
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2023, Volume 29, Number 3, 603–619
DOI: 10.7546/nntdm.2023.29.3.603-619

The group determinants for Zn ×H

Bishnu Paudel1 and Chris Pinner2
1 Department of Mathematics, Kansas State University

Manhattan KS 66506, United States
e-mail: bpaudel@ksu.edu

2 Department of Mathematics, Kansas State University
Manhattan KS 66506, United States
e-mail: pinner@math.ksu.edu

Received: 22 March 2023 Revised: 4 August 2023
Accepted: 11 August 2023 Online First: 25 August 2023

Abstract: Let Zn denote the cyclic group of order n. We show how the group determinant for
G = Zn ×H can be simply written in terms of the group determinant for H . We use this to get
a complete description of the integer group determinants for Z2 × D8 where D8 is the dihedral
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1 Introduction

At the meeting of the American Mathematical Society in Hayward, California, in April 1977,
Olga Taussky-Todd [15] asked whether one could characterize the values of the group determinant
when the entries are all integers. There was particular interest in the case of Zn, the cyclic group
of order n, where the group determinant corresponds to the n × n circulant determinant. For a
prime p, a complete description was obtained for the cyclic groups Zp and Z2p in [11] and [7],
and for D2p and D4p in [8] and [1]. Here D2n denotes the dihedral group of order 2n. In general
though this quickly becomes a hard problem, with only partial results known even for Zp2 once
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p ≥ 7 (see [12] and [10]). A complete description has though been obtained for all groups of
order less than 16 (see [14] and [13]), and for 6 of the 14 groups of order 16, D16 and the five
Abelian groups Z16, Z2×Z8, Z4

2, Z2
4 and Z2

2×Z4 (see [1,16,18,20,21] and [19]). We write S(G)

for the set of integer group determinants for the group G.
Our goal here is to show how the group determinant for a group of the form G = Zn × H

can be straightforwardly related to the group determinants for the group H . We use this to give a
complete description for two more non-Abelian groups of order 16, namely Z2×D8 and Z2×Q8

where Q8 is the quaternion group.
Here we shall think of the group determinants as being defined on elements of the group ring

C[G]

DG

(∑
g∈G

agg

)
= det (agh−1) ,

although our ultimate interest is of course in the integer group determinants Z[G]. We observe
the multiplicative property

DG(xy) = DG(x)DG(y), (1.1)

using that

x =
∑
g∈G

agg, y =
∑
g∈G

bgg ⇒ xy =
∑
g∈G

(∑
hk=g

ahbk

)
g.

2 Products with Zn

We show that when G = Zn ×H we can write our integer group G-determinant as a product of
n group H-determinants of elements in Z[ωn][H], where ωn := e2πi/n. This is Lemma 1 of [9].

Theorem 2.1. If G = Zn ×H then for any aih in C

DG

(
n−1∑
i=0

∑
h∈H

aih(i, h)

)
=
∏
yn=1

DH

(∑
h∈H

(
n−1∑
i=0

aihy
i

)
h

)
. (2.1)

Results of this flavour have been obtained before [17], but here we do not need to assume that
H is Abelian.

Proof. One way to see this is to use Frobenius’ factorisation [5] of the group determinant in terms
of the irreducible, non-isomorphic, representations ρ of G (see for example [2] or [6])

DG

(∑
g∈G

agg

)
=
∏
ρ

det

(∑
g∈G

agρ(g)

)deg(ρ)

.

Observe that every representation ρ for H extends to n representations for G

ρy(i, h) = yiρ(h),

where y runs through the n-th roots of unity.
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More directly we can alternatively follow Newman’s proof [11] of the factorization of the
group determinant for G = Zn. Newman observes that the group matrix M for

∑
i∈Zn

Aii, that
is the circulant matrix with first row A0, A1, . . . , An−1, takes the form

M = A0In + A1P + · · ·+ An−1P
n−1, P =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

1 0 0 · · · 0

 .

Now P has eigenvalues y, yn = 1, so the matrix M will have the same eigenvectors as P but with
eigenvalues

A0 + A1y + · · ·+ An−1y
n−1, y = 1, ωn, ω

2
n, . . . , ω

n−1
n . (2.2)

Hence the matrix of eigenvectors B will yield a diagonal matrix B−1MB with the values (2.2)
down the diagonal.

Now suppose that H = {h1, . . . , hm} and order the elements so that the first row of the
G = Zn ×H group matrix M for

∑
i∈Zn,h∈H aih(i, h) consists of the

a0h1 , . . . , a0hm , a1h1 , . . . , a1hm , . . . , a(n−1)h1 , . . . , a(n−1)hm .

Then it is not hard to see that first m rows of our G group matrix M will consists of m×m blocks
A0, A1, . . . , An−1, where Ai is the group H matrix associated to

∑
h∈H aihh, and the subsequent

rows the same blocks cyclically permuted.
Hence if we take the n× n matrix B and replace each entry aij with the m×m block aijIm

we obtain an nm × nm matrix B, where B−1MB will now be a block matrix with entries the
same linear combinations of the blocks Ai as occured for the elements in B−1MB; that is blocks
(2.2) down the diagonal and zeros elsewhere. The result is then plain.

