}{4}(B_{1} + B_{2} + 2)x^{3} + \frac{1}{2}(m + k)H,$$

$$f_{2} = \frac{1}{4}(D_{1} - D_{2}) + \frac{1}{4}(B_{1} - B_{2})x - \frac{1}{4}(D_{1} - D_{2})x^{2} - \frac{1}{4}(B_{1} - B_{2})x^{3} + \frac{1}{2}(m - k)H,$$

$$g_{1} = \frac{1}{4}(C_{1} + C_{2} - 2) + \frac{1}{4}(A_{1} + A_{2} - 2)x - \frac{1}{4}(C_{1} + C_{2} + 2)x^{2} - \frac{1}{4}(A_{1} + A_{2} + 2)x^{3} + \frac{1}{2}(m + k)H,$$

$$g_{2} = \frac{1}{4}(C_{1} - C_{2}) + \frac{1}{4}(A_{1} - A_{2})x - \frac{1}{4}(C_{1} - C_{2})x^{2} - \frac{1}{4}(A_{1} - A_{2})x^{3} + \frac{1}{2}(m - k)H.$$

In the case $\ell_1 \equiv \ell_2 + 4 \mod 8$ we get $(8m - 3)(5 - 8k)(\ell_1 \ell_2)^2$, $m \equiv k \mod 2$, from

$$f_{1} = \frac{1}{4}(D_{1} + D_{2} - 2) + \frac{1}{4}(B_{1} + B_{2} - 2)x - \frac{1}{4}(D_{1} + D_{2} + 2)x^{2} - \frac{1}{4}(B_{1} + B_{2} + 2)x^{3} + \frac{1}{2}(m + k)H,$$

$$f_{2} = \frac{1}{4}(D_{1} - D_{2} + 2) + \frac{1}{4}(B_{1} - B_{2})x - \frac{1}{4}(D_{1} - D_{2} - 2)x^{2} - \frac{1}{4}(B_{1} - B_{2})x^{3} + \frac{1}{2}(m - k)H,$$

$$g_{1} = \frac{1}{4}(C_{1} + C_{2} - 2) + \frac{1}{4}(A_{1} + A_{2} - 2)x - \frac{1}{4}(C_{1} + C_{2} + 2)x^{2} - \frac{1}{4}(A_{1} + A_{2} + 2)x^{3} + \frac{1}{2}(m + k)H,$$

$$g_{2} = \frac{1}{4}(C_{1} - C_{2}) + \frac{1}{4}(A_{1} - A_{2})x - \frac{1}{4}(C_{1} - C_{2})x^{2} - \frac{1}{4}(A_{1} - A_{2})x^{3} + \frac{1}{2}(m - k)H.$$

Odd values must be of the stated form. We proceed as in the case of $\mathbb{Z}_2 \times D_8$, with (3.3) becoming

$$\mathcal{D}_1 = m_1 m_2 \ell_1^2, \quad \mathcal{D}_2 = m_3 m_4 \ell_2^2, \tag{4.6}$$

where again

$$m_1 = f(1)^2 - g(1)^2,$$

$$m_2 = f(-1)^2 - g(-1)^2,$$

$$m_3 = (f(1) + 2h(1))^2 - (g(1) + 2k(1))^2,$$

$$m_4 = (f(-1) + 2h(-1))^2 - (g(-1) + 2k(-1))^2,$$

but this time

$$\ell_1 = |f(i)|^2 + |g(i)|^2, \ \ \ell_2 = |f(i) + 2h(i)|^2 + |g(i) + 2k(i)|^2.$$

This does not change $\ell_1 - \ell_2 \mod 8$, so again we must have $\mathcal{D}_1 \equiv \mathcal{D}_2 \mod 16$ and $\mathcal{D}_1\mathcal{D}_2$ is 1 or 9 mod 16. The 1 mod 16 are all achievable, so assume $\mathcal{D}_1\mathcal{D}_2 \equiv 9 \mod 16$. Since all the $m_i \equiv m_1 \mod 4$, plainly the $\mathcal{D}_i \equiv m_1^2 \ell_i^2 \equiv 1 \mod 4$, so we can assume that $\mathcal{D}_1, \mathcal{D}_2 \equiv -3 \mod 8$.

Since the $\ell_i^2 \equiv 1 \mod 8$, we get $m_1m_2, m_3m_4 \equiv -3 \mod 8$. Since m_1 and m_2 are 1 or $-3 \mod 8$ we must have one of each, and $2 \parallel g(1)$ and $4 \mid g(-1)$ or vice versa. Hence d_1 must be odd and