Notice that if we start with an integer G group determinant, then we can assemble the n

determinants in (2.1) into τ(n) integers by combining the primitive dth roots of unity, d | n. If H
is Abelian, then these will be integer H group determinants

∏
y=ω

j
d

gcd(j,d)=1

DH

(∑
h∈H

(
n−1∑
i=0

aihy
i

)
h

)
= DH

 ∏
y=ω

j
d

gcd(j,d)=1

∑
h∈H

(
n−1∑
i=0

aihy
i

)
h

 , (2.3)

since the resulting coefficients will be symmetric expressions in the conjugates and hence in Z. In
particular, an integer G = Zn ×H group determinant is an integer group H determinant, though
this can be seen more directly (if H = Zn1 × · · · × Znk

, then the G group determinant reduces
to a product of an integer polynomial F (y, x1, . . . , xk) over the n, n1, . . . , nkth roots of unity and∏

yn=1 F (y, x1, . . . , xk) is just an integer polynomial in one less variable; see also [16, Theorem
1.4]). If H is non-Abelian, then the process (2.3) may leave elements in Z[ωd][H], and we are
unable to say that an integer G group determinant must be an integer H group determinant, except
for the case when n = 2.
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3 The group Z2 ×D8

Notice that when n = 2 we can write an integer Z2 × H group determinant as a product of two
integer H group determinants:

DZ2×H

(∑
h∈H

ah(0, h) +
∑
h∈H

bh(1, h)

)
= DH

(∑
h∈H

(ah + bh)h

)
DH

(∑
h∈H

(ah − bh)h

)
.

In the case of H = D8 = ⟨F,R | F 2 = 1, R4 = 1, RF = FR3⟩ we take the coefficients of the
group elements (0, Rj), (1, Rj), (0, FRj) and (1, FRj), as the coefficients of xj in four cubics,
f1, f2, g1 and g2 respectively. The Z2 × D8 determinant, which we will denote D(f1, f2, g1, g2),
is then the product of two D8 determinants, which from [8] or [1] can be written

D(f1, f2, g1, g2) = D(1)D(−1), D(z) = m1(z)m2(z)ℓ(z)
2, (3.1)

where

m1(z) = (f1(1) + zf2(1))
2 − (g1(1) + zg2(1))

2,

m2(z) = (f1(−1) + zf2(−1))2 − (g1(−1) + zg2(−1))2,

and
ℓ(z) = |f1(i) + zf2(i)|2 − |g1(i) + zg2(i)|2. (3.2)

We obtain a complete description of the Z2 ×D8 integer group determinants.

Theorem 3.1. For G = Z2 ×D8 the set of odd integer group determinants is

A := {m(m+ 16k) : m, k ∈ Z, m odd}.

The even determinants are the 216m, m ∈ Z.

Notice the set of achieved odd values A consists of all the integers 1 mod 16 and exactly those
integers 9 mod 16 which contain a prime p ≡ ±3 or ±5 mod 16. These are the same as the odd
values found in [16] for Z2 × Z8. In fact S(Z2 ×D8) ⊊ S(Z2 × Z8). Sets of this type occur for
other 2-groups.

Proposition 3.1. The odd integer group determinants for G = Z2 × Z2n are the

{m(m+ |G|k) : m, k ∈ Z, m odd }.

The odd integer group determinants for G = Zn
2 or Zn

2 × Z4 are the m ≡ 1 mod |G|.

Note, for any group the m ≡ 1 mod |G| are in S(G), with 1 + k|G| obtained by taking
ag = 1 + k for the identity and ag = k for the others.

Proof of Theorem 3.1. Achieving the values. We write H(x) := (x+ 1)(x2 + 1).
We achieve the values in A with m = ±1,±9 mod 16 from

D(1 + kH, kH, kH, kH) = 1 + 16k.
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We get those with ±m ≡ 5 mod 16 from (5 + 16t)(5 + 16k) achieved with

D(1 + x+ x2 + (t+ k)H, x− x3 + (t− k)H, 1 + x+ (t+ k)H, 1− x2 + (t− k)H)

and those with ±m ≡ 3 mod 16 from (3 + 16t)(3 + 16k) achieved with

D(1 + x+ (t+ k)H, 1 + x− x2 − x3 + (t− k)H, 1 + x− x3 + (t+ k)H, x− x3 + (t− k)H).

We achieve the even values 218m using

D(1 + x+ x2 −mH, 1− x2 − x3 −mH, 1 + x− x3 +mH,x+mH),

the 217(2m+ 1) with

D(1 + x+ x2 + x3 +mH, 1 + x+mH,x+mH, 1 + x2 − x3 +mH),

the 216(1 + 4m) from

D(1 + x+ x2 + x3 +mH, 1 + x− x2 − x3 +mH, 1 + x− x2 − x3 +mH, 1− x+mH),

and the 216(−1 + 4m) from

D(1 + x+ x2 −mH, 1 + x− x3 −mH, 1− x3 −mH,x− x2 −mH).

The odd values. We show that any odd determinant must lie in A. We know that any Z2 × D8

determinant must be the product of two D8 determinants, which we can write

D1 = m1m2ℓ
2
1, D2 = m3m4ℓ

2
2 (3.3)

with
m1 = f(1)2 − g(1)2, m2 = f(−1)2 − g(−1)2, ℓ1 = |f(i)|2 − |g(i)|2,

and

m3 = (f(1) + 2h(1))2 − (g(1) + 2k(1))2,

m4 = (f(−1) + 2h(−1))2 − (g(−1) + 2k(−1))2,

ℓ2 = |f(i) + 2h(i)|2 − |g(i) + 2k(i)|2.