$$\ell_1 \equiv (c_0 + c_1)^2 + c_1^2 + (d_0 + d_1)^2 + d_1^2 \equiv 3 \mod 4.$$

From above we also know that $\ell_1 \equiv \ell_2 \mod 4$. That is, $\mathcal{D}_1 \mathcal{D}_2 = s_1 s_2 (\ell_1 \ell_2)^2$ with $s_1 \equiv s_2 \equiv -3 \mod 8$ and $\ell_1 \equiv \ell_2 \equiv 3 \mod 4$. Plainly we have $s_1 s_2 \equiv 9 \mod 16$ if $s_1 \equiv s_2 \equiv -3$ or 5 mod 16 and $s_1 s_2 \equiv 1 \mod 16$ if one is -3 and the other 5 mod 16, while $\ell_1 \ell_2 \equiv 1 \mod 8$ and $(\ell_1 \ell_2)^2 \equiv 1 \mod 16$ if $\ell_1 \equiv \ell_2 \equiv 3$ or 7 mod 8 and $\ell_1 \ell_2 \equiv -3 \mod 8$ and $(\ell_1 \ell_2)^2 \equiv 9 \mod 16$ if one is 3 and the other 7 mod 8. Hence the restrictions (4.2) and (4.3) to get $\mathcal{D}_1 \mathcal{D}_2 \equiv 9 \mod 16$.

Achieving the even values. We obtain the $2^{18}m$, m odd, from

$$f_1 = 1 + x^2 + \frac{1}{2}(m+1)H, \qquad f_2 = \frac{1}{2}(m-1)H,$$

$$g_1 = -(1+x) + \frac{1}{2}(m+1)H, \qquad g_2 = \frac{1}{2}(m-1)H,$$

and the $2^{19}m\ {\rm from}$

$$f_1 = 1 + x + x^2 - mH, \qquad f_2 = -x - x^3 - mH, g_1 = x + x^3 + mH, \qquad g_2 = -x^3 + mH.$$

We get the $2^{16}(4m+1)$ from

$$f_1 = 1 + x + x^2 + x^3 + mH,$$
 $f_2 = mH,$
 $g_1 = 1 - x + mH,$ $g_2 = mH.$

We get $2^{16}(8t+3)(4s+1)$ from

$$f_1 = 1 + x + x^2 + x^3 + (t+s)H, \qquad f_2 = 1 + x^2 - x^3 + (t-s)H,$$

$$g_1 = (t-s)H, \qquad g_2 = x^3 + (t+s)H,$$

with s = 0 giving us the $2^{16}m$, $m \equiv 3 \mod 8$, and s = 2k - 1 the values (4.5). For $\ell \ge 5$ with $\ell \equiv 1 \mod 4$ we can write $2\ell - 4 \equiv 6 \mod 8$ as a sum of three squares with two of them odd and the other 2 mod 4:

 $2\ell = (4a+1)^2 + 2^2 + (4c-1)^2 + (4d-2)^2$

and we can get $2^{16}(4m-1)\ell^2$, and hence (4.4), from

$$f_1 = (1 - x + x^2) + a(1 - x^2) + mH,$$

$$f_2 = -x(1 + x) + a(1 - x^2) + mH,$$

$$g_1 = -x + (1 - x^2)(c + dx) + mH,$$

$$g_2 = -(1 + x) + (1 - x^2)(c + dx) + mH$$

For $p \equiv 3 \mod 4$ we write $2p = A^2 + B^2 + C^2 + D^2$ where, since $2p \equiv 6 \mod 8$, two of A, B, C, D must be odd and two even, with one of them divisible by 4, the other $2 \mod 4$. Changing signs

as necessary we assume that A = 1 + 4a, B = 4b, C = 1 + 4c, and D = 2 + 4d. We achieve $2^{17}(2m+1)p^2$ with

$$f_1 = (1+x)(x^2+1) + a(1-x^2) + bx(1-x^2) + mH,$$

$$f_2 = 1 + (x-1)(x^2+1) + a(1-x^2) + bx(1-x^2) + mH,$$

$$g_1 = 1 + x + c(1-x^2) + dx(1-x^2) + mH,$$

$$g_2 = x + c(1-x^2) + dx(1-x^2) + mH.$$

Even values must be of the stated form. We know if the $\mathbb{Z}_2 \times Q_8$ determinant is even, then both Q_8 determinants are even, and by [14] must each be multiples of 2^8 . Hence the even determinants must be multiples of 2^{16} . Note, if the determinant is even we must have f(1) and g(1) the same parity, and all the terms $m_1, m_2, m_3, m_4, \ell_1, \ell_2$ in (4.6) must be even.

The $2^{17} \parallel \mathcal{D}$ are of the stated form. Suppose that we had a determinant $2^{17}m$, m odd, with m not divisible by the square of a prime $3 \mod 4$. Writing

$$\ell_2 - \ell_1 \equiv 4(a_0c_0 - a_0c_1 - a_1c_0 + a_0^2) + 4(b_0d_0 - b_0d_1 - b_1d_0 + b_0^2) \mod 8$$
(4.7)

we see that $2 \parallel \ell_1, \ell_2$ or $4 \mid \ell_1, \ell_2$. If f(1), g(1) are both odd then $2^3 \mid m_1, m_2, m_3, m_4$ and we must have $2 \parallel \ell_1, \ell_2$ (else $2^{12+8} \mid \mathcal{D}$). Now if $2^u \parallel f(1)$ and $2^v \parallel g(1)$ with $u, v \ge 1$ then $2^{2\min\{u,v\}} \parallel m_1$ if $u \ne v$, while if u = v we have $2^{2u+3} \mid m_1$. Likewise for m_2, m_3, m_4 . To obtain an odd power of two we must therefore have at least one of the m_i with u = v. We cannot have two of them (else $2^{5+5+4+4} \mid \mathcal{D}$). Again we can assume that $2 \parallel \ell_1, \ell_2$ (otherwise $2^{5+6+8} \mid \mathcal{D}$). Since ℓ_1 and ℓ_2 do not contain any primes 3 mod 4 we have $\ell_1 \equiv \ell_2 \equiv 2 \mod 8$ and (4.7) gives

$$a_0c_0 - a_0c_1 - a_1c_0 + a_0^2 + b_0d_0 - b_0d_1 - b_1d_0 + b_0^2 \equiv 0 \mod 2.$$
 (4.8)

Suppose first that f(1), g(1) are odd. Since c_0 and d_0 are odd, (4.8) becomes

$$-a_0c_1 - b_0d_1 \equiv a_1 + b_1 \bmod 2. \tag{4.9}$$

To get power 17, rearranging if necessary to make the highest power on m_1 , we must have $2^4 \parallel m_1, 2^3 \parallel m_2, m_3, m_4$. That is, $m_1 \equiv 0 \mod 16$, and $m_2 \equiv m_3 \equiv m_4 \equiv 8 \mod 16$. From

$$m_1 = c_0^2 - d_0^2 \equiv 0 \mod 16$$
, $m_3 = (c_0 + 2a_0)^2 - (d_0 + 2b_0)^2 \equiv 8 \mod 16$

we get

$$a_0c_0 + a_0^2 - b_0^2 - b_0d_0 \equiv 2 \mod 4.$$
 (4.10)

From

$$m_4 \equiv (c_0 - 2c_1 + 4c_2 + 2a_0 - 4a_1)^2 - (d_0 - 2d_1 + 4d_2 + 2b_0 - 4b_1)^2 \mod 16$$

$$\equiv m_2 + 4a_0^2 + 4(a_0c_0 - 2a_0c_1 - 2a_1c_0) - 4b_0^2 - 4(d_0b_0 - 2d_1b_0 - 2d_0b_1) \mod 16,$$

we get

$$a_0^2 + a_0c_0 - b_0^2 - b_0d_0 - 2(a_0c_1 + a_1 - d_1b_0 - b_1) \equiv 0 \mod 4.$$

Applying (4.9), this becomes $a_0^2 + a_0c_0 - b_0^2 - b_0d_0 \equiv 0 \mod 4$, contradicting (4.10).

Now suppose that $2^u \parallel f(1), g(1), u \ge 1$. Since c_0 and d_0 are even, (4.8) becomes

$$-a_0c_1 + a_0^2 - b_0d_1 + b_0^2 \equiv 0 \mod 2.$$
(4.11)

Notice we cannot have c_1, d_1 both odd or both even, else

$$\ell_1 = |c_0 - c_1 + ic_1 + 2\alpha|^2 + |d_0 - d_1 + id_1 + 2\beta|^2 \equiv 2c_1^2 + 2d_1^2 \mod 4$$

would be divisible by 4.

We cannot have a_0, b_0 both odd, else (4.11) becomes $c_1 + d_1 \equiv 0 \mod 2$, contradicting c_1, d_1 having opposite parity. If u = 1 we can rule out a_0, b_0 both even, else $2 \parallel f(1) + 2h(1) = c_0 + 2a_0$, $g(1) + 2k(1) = d_0 + 2b_0$ (we ruled out m_1 and m_3 both having u = v). If $u \ge 2$ we cannot have a_0, b_0 both even, else 4 divides both terms, $2^4 \parallel m_3$, $2^7 \parallel m_1$ and $2^{7+2+4+2+4} \parallel D$. So a_0, b_0 like c_1, d_1 have opposite parity. From

$$f(-1) + 2h(-1) \equiv c_0 - 2c_1 + 2a_0 \mod 4, \quad g(-1) + 2k(-1) = d_0 - 2d_1 + 2b_0 \mod 4$$

we cannot have $a_0 \equiv c_1 \mod 2$ and $b_0 \equiv d_1 \mod 2$, else if u = 1 we would have a single 2 dividing both (ruled out) and if u = 2 we would have 4 dividing both and $2^4 \mid m_4, 2^7 \mid m_1$. Hence we must have $a_0 \equiv d_1, b_0 \equiv c_1 \mod 2$ and (4.11) becomes $a_0^2 + b_0^2 \equiv 0 \mod 2$, contradicting that a_0, b_0 have opposite parity.

The 2¹⁶ $\parallel \mathcal{D}$ are of the stated form. Suppose now that we have $\mathcal{D} = 2^{16}m$, with $m \equiv -1 \mod 8$, that is not of the form (4.4) or (4.5). Note, $\ell_1 \ell_2$ does not contain a prime $p \equiv 1 \mod 4$ or two primes $p_1, p_2 \equiv 3 \mod 4$ (else it will be type (4.4) with $\ell = p$ or $p_1 p_2$), and \mathcal{D} has no factor $\pm 3 \mod 8$ (else it will be type (4.5)).