Assume that D1D2 is odd. Switching f and g and replacing f by −f as necessary, we shall
assume that f(1) ≡ 1 mod 4 and 2 | g(1). The result will follow once we show that

D1 ≡ D2 (mod 16).

We write

h(x) =
3∑

i=0

ai(x− 1)i, k(x) =
3∑

i=0

bi(x− 1)i, f(x) =
3∑

i=0

ci(x− 1)i, g(x) =
3∑

i=0

di(x− 1)i,
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where c0 = 1 mod 4 and 2 | d0. Now

m3 −m1 = 4f(1)h(1) + 4h(1)2 − 4k(1)g(1)− 4k(1)2 ≡ 4a0 + 4a20 − 4b0d0 − 4b20 mod 16,

m4 −m2 = 4f(−1)h(−1) + 4h(−1)2 − 4k(−1)g(−1)− 4k(−1)2

≡ 4(a0 − 2a1 − 2a0c1) + 4a20 − 4(b0d0 − 2b0d1)− 4b20 mod 16,

and

ℓ2 − ℓ1 = (2h(i)f(i) + 2h(i)f(i) + 4|h(i)|2)− (2k(i)g(i) + 2k(i)g(i) + 4|k(i)|2)
≡ (4a0 − 4a0c1 − 4a1 + 4a20)− (−4b0d1 + 4b20) mod 8

and
ℓ22 ≡ ℓ21 + 8(a0 − a0c1 − a1 + a20 + b0d1 − b20) mod 16.

Since m1,m2, ℓ
2
1 ≡ 1 mod 4 we get

D1 −D2 ≡ 4(a0 + a20 − b0d0 − b20) + 4(a0 − 2a1 − 2a0c1 + a20 − b0d0 + 2b0d1 − b20)

+ 8(a0 − a0c1 − a1 + a20 + b0d1 − b20) ≡ 0 mod 16.

The even values. We know from [1] that the even D8 determinants are divisible by 28. So any
even Z2 ×D8 determinant D1D2 must be a multiple of 216, and all these are achieved.

Proof of Proposition 3.1. Suppose that H is an abelian 2-group and G = Z2 × H . Then by
[3, Theorem 2.3] we can write the G-determinant as a product of two H-determinants D = D1D2

with D2 ≡ D1 mod |G|, and

S(Z2 ×H) ⊆ {m(m+ k|G|) : m ∈ S(H)}. (3.4)

For G = Z2 × Zt, t = 2n, the determinants take the form

D1 =
∏
xt=1

F (x, 1),

D2 =
∏
xt=1

F (x,−1)

for some F (x, y) = f(x) + yh(x), the coefficients of xi in f and h corresponding to the ag for
g = (0, i) and (1, i) respectively. For an odd positive integer m, taking

F (x, y) =
∏
pα∥m

(
xp − 1

x− 1

)α

+ k(y + 1)

(
xt − 1

x− 1

)
achieves m(m+ k|G|).

For G = Zn
2 all the odd values must be 1 mod |G| by [4, Lemma 2.1]. For Gn = Zn

2 × Z4

observe when n = 1 that m(m+8k) ≡ m2 ≡ 1 mod 8, and in general that if m ≡ 1 mod |Gn−1|
then m(m+ |Gn|k) ≡ m2 ≡ 1 mod |Gn|.

Interestingly, (3.4) also holds for the non-Abelian groups H = D8 and Q8.
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4 The group Z2 ×Q8

A Z2 × Q8 determinant will be a product of two Q8 determinants, which by [14] can be written
in a very similar way to (3.1);

D(f1, f2, g1, g2) = D(1)D(−1), D(z) = m1(z)m2(z)ℓ(z)
2, (4.1)

with

m1(z) = (f1(1) + zf2(1))
2 − (g1(1) + zg2(1))

2,

m2(z) = (f1(−1) + zf2(−1))2 − (g1(−1) + zg2(−1))2,

but now
ℓ(z) = |f1(i) + zf2(i)|2 + |g1(i) + zg2(i)|2.

Writing Q8 = ⟨A,B : A4 = 1, B2 = A2, AB = BA−1⟩, the coefficient of xi in the cubic
f1, f2, g1 and g2, corresponds to the ag in the Z2 ×Q8 group determinant for g = (0, Ai), (1, Ai),

(0, BAi) and (1, BAi), respectively.
We obtain a complete description of the Z2 ×Q8 integer group determinants.