If $2^2 \mid \ell_1$ or ℓ_2 then $2^2 \parallel \ell_1, \ell_2$ and $2^2 \parallel m_1, m_2, m_3, m_4$ and f(1), g(1) are even. Now $m_1/4 = (f(1)/2)^2 - (g(1)/2)^2 \equiv \pm 1 \mod 8$ and likewise for $m_2/4, m_3/4$ and $m_4/4$, with their product $-1 \mod 8$. Switching f and g as necessary and rearranging, we can assume $m_1/4 \equiv -1 \mod 8$ and $m_2/4, m_3/4, m_4/4 \equiv 1 \mod 8$. That is $4 \mid f(1)/2$ and f(1)/2 + h(1), f(-1)/2, f(-1)/2 + h(-1) are all odd. From the first two h(1) is odd, from the second two, h(-1) is even, but h(1) and h(-1) must have the same parity. Hence we can assume that $2 \parallel \ell_1, \ell_2$, moreover that $\ell_1 = \ell_2 = 2$, or one is 2 and the other 2p for some prime $p = 3 \mod 4$.

If $f(1) = c_0$ and $g(1) = d_0$ are odd, then plainly $2^3 \parallel m_1, m_2, m_3, m_4$. We rule out one of ℓ_1 , ℓ_2 being 2 mod 8 and the other 6 mod 8. In this case (4.7) becomes

$$1 \equiv -a_0 c_1 - a_1 - b_0 d_1 - b_1 \mod 2. \tag{4.12}$$

But the difference of

$$m_4 \equiv (c_0 - 2c_1 + 4c_2 + 2a_0 - 4a_1)^2 - (d_0 - 2d_1 + 4d_2 + 2b_0 - 4b_1)^2 \equiv 8 \mod 16$$

and

$$m_2 \equiv (c_0 - 2c_1 + 4c_2)^2 - (d_0 - 2d_1 + 4d_2)^2 \equiv 8 \mod 16$$

gives

$$4(a_0^2 + a_0c_0 - b_0^2 - b_0d_0) - 8(a_1c_0 + a_0c_1 - b_1d_0 - b_0d_1) \equiv 0 \mod 16,$$

where

$$4(a_0^2 + a_0c_0 - b_0^2 - b_0d_0) = m_3 - m_1 \equiv 0 \mod 16,$$

and $a_1 + a_0c_1 - b_1 - b_0d_1 \equiv 0 \mod 2$, contradicting (4.12). This just leaves us with the case $\ell_1 = \ell_2 = 2$ considered in the lemma below.

Suppose $f(1) = c_0 = 2c$, $g(1) = d_0 = 2d$ are even. If c and d have opposite parity then $2^2 \parallel m_1$, if both are odd then $2^5 \mid m_1$ and if c = 2c'', d = 2d'' then $2^4 \parallel m_1$ if c'' and d'' have opposite parity and $2^6 \mid m_1$ otherwise. Moreover if c and d have the same parity and 2^2 divides

$$m_1/4 = c^2 - d^2$$
,

then 2^4 must also divide at least one of the other m_i . To see this observe that if a_0 and b_0 have the same parity then 2^2 divides

$$m_3/4 = (c+a_0)^2 - (d+b_0)^2,$$
 (4.13)

if c_1 and d_1 have the same parity then 2^2 divides

$$m_2/4 \equiv (c - c_1 + 2c_2)^2 - (d - d_1 + 2d_2)^2 \mod 8,$$
 (4.14)

and if both a_0 and b_0 , and c_1 and d_1 have opposite parity, then $a_0 - c_1$ and $b_0 - d_1$ have the same parity and 2^2 divides

$$m_4/4 \equiv (c - c_1 + 2c_2 + a_0 - 2a_1)^2 - (d - d_1 + 2d_2 + b_0 - 2b_1)^2 \mod 8.$$
(4.15)

Hence, rearranging as necessary, we can assume that $2^4 \parallel m_1$ and one other m_i , and $2^2 \parallel m_i$ for the other two m_i . In particular $c_0 = 4c'$ and $d_0 = 4d'$ with c', d' of opposite parity. Suppose now that one of ℓ_1 , ℓ_2 is 2 mod 8 and the other 6 mod 8, so that (4.7) becomes

$$1 \equiv -a_0 c_1 + a_0^2 - b_0 d_1 + b_0^2 \mod 2.$$
(4.16)

Notice that this rules out a_0, b_0 both even or c_1, d_1 both odd. We can rule out a_0, b_0 both odd, else $2^3 \mid m_3/4$ in (4.13), and c_1, d_1 both even else

$$\ell_1 = |4c' + c_1(i-1) + 2i\alpha|^2 + |4d' + d_1(i-1) + 2i\beta|^2 \equiv 0 \mod 4.$$

Hence $a_0 - c_1$ and $b_0 - d_1$ have the same parity, but cannot be odd, else $2^3 \mid m_4/4$ in (4.15). Hence $c_1 \equiv a_0 \mod 2$ and $d_1 \equiv b_0 \mod 2$, violating (4.16). This just leaves the case $\ell_1 = \ell_2 = 2$ dealt with in the next lemma.