Theorem 4.1. When G = Z2×Q8 the odd integer group determinants are the integers 1 mod 16,
plus the integers 9 mod 16 of the form

s1s2(ℓ1ℓ2)
2, s1, s2 ≡ −3 mod 8, ℓ1, ℓ2 ≡ 3 mod 4,

for some s1, s2 in Z and ℓ1, ℓ2 in N, with

s1 ≡ s2 mod 16 and ℓ1 ≡ ℓ2 mod 8 (4.2)

or
s1 ≡ s2 + 8 mod 16 and ℓ1 ≡ ℓ2 + 4 mod 8. (4.3)

The even values are the 218m, m in Z, the

217(2m+ 1)p2, m ∈ Z, p ≡ 3 mod 4,

the 216m with m ≡ 1, 3 or 5 mod 8, and those with m ≡ 7 mod 8 of the form

216(8t− 1)ℓ2, t ∈ Z, ℓ ∈ N, ℓ ≡ 1 mod 4, ℓ ≥ 5, (4.4)

or
(8t+ 3)(8k − 3)216, t, k ∈ Z. (4.5)

For the three non-Abelian groups of order 16 whose S(G) is now known we have:

S(Z2 ×Q8) ⊊ S(Z2 ×D8) ⊊ S(D16) = {4m+ 1 : m ∈ Z} ∪ {210m : m ∈ Z}.

Proof. Achieving the odd values. We write H(x) := (x+ 1)(x2 + 1).
We achieve the values 1 mod 16 from

D(1 + kH, kH, kH, kH) = 1 + 16k.

To achieve the specified values 9 mod 16 we write the ℓi as a sum of four squares. Notice that
since they are 3 mod 4, we must have three of them, say, Ai, Bi, Ci, odd and one, Di, even, with
2 ∥ Di if ℓi ≡ 7 mod 8 and 4 | Di if ℓi ≡ 3 mod 8. Hence with a choice of sign we can write
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ℓi = A2
i +B2

i + C2
i +D2

i , Ai, Bi, Ci odd, Di even,

with
A1 ≡ A2 mod 4, B1 ≡ B2 mod 4, C1 ≡ C2 mod 4,

and
D1 ≡ D2 mod 4 if ℓ1 ≡ ℓ2 mod 8,

and
D1 ≡ D2 + 2 (mod 4) if ℓ1 ≡ ℓ2 + 4 (mod 8).

In the case ℓ1 ≡ ℓ2 mod 8 we get (8m− 3)(8k − 3)(ℓ1ℓ2)
2, m ≡ k mod 2, from

f1 =
1

4
(D1 +D2) +

1

4
(B1 +B2 − 2)x− 1

4
(D1 +D2)x

2 − 1

4
(B1 +B2 + 2)x3 +

1

2
(m+ k)H,

f2 =
1

4
(D1 −D2) +

1

4
(B1 −B2)x− 1

4
(D1 −D2)x

2 − 1

4
(B1 −B2)x

3 +
1

2
(m− k)H,

g1 =
1

4
(C1 + C2 − 2) +

1

4
(A1 +A2 − 2)x− 1

4
(C1 + C2 + 2)x2 − 1

4
(A1 +A2 + 2)x3 +

1

2
(m+ k)H,

g2 =
1

4
(C1 − C2) +

1

4
(A1 −A2)x− 1

4
(C1 − C2)x

2 − 1

4
(A1 −A2)x

3 +
1

2
(m− k)H.

In the case ℓ1 ≡ ℓ2 + 4 mod 8 we get (8m− 3)(5− 8k)(ℓ1ℓ2)
2, m ≡ k mod 2, from

f1 =
1

4
(D1 +D2 − 2) +

1

4
(B1 +B2 − 2)x− 1

4
(D1 +D2 + 2)x2 − 1

4
(B1 +B2 + 2)x3 +

1

2
(m+ k)H,

f2 =
1

4
(D1 −D2 + 2) +

1

4
(B1 −B2)x− 1

4
(D1 −D2 − 2)x2 − 1

4
(B1 −B2)x

3 +
1

2
(m− k)H,

g1 =
1

4
(C1 + C2 − 2) +

1

4
(A1 +A2 − 2)x− 1

4
(C1 + C2 + 2)x2 − 1

4
(A1 +A2 + 2)x3 +

1

2
(m+ k)H,

g2 =
1

4
(C1 − C2) +

1

4
(A1 −A2)x− 1

4
(C1 − C2)x

2 − 1

4
(A1 −A2)x

3 +
1

2
(m− k)H.

Odd values must be of the stated form. We proceed as in the case of Z2 × D8, with (3.3)
becoming

D1 = m1m2ℓ
2
1, D2 = m3m4ℓ

2
2, (4.6)

where again

m1 = f(1)2 − g(1)2,

m2 = f(−1)2 − g(−1)2,

m3 = (f(1) + 2h(1))2 − (g(1) + 2k(1))2,

m4 = (f(−1) + 2h(−1))2 − (g(−1) + 2k(−1))2,

but this time

ℓ1 = |f(i)|2 + |g(i)|2, ℓ2 = |f(i) + 2h(i)|2 + |g(i) + 2k(i)|2.

This does not change ℓ1 − ℓ2 mod 8, so again we must have D1 ≡ D2 mod 16 and D1D2 is
1 or 9 mod 16. The 1 mod 16 are all achievable, so assume D1D2 ≡ 9 mod 16. Since all the
mi ≡ m1 mod 4, plainly the Di ≡ m2

1ℓ
2
i ≡ 1 mod 4, so we can assume that D1,D2 ≡ −3 mod 8.
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Since the ℓ2i ≡ 1 mod 8, we get m1m2,m3m4 ≡ −3 mod 8. Since m1 and m2 are 1 or −3 mod 8

we must have one of each, and 2 ∥ g(1) and 4 | g(−1) or vice versa. Hence d1 must be odd and

ℓ1 ≡ (c0 + c1)
2 + c21 + (d0 + d1)

2 + d21 ≡ 3 mod 4.