Lemma 4.1. All $\mathbb{Z}_2 \times Q_8$ determinants $2^{16}m$ with $m \equiv 7 \mod 8$ and $\ell_1 = \ell_2 = 2$ in (4.6) must be of the form (4.5).

Proof. Suppose that $\mathcal{D} = 2^{16}m$, where $\ell_1 = \ell_2 = 2$, and all the factors of m are $\pm 1 \mod 8$. We show that $m \equiv 1 \mod 8$. Hence any with $m \equiv -1 \mod 8$ must have a factor $\pm 3 \mod 8$ and be of the form (4.5).

Case 1: f(1) and g(1) are even. Since $|f(i)|^2$ and $|g(i)|^2$ are both even, we must have one of them 2 and the other 0. Switching f and g and replacing f(x) by $\pm f(\pm x)$ as necessary, we can assume that f(i) = 1 + i and g(i) = 0. Hence we can write

$$f(x) = 1 + x + (x^2 + 1)v(x), \quad g(x) = (x^2 + 1)u(x).$$

Note 2^2 divides $|g(i) + 2k(i)|^2$, so this term must also be zero, while $f(i) + 2h(i) = \varepsilon + \delta i$ with $\delta, \varepsilon = \pm 1$, and

$$f(x) + 2h(x) = \varepsilon + \delta x + (x^2 + 1)(v(x) + 2h_1(x)),$$

$$g(x) + 2k(x) = (x^2 + 1)(u(x) + 2k_1(x)).$$

Hence

$$m_1/4 = (1+v(1))^2 - u(1)^2,$$

$$m_2/4 = v(-1)^2 - u(-1)^2,$$

$$m_3/4 = \left(\frac{1}{2}(\varepsilon+\delta) + v(1) + 2h_1(1)\right)^2 - (u(1) + 2k_1(1))^2,$$

$$m_4/4 = \left(\frac{1}{2}(\varepsilon-\delta) + v(-1) + 2h_1(-1)\right)^2 - (u(-1) + 2k_1(-1))^2.$$

Note, one of 1+v(1) and v(-1) must be odd, and hence u(1), u(-1) must be even (else $2^3 | m_1/4$ or $m_2/4$).

(i) Suppose that v(1) is odd. Since $m_2/4 \not\equiv -3 \mod 8$ we must have $m_2/4 \equiv 1 \mod 8$, $4 \mid u(-1)$, and

$$\frac{m_1}{2^4} = \left(\frac{1+v(1)}{2}\right)^2 - \left(\frac{u(1)}{2}\right)^2.$$

If $\delta = -\varepsilon$ then $m_3/4 \equiv 1 \mod 8, 4 \mid (u(1) + 2k_1(1))$, and

$$\frac{m_4}{2^4} = \left(\frac{\varepsilon + v(-1)}{2} + h_1(-1)\right)^2 - \left(\frac{u(-1)}{2} + k_1(-1)\right)^2.$$

If $2 \mid u(1)/2$ then $2 \mid k_1(1), 2 \mid (u(-1)/2 + k_1(-1))$, and $m_1/2^4, m_4/2^4 \equiv 1 \mod 8$. If $2 \nmid u(1)/2$ then $2 \nmid k_1(1), 2 \nmid (u(-1)/2 + k_1(-1))$, and $m_1/2^4, m_4/2^4 \equiv -1 \mod 8$. In both cases $m_1m_2m_3m_4/2^{12} \equiv 1 \mod 8$.

If $\delta = \varepsilon$ we have $m_4/4 \equiv 1 \mod 8, 4 \mid (u(-1) + 2k_1(-1)), 2 \mid k_1(-1), k_1(1)$ and

$$\frac{m_3}{2^4} = \left(\frac{\varepsilon + v(1)}{2} + h_1(1)\right)^2 - \left(\frac{u(1)}{2} + k_1(1)\right)^2.$$

If $2 \mid u(1)/2$ then $m_1/2^4, m_3/2^4 \equiv 1 \mod 8$ and if $2 \nmid u(1)/2$ both are $-1 \mod 8$. Again $m_1m_2m_3m_4/2^{12} \equiv 1 \mod 8$.