From above we also know that ℓ1 ≡ ℓ2 mod 4. That is, D1D2 = s1s2(ℓ1ℓ2)
2 with s1 ≡ s2 ≡

−3 mod 8 and ℓ1 ≡ ℓ2 ≡ 3 mod 4. Plainly we have s1s2 ≡ 9 mod 16 if s1 ≡ s2 ≡ −3 or
5 mod 16 and s1s2 ≡ 1 mod 16 if one is −3 and the other 5 mod 16, while ℓ1ℓ2 ≡ 1 mod 8 and
(ℓ1ℓ2)

2 ≡ 1 mod 16 if ℓ1 ≡ ℓ2 ≡ 3 or 7 mod 8 and ℓ1ℓ2 ≡ −3 mod 8 and (ℓ1ℓ2)
2 ≡ 9 mod 16 if

one is 3 and the other 7 mod 8. Hence the restrictions (4.2) and (4.3) to get D1D2 ≡ 9 mod 16.

Achieving the even values. We obtain the 218m, m odd, from

f1 = 1 + x2 +
1

2
(m+ 1)H, f2 =

1

2
(m− 1)H,

g1 = −(1 + x) +
1

2
(m+ 1)H, g2 =

1

2
(m− 1)H,

and the 219m from

f1 = 1 + x+ x2 −mH, f2 = −x− x3 −mH,

g1 = x+ x3 +mH, g2 = −x3 +mH.

We get the 216(4m+ 1) from

f1 = 1 + x+ x2 + x3 +mH, f2 = mH,

g1 = 1− x+mH, g2 = mH.

We get 216(8t+ 3)(4s+ 1) from

f1 = 1 + x+ x2 + x3 + (t+ s)H, f2 = 1 + x2 − x3 + (t− s)H,

g1 = (t− s)H, g2 = x3 + (t+ s)H,

with s = 0 giving us the 216m, m ≡ 3 mod 8, and s = 2k − 1 the values (4.5). For ℓ ≥ 5 with
ℓ ≡ 1 mod 4 we can write 2ℓ− 4 ≡ 6 mod 8 as a sum of three squares with two of them odd and
the other 2 mod 4:

2ℓ = (4a+ 1)2 + 22 + (4c− 1)2 + (4d− 2)2

and we can get 216(4m− 1)ℓ2, and hence (4.4), from

f1 = (1− x+ x2) + a(1− x2) +mH,

f2 = −x(1 + x) + a(1− x2) +mH,

g1 = −x+ (1− x2)(c+ dx) +mH,

g2 = −(1 + x) + (1− x2)(c+ dx) +mH.

For p ≡ 3 mod 4 we write 2p = A2+B2+C2+D2 where, since 2p ≡ 6 mod 8, two of A,B,C,D

must be odd and two even, with one of them divisible by 4, the other 2 mod 4. Changing signs
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as necessary we assume that A = 1 + 4a, B = 4b, C = 1 + 4c, and D = 2 + 4d. We achieve
217(2m+ 1)p2 with

f1 = (1 + x)(x2 + 1) + a(1− x2) + bx(1− x2) +mH,

f2 = 1 + (x− 1)(x2 + 1) + a(1− x2) + bx(1− x2) +mH,

g1 = 1 + x+ c(1− x2) + dx(1− x2) +mH,

g2 = x+ c(1− x2) + dx(1− x2) +mH.

Even values must be of the stated form. We know if the Z2×Q8 determinant is even, then both
Q8 determinants are even, and by [14] must each be multiples of 28. Hence the even determinants
must be multiples of 216. Note, if the determinant is even we must have f(1) and g(1) the same
parity, and all the terms m1,m2,m3,m4, ℓ1, ℓ2 in (4.6) must be even.

The 217 ∥ D are of the stated form. Suppose that we had a determinant 217m, m odd, with m

not divisible by the square of a prime 3 mod 4. Writing

ℓ2 − ℓ1 ≡ 4(a0c0 − a0c1 − a1c0 + a20) + 4(b0d0 − b0d1 − b1d0 + b20) mod 8 (4.7)

we see that 2 ∥ ℓ1, ℓ2 or 4 | ℓ1, ℓ2. If f(1), g(1) are both odd then 23 | m1,m2,m3,m4 and we
must have 2 ∥ ℓ1, ℓ2 (else 212+8 | D). Now if 2u ∥ f(1) and 2v ∥ g(1) with u, v ≥ 1 then
22min{u,v} ∥ m1 if u ̸= v, while if u = v we have 22u+3 | m1. Likewise for m2,m3,m4. To obtain
an odd power of two we must therefore have at least one of the mi with u = v. We cannot have
two of them (else 25+5+4+4 | D). Again we can assume that 2 ∥ ℓ1, ℓ2 (otherwise 25+6+8 | D).
Since ℓ1 and ℓ2 do not contain any primes 3 mod 4 we have ℓ1 ≡ ℓ2 ≡ 2 mod 8 and (4.7) gives

a0c0 − a0c1 − a1c0 + a20 + b0d0 − b0d1 − b1d0 + b20 ≡ 0 mod 2. (4.8)

Suppose first that f(1), g(1) are odd. Since c0 and d0 are odd, (4.8) becomes

−a0c1 − b0d1 ≡ a1 + b1 mod 2. (4.9)

To get power 17, rearranging if necessary to make the highest power on m1, we must have
24 ∥ m1, 23 ∥ m2,m3,m4. That is, m1 ≡ 0 mod 16, and m2 ≡ m3 ≡ m4 ≡ 8 mod 16.

From
m1 = c20 − d20 ≡ 0 mod 16, m3 = (c0 + 2a0)

2 − (d0 + 2b0)
2 ≡ 8 mod 16

we get
a0c0 + a20 − b20 − b0d0 ≡ 2 mod 4. (4.10)

From

m4 ≡ (c0 − 2c1 + 4c2 + 2a0 − 4a1)
2 − (d0 − 2d1 + 4d2 + 2b0 − 4b1)

2 mod 16

≡ m2 + 4a20 + 4(a0c0 − 2a0c1 − 2a1c0)− 4b20 − 4(d0b0 − 2d1b0 − 2d0b1) mod 16,

we get
a20 + a0c0 − b20 − b0d0 − 2(a0c1 + a1 − d1b0 − b1) ≡ 0 mod 4.

Applying (4.9), this becomes a20 + a0c0 − b20 − b0d0 ≡ 0 mod 4, contradicting (4.10).
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Now suppose that 2u ∥ f(1), g(1), u ≥ 1. Since c0 and d0 are even, (4.8) becomes

−a0c1 + a20 − b0d1 + b20 ≡ 0 mod 2. (4.11)

Notice we cannot have c1, d1 both odd or both even, else

ℓ1 = |c0 − c1 + ic1 + 2α|2 + |d0 − d1 + id1 + 2β|2 ≡ 2c21 + 2d21 mod 4

would be divisible by 4.
We cannot have a0, b0 both odd, else (4.11) becomes c1 + d1 ≡ 0 mod 2, contradicting c1, d1

having opposite parity. If u = 1 we can rule out a0, b0 both even, else 2 ∥ f(1)+2h(1) = c0+2a0,
g(1) + 2k(1) = d0 + 2b0 (we ruled out m1 and m3 both having u = v). If u ≥ 2 we cannot have
a0, b0 both even, else 4 divides both terms, 24 | m3, 27 | m1 and 27+2+4+2+4 | D. So a0, b0 like
c1, d1 have opposite parity. From

f(−1) + 2h(−1) ≡ c0 − 2c1 + 2a0 mod 4, g(−1) + 2k(−1) = d0 − 2d1 + 2b0 mod 4

we cannot have a0 ≡ c1 mod 2 and b0 ≡ d1 mod 2, else if u = 1 we would have a single 2

dividing both (ruled out) and if u = 2 we would have 4 dividing both and 24 | m4, 27 | m1. Hence
we must have a0 ≡ d1, b0 ≡ c1 mod 2 and (4.11) becomes a20 + b20 ≡ 0 mod 2, contradicting that
a0, b0 have opposite parity.

The 216∥D are of the stated form. Suppose now that we have D = 216m, with m ≡ −1 mod 8,
that is not of the form (4.4) or (4.5). Note, ℓ1ℓ2 does not contain a prime p ≡ 1 mod 4 or two
primes p1, p2 ≡ 3 mod 4 (else it will be type (4.4) with ℓ = p or p1p2), and D has no factor
±3 mod 8 (else it will be type (4.5)).

If 22 | ℓ1 or ℓ2 then 22 ∥ ℓ1, ℓ2 and 22 ∥ m1,m2,m3,m4 and f(1), g(1) are even. Now
m1/4 = (f(1)/2)2 − (g(1)/2)2 ≡ ±1 mod 8 and likewise for m2/4,m3/4 and m4/4, with their
product −1 mod 8. Switching f and g as necessary and rearranging, we can assume
m1/4 ≡ −1 mod 8 and m2/4,m3/4,m4/4 ≡ 1 mod 8. That is 4 | f(1)/2 and f(1)/2 + h(1),

f(−1)/2, f(−1)/2 + h(−1) are all odd. From the first two h(1) is odd, from the second two,
h(−1) is even, but h(1) and h(−1) must have the same parity. Hence we can assume that
2 ∥ ℓ1, ℓ2, moreover that ℓ1 = ℓ2 = 2, or one is 2 and the other 2p for some prime p = 3 mod 4.

If f(1) = c0 and g(1) = d0 are odd, then plainly 23 ∥ m1,m2,m3,m4. We rule out one of ℓ1,
ℓ2 being 2 mod 8 and the other 6 mod 8. In this case (4.7) becomes

1 ≡ −a0c1 − a1 − b0d1 − b1 mod 2. (4.12)

But the difference of

m4 ≡ (c0 − 2c1 + 4c2 + 2a0 − 4a1)
2 − (d0 − 2d1 + 4d2 + 2b0 − 4b1)

2 ≡ 8 mod 16

and
m2 ≡ (c0 − 2c1 + 4c2)

2 − (d0 − 2d1 + 4d2)
2 ≡ 8 mod 16

gives
4(a20 + a0c0 − b20 − b0d0)− 8(a1c0 + a0c1 − b1d0 − b0d1) ≡ 0 mod 16,

where
4(a20 + a0c0 − b20 − b0d0) = m3 −m1 ≡ 0 mod 16,

and a1 + a0c1 − b1 − b0d1 ≡ 0 mod 2, contradicting (4.12). This just leaves us with the case
ℓ1 = ℓ2 = 2 considered in the lemma below.