(ii) Suppose that v(1) is even. In this case $m_1/4 \equiv 1 \mod 8, 4 \mid u(1)$ and

$$\frac{m_2}{2^4} = \left(\frac{v(-1)}{2}\right)^2 - \left(\frac{u(-1)}{2}\right)^2.$$

If $\delta = -\varepsilon$ then $m_4/4 \equiv 1 \mod 8, 4 \mid (u(-1) + 2k_1(-1))$, and

$$\frac{m_3}{2^4} = \left(\frac{v(1)}{2} + h_1(1)\right)^2 - \left(\frac{u(1)}{2} + k_1(1)\right)^2.$$

If $2 \mid u(-1)/2$ then $m_2/2^4 \equiv 1 \mod 8$ and $2 \mid k_1(-1), 2 \mid (u(1)/2 + k_1(1))$ and $m_3/2^4 \equiv 1 \mod 8$. If $2 \nmid u(-1)/2$ then $m_2/2^4 \equiv -1 \mod 8$, $2 \nmid k_1(-1), 2 \nmid (u(1)/2 + k_1(1))$ and $m_3/2^4 \equiv -1 \mod 8$. Again, $m_1m_2m_3m_4/2^{12} \equiv 1 \mod 8$.

If $\delta = \varepsilon$ then $m_3/4 \equiv 1 \mod 8, 4 \mid (u(1) + 2k_1(1)), 2 \mid k_1(1), k_1(-1)$ and

$$\frac{m_4}{2^4} = \left(\frac{v(-1)}{2} + h_1(-1)\right)^2 - \left(\frac{u(-1)}{2} + k_1(-1)\right)^2.$$

If $2 \mid u(-1)/2$ then $m_2/2^4, m_4/2^4 \equiv 1 \mod 8$. If $2 \nmid u(-1)/2$ then $m_2/2^4, m_4/2^4 \equiv -1 \mod 8$. In both cases $m_1m_2m_3m_4/2^{12} \equiv 1 \mod 8$.

In conclusion, there are no cases where $\mathcal{D}/2^{16} = m_1 m_2 m_3 m_4/2^{12} \equiv -1 \mod 8$.

Case 2: f(1) and g(1) are odd. In this case we have $2^3 \parallel m_1, m_2, m_3, m_4$. From $\ell_1 = \ell_2 = 2$ we must have $f(i), g(i), f(i) + 2h(i), g(i) + 2k(i) = \pm 1$ or $\pm i$. Multiplying the f and h or the g and k through by ± 1 or $\pm x$ we can assume that f(i) = 1 and g(i) = 1 and

$$f(x) = 1 + (x^2 + 1)v(x), \quad g(x) = 1 + (x^2 + 1)u(x).$$

Clearly we must have $f(i) + 2h(i), g(i) + 2k(i) = \pm 1$ and

$$f(x) + 2h(x) = \varepsilon + (x^2 + 1)(v(x) + 2h_1(x)), \quad g(x) + 2k(x) = \delta + (x^2 + 1)(u(x) + 2k_1(x)))$$

for some $\varepsilon, \delta = \pm 1$. Hence

$$\frac{m_1}{4} = (1 + u(1) + v(1))(v(1) - u(1)),$$
$$\frac{m_3}{4} = \left(\frac{\varepsilon + \delta}{2} + v(1) + u(1) + 2h_1(1) + 2k_1(1)\right) \left(\frac{\varepsilon - \delta}{2} + v(1) - u(1) + 2h_1(1) - 2k_1(1)\right).$$

Similarly for $m_2/4$ and $m_4/4$ with $u(-1), v(-1), h_1(-1), k_1(-1)$ in place of $u(1), v(1), h_1(1), k_1(1)$.

(i) Suppose that u(1) + v(1) is even. In this case $m_1/8 = \alpha_1 \alpha_2$ with

$$\alpha_1 = 1 + u(1) + v(1), \quad \alpha_2 = \frac{1}{2}(v(1) - u(1))$$

When $\delta = -\varepsilon$ we have $m_3/8 = \lambda_1 \lambda_2$, with

$$\lambda_1 = \frac{1}{2}(v(1) + u(1)) + h_1(1) + k_1(1),$$

$$\lambda_2 = \varepsilon + v(1) - u(1) + 2h_1(1) - 2k_1(1).$$

Recall that by assumption all these factors are $\pm 1 \mod 8$. Since

$$\lambda_1 = \varepsilon \alpha_2 + \frac{1}{2}(1 - \varepsilon)v(1) + \frac{1}{2}(1 + \varepsilon)u(1) + h_1(1) + k_1(1),$$

we have $2 \mid \frac{1}{2}(1-\varepsilon)v(1) + \frac{1}{2}(1+\varepsilon)u(1) + h_1(1) + k_1(1)$ and

$$\lambda_2 = \varepsilon \alpha_1 + (1 - \varepsilon)v(1) - (1 + \varepsilon)u(1) + 2h_1(1) - 2k_1(1) \equiv \varepsilon \alpha_1 \mod 4.$$

Hence $\lambda_2 \equiv \varepsilon \alpha_1 \mod 8$ and $4 \mid \frac{1}{2}(1-\varepsilon)v(1) - \frac{1}{2}(1+\varepsilon)u(1) + h_1(1) - k_1(1)$. So

$$\lambda_1 \lambda_2 \equiv (\varepsilon \alpha_2 + (1+\varepsilon)u(1) + 2k_1(1))\varepsilon \alpha_1 \equiv \alpha_1 \alpha_2 + (1+\varepsilon)u(1) + 2k_1(1) \mod 4,$$

and $m_3/8 \equiv m_1/8 \mod 4$, and $m_1m_3/2^6 \equiv 1 \mod 8$, iff $2 \mid \frac{1}{2}(1+\varepsilon)u(1) + k_1(1)$. Clearly $2 \mid \frac{1}{2}(1+\varepsilon)u(1) + k_1(1)$ iff $2 \mid \frac{1}{2}(1+\varepsilon)u(-1) + k_1(-1)$, giving $m_1m_3/2^6 \equiv m_2m_4/2^6 \mod 8$, and $m = m_1m_2m_3m_4/2^{12} \equiv 1 \mod 8$.

Similarly, when $\delta = \varepsilon$ we have

$$\lambda_1 = \frac{1}{2}(v(1) - u(1)) + h_1(1) - k_1(1),$$

$$\lambda_2 = \varepsilon + v(1) + u(1) + 2h_1(1) + 2k_1(1),$$

Since

$$\lambda_1 = \varepsilon \alpha_2 + \frac{1}{2}(1-\varepsilon)v(1) - \frac{1}{2}(1-\varepsilon)u(1) + h_1(1) - k_1(1),$$

we have $2 \mid \frac{1}{2}(1-\varepsilon)v(1) - \frac{1}{2}(1-\varepsilon)u(1) + h_1(1) - k_1(1)$, and

$$\lambda_2 = \varepsilon \alpha_1 + (1 - \varepsilon)v(1) + (1 - \varepsilon)u(1) + 2h_1(1) + 2k_1(1) \equiv \varepsilon \alpha_1 \mod 4.$$

So $\lambda_2 \equiv \varepsilon \alpha_1 \mod 8, 4 \mid \frac{1}{2}(1-\varepsilon)v(1) + \frac{1}{2}(1-\varepsilon)u(1) + h_1(1) + k_1(1)$ and

$$\lambda_1 \lambda_2 \equiv (\varepsilon \alpha_2 - (1 - \varepsilon)u(1) - 2k_1(1))\varepsilon \alpha_1 \equiv \alpha_1 \alpha_2 - (1 - \varepsilon)u(1) - 2k_1(1) \mod 4,$$

giving $m_1 m_3 / 2^6 \equiv 1 \mod 8$, iff $2 \mid \frac{1}{2}(1 - \varepsilon)u(1) + k_1(1)$. Again $m \equiv 1 \mod 8$.

(ii) Suppose that u(1) + v(1) is odd. In this case

$$\alpha_1 = v(1) - u(1), \quad \alpha_2 = \frac{1}{2}(1 + u(1) + v(1)).$$

When $\delta = -\varepsilon$ we have

$$\lambda_1 = \frac{1}{2}(\varepsilon + v(1) - u(1)) + h_1(1) - k_1(1),$$

$$\lambda_2 = v(1) + u(1) + 2h_1(1) + 2k_1(1).$$

So

$$\lambda_1 = \varepsilon \alpha_2 + \frac{1}{2}(1 - \varepsilon)v(1) - \frac{1}{2}(1 + \varepsilon)u(1) + h_1(1) - k_1(1),$$

and $2 \mid \frac{1}{2}(1-\varepsilon)v(1) - \frac{1}{2}(1+\varepsilon)u(1) + h_1(1) - k_1(1)$, giving

$$\lambda_2 = \varepsilon \alpha_1 + (1 - \varepsilon)v(1) + (1 + \varepsilon)u(1) + 2h_1(1) + 2k_1(1) \equiv \varepsilon \alpha_1 \mod 4.$$

Hence $\lambda_2 \equiv \varepsilon \alpha_1 \mod 8, 4 \mid \frac{1}{2}(1-\varepsilon)v(1) + \frac{1}{2}(1+\varepsilon)u(1) + h_1(1) + k_1(1)$ and

$$\lambda_1 \lambda_2 \equiv (\varepsilon \alpha_2 - (1 + \varepsilon)u(1) - 2k_1(1))\varepsilon \alpha_1 \equiv \alpha_1 \alpha_2 - (1 + \varepsilon)u(1) - 2k_1(1) \mod 4$$

Thus $m_1 m_3 / 2^6 \equiv 1 \mod 8$ iff $2 \mid \frac{1}{2} (1 + \varepsilon) u(1) + k_1(1)$. Again $m \equiv 1 \mod 8$.