613



Suppose f(1) = c0 = 2c, g(1) = d0 = 2d are even. If c and d have opposite parity then
22 ∥ m1, if both are odd then 25 | m1 and if c = 2c′′, d = 2d′′ then 24 ∥ m1 if c′′ and d′′ have
opposite parity and 26 | m1 otherwise. Moreover if c and d have the same parity and 22 divides

m1/4 = c2 − d2,

then 24 must also divide at least one of the other mi. To see this observe that if a0 and b0 have the
same parity then 22 divides

m3/4 = (c+ a0)
2 − (d+ b0)

2, (4.13)

if c1 and d1 have the same parity then 22 divides

m2/4 ≡ (c− c1 + 2c2)
2 − (d− d1 + 2d2)

2 mod 8, (4.14)

and if both a0 and b0, and c1 and d1 have opposite parity, then a0 − c1 and b0 − d1 have the same
parity and 22 divides

m4/4 ≡ (c− c1 + 2c2 + a0 − 2a1)
2 − (d− d1 + 2d2 + b0 − 2b1)

2 mod 8. (4.15)

Hence, rearranging as necessary, we can assume that 24 ∥ m1 and one other mi, and 22 ∥ mi for
the other two mi. In particular c0 = 4c′ and d0 = 4d′ with c′, d′ of opposite parity. Suppose now
that one of ℓ1, ℓ2 is 2 mod 8 and the other 6 mod 8, so that (4.7) becomes

1 ≡ −a0c1 + a20 − b0d1 + b20 mod 2. (4.16)

Notice that this rules out a0, b0 both even or c1, d1 both odd. We can rule out a0, b0 both odd, else
23 | m3/4 in (4.13), and c1, d1 both even else

ℓ1 = |4c′ + c1(i− 1) + 2iα|2 + |4d′ + d1(i− 1) + 2iβ|2 ≡ 0 mod 4.

Hence a0 − c1 and b0 − d1 have the same parity, but cannot be odd, else 23 | m4/4 in (4.15).
Hence c1 ≡ a0 mod 2 and d1 ≡ b0 mod 2, violating (4.16). This just leaves the case ℓ1 = ℓ2 = 2

dealt with in the next lemma.

Lemma 4.1. All Z2 × Q8 determinants 216m with m ≡ 7 mod 8 and ℓ1 = ℓ2 = 2 in (4.6) must
be of the form (4.5).

Proof. Suppose that D = 216m, where ℓ1 = ℓ2 = 2, and all the factors of m are ±1 mod 8. We
show that m ≡ 1 mod 8. Hence any with m ≡ −1 mod 8 must have a factor ±3 mod 8 and be
of the form (4.5).

Case 1: f(1) and g(1) are even. Since |f(i)|2 and |g(i)|2 are both even, we must have one of
them 2 and the other 0. Switching f and g and replacing f(x) by ±f(±x) as necessary, we can
assume that f(i) = 1 + i and g(i) = 0. Hence we can write

f(x) = 1 + x+ (x2 + 1)v(x), g(x) = (x2 + 1)u(x).

614



Note 22 divides |g(i) + 2k(i)|2, so this term must also be zero, while f(i) + 2h(i) = ε+ δi with
δ, ε = ±1, and

f(x) + 2h(x) = ε+ δx+ (x2 + 1)(v(x) + 2h1(x)),

g(x) + 2k(x) = (x2 + 1)(u(x) + 2k1(x)).

Hence

m1/4 = (1 + v(1))2 − u(1)2,

m2/4 = v(−1)2 − u(−1)2,

m3/4 =

(
1

2
(ε+ δ) + v(1) + 2h1(1)

)2

− (u(1) + 2k1(1))
2,

m4/4 =

(
1

2
(ε− δ) + v(−1) + 2h1(−1)

)2

− (u(−1) + 2k1(−1))2.

Note, one of 1+v(1) and v(−1) must be odd, and hence u(1), u(−1) must be even (else 23 | m1/4

or m2/4).

(i) Suppose that v(1) is odd. Since m2/4 ̸≡ −3 mod 8 we must have m2/4 ≡ 1 mod 8,
4 | u(−1), and

m1

24
=

(
1 + v(1)

2

)2

−
(
u(1)

2

)2

.

If δ = −ε then m3/4 ≡ 1 mod 8, 4 | (u(1) + 2k1(1)), and

m4

24
=

(
ε+ v(−1)

2
+ h1(−1)

)2

−
(
u(−1)

2
+ k1(−1)

)2

.

If 2 | u(1)/2 then 2 | k1(1), 2 | (u(−1)/2 + k1(−1)), and m1/2
4,m4/2

4 ≡ 1 mod 8. If
2 ∤ u(1)/2 then 2 ∤ k1(1), 2 ∤ (u(−1)/2 + k1(−1)), and m1/2

4,m4/2
4 ≡ −1 mod 8. In

both cases m1m2m3m4/2
12 ≡ 1 mod 8.