When $\delta = \varepsilon$ we have

$$\lambda_1 = \frac{1}{2}(\varepsilon + v(1) + u(1)) + h_1(1) + k_1(1),$$

$$\lambda_2 = v(1) - u(1) + 2h_1(1) - 2k_1(1).$$

1

Hence

$$\begin{split} \lambda_1 &= \varepsilon \alpha_2 + \frac{1}{2} (1 - \varepsilon) v(1) + \frac{1}{2} (1 - \varepsilon) u(1) + h_1(1) + k_1(1), \\ \text{and } 2 \mid \frac{1}{2} (1 - \varepsilon) v(1) + \frac{1}{2} (1 - \varepsilon) u(1) + h_1(1) + k_1(1), \text{ giving} \\ \lambda_2 &= \varepsilon \alpha_1 - (1 - \varepsilon) u(1) + (1 - \varepsilon) v(1) + 2h_1(1) - 2k_1(1) \equiv \varepsilon \alpha_1 \mod 4. \\ \text{So } \lambda_2 &\equiv \varepsilon \alpha_1 \mod 8, 4 \mid \frac{1}{2} (1 - \varepsilon) v(1) - \frac{1}{2} (1 - \varepsilon) u(1) + h_1(1) - k_1(1), \text{ and} \\ \lambda_1 \lambda_2 &\equiv (\varepsilon \alpha_2 + (1 - \varepsilon) u(1) + 2k_1(1)) \varepsilon \alpha_1 \equiv \alpha_1 \alpha_2 + (1 - \varepsilon) u(1) + 2k_1(1) \mod 4. \\ \text{Hence } m_1 m_3 / 2^6 \equiv 1 \mod 8 \text{ iff } 2 \mid \frac{1}{2} (1 - \varepsilon) u(1) + k_1(1). \text{ Again } m \equiv 1 \mod 8. \end{split}$$

Acknowledgements

The authors are grateful to one of the referees for pointing out existing results in [8] and [9] as well as catching some typos.

References

- [1] Boerkoel, T., & Pinner, C. (2018). Minimal group determinants and the Lind-Lehmer problem for dihedral groups. Acta Arithmetica, 186(4), 377-395.
- [2] Conrad, K. (1998). The origin of representation theory. L'Enseignement Mathématique, 44(3-4), 361-392.
- [3] DeSilva, D., Mossinghoff, M., Pigno, V., & Pinner, C. (2019). The Lind-Lehmer constant for certain *p*-groups. *Mathematics of Computation*, 88(316), 949–972.
- [4] DeSilva, D., & Pinner, C. G. (2014). The Lind–Lehmer constant for \mathbb{Z}_p^n . Proceedings of the American Mathematical Society, 142, 1935–1941.
- [5] Frobenius, F. G. (1968). Über die Primefactoren der Gruppendeterminante. Gesammelte Ahhand-lungen, Band III. Springer, New York, pp. 38-77. MR0235974.
- [6] Johnson, K. W. (2019). Group Matrices Group Determinants and Representation Theory. Lecture Notes in Mathematics 2233, Springer, Cham.
- [7] Laquer, H. T. (1980). Values of circulants with integer entries. A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Association, Santa Clara, pp. 212–217. MR0624127.

- [8] Mahoney, M. K. (1982). Determinants of integral group matrices for some nonabelian 2-generator groups. *Linear and Multilinear Algebra*, 11(2), 189–201.
- [9] Mahoney, M. K., & Newman, M. (1980). Determinants of abelian group matrices. *Linear* and Multilinear Algebra, 9(2), 121–132.
- [10] Mossinghoff, M., & Pinner, C. (2023). Prime power order circulant determinants. *Illinois Journal of Mathematics*, 67(2), 333–362.
- [11] Newman, M. (1980). On a problem suggested by Olga Taussky-Todd. *Illinois Journal of Mathematics*, 24, 156–158.
- [12] Newman, M. (1980). Determinants of circulants of prime power order. *Linear Multilinear Algebra*, 9(3), 187–191. MR0601702.
- [13] Paudel, B., & Pinner, C. (2022). Integer circulant determinants of order 15. *Integers*, 22, Article A4.
- [14] Pinner, C., & Smyth, C. (2020). Integer group determinants for small groups. *The Ramanujan Journal*, 51(2), 421–453.
- [15] Taussky-Todd, O. (1977). Integral group matrices. *Notices of the American Mathematical Society*, 24(3), A-345. (Abstract no. 746-A15, 746th Meeting, Hayward, CA, Apr. 22–23, 1977).
- [16] Yamaguchi, N., & Yamaguchi, Y. (2022). *Generalized Dedekind's theorem and its application to integer group determinants*. arXiv: 2203.14420v2 [math.RT].
- [17] Yamaguchi, N., & Yamaguchi, Y. (2023). Remark on Laquer's theorem for circulant determinants. *International Journal of Group Theory*, 12(4), 265–269.
- [18] Yamaguchi, Y., & Yamaguchi, N. (2022). Integer group determinants for C_4^2 . arXiv: 2211.01597 [math.NT].
- [19] Yamaguchi, Y., & Yamaguchi, N. (2022). Integer group determinants for abelian groups of order 16, arXiv: 2211.14761 [math.NT].
- [20] Yamaguchi, Y., & Yamaguchi, N. (2023). Integer group determinants for C_2^4 . The Ramanujan Journal, DOI: 10.1007/s11139-023-00727-z.
- [21] Yamaguchi, Y., & Yamaguchi, N. (2023). Integer circulant determinants of order 16. *The Ramanujan Journal*, 61, 1283–1294.