If δ = ε we have m4/4 ≡ 1 mod 8, 4 | (u(−1) + 2k1(−1)), 2 | k1(−1), k1(1) and

m3

24
=

(
ε+ v(1)

2
+ h1(1)

)2

−
(
u(1)

2
+ k1(1)

)2

.

If 2 | u(1)/2 then m1/2
4,m3/2

4 ≡ 1 mod 8 and if 2 ∤ u(1)/2 both are −1 mod 8. Again
m1m2m3m4/2

12 ≡ 1 mod 8.

(ii) Suppose that v(1) is even. In this case m1/4 ≡ 1 mod 8, 4 | u(1) and

m2

24
=

(
v(−1)

2

)2

−
(
u(−1)

2

)2

.

If δ = −ε then m4/4 ≡ 1 mod 8, 4 | (u(−1) + 2k1(−1)), and

m3

24
=

(
v(1)

2
+ h1(1)

)2

−
(
u(1)

2
+ k1(1)

)2

.
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If 2 | u(−1)/2 then m2/2
4 ≡ 1 mod 8 and 2 | k1(−1), 2 | (u(1)/2 + k1(1)) and m3/2

4 ≡
1 mod 8. If 2 ∤ u(−1)/2 then m2/2

4 ≡ −1 mod 8, 2 ∤ k1(−1), 2 ∤ (u(1)/2 + k1(1)) and
m3/2

4 ≡ −1 mod 8. Again, m1m2m3m4/2
12 ≡ 1 mod 8.

If δ = ε then m3/4 ≡ 1 mod 8, 4 | (u(1) + 2k1(1)), 2 | k1(1), k1(−1) and

m4

24
=

(
v(−1)

2
+ h1(−1)

)2

−
(
u(−1)

2
+ k1(−1)

)2

.

If 2 | u(−1)/2 then m2/2
4,m4/2

4 ≡ 1 mod 8. If 2 ∤ u(−1)/2 then m2/2
4,m4/2

4 ≡
−1 mod 8. In both cases m1m2m3m4/2

12 ≡ 1 mod 8.

In conclusion, there are no cases where D/216 = m1m2m3m4/2
12 ≡ −1 mod 8.

Case 2: f(1) and g(1) are odd. In this case we have 23 ∥ m1,m2,m3,m4. From ℓ1 = ℓ2 = 2

we must have f(i), g(i), f(i) + 2h(i), g(i) + 2k(i) = ±1 or ±i. Multiplying the f and h or the g

and k through by ±1 or ±x we can assume that f(i) = 1 and g(i) = 1 and

f(x) = 1 + (x2 + 1)v(x), g(x) = 1 + (x2 + 1)u(x).

Clearly we must have f(i) + 2h(i), g(i) + 2k(i) = ±1 and

f(x) + 2h(x) = ε+ (x2 + 1)(v(x) + 2h1(x)), g(x) + 2k(x) = δ + (x2 + 1)(u(x) + 2k1(x))

for some ε, δ = ±1. Hence

m1

4
= (1 + u(1) + v(1))(v(1)− u(1)),

m3

4
=

(
ε+ δ

2
+ v(1) + u(1) + 2h1(1) + 2k1(1)

)(
ε− δ

2
+ v(1)− u(1) + 2h1(1)− 2k1(1)

)
.

Similarly for m2/4 and m4/4 with u(−1), v(−1), h1(−1), k1(−1) in place of u(1), v(1), h1(1),

k1(1).

(i) Suppose that u(1) + v(1) is even. In this case m1/8 = α1α2 with

α1 = 1 + u(1) + v(1), α2 =
1

2
(v(1)− u(1))

When δ = −ε we have m3/8 = λ1λ2, with

λ1 =
1

2
(v(1) + u(1)) + h1(1) + k1(1),

λ2 = ε+ v(1)− u(1) + 2h1(1)− 2k1(1).

Recall that by assumption all these factors are ±1 mod 8. Since

λ1 = εα2 +
1

2
(1− ε)v(1) +

1

2
(1 + ε)u(1) + h1(1) + k1(1),

we have 2 | 1
2
(1− ε)v(1) + 1

2
(1 + ε)u(1) + h1(1) + k1(1) and

λ2 = εα1 + (1− ε)v(1)− (1 + ε)u(1) + 2h1(1)− 2k1(1) ≡ εα1 mod 4.
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Hence λ2 ≡ εα1 mod 8 and 4 | 1
2
(1− ε)v(1)− 1

2
(1 + ε)u(1) + h1(1)− k1(1). So

λ1λ2 ≡ (εα2 + (1 + ε)u(1) + 2k1(1))εα1 ≡ α1α2 + (1 + ε)u(1) + 2k1(1) mod 4,

and m3/8 ≡ m1/8 mod 4, and m1m3/2
6 ≡ 1 mod 8, iff 2 | 1

2
(1 + ε)u(1) + k1(1). Clearly

2 | 1
2
(1+ε)u(1)+k1(1) iff 2 | 1

2
(1+ε)u(−1)+k1(−1), giving m1m3/2

6 ≡ m2m4/2
6 mod

8, and m = m1m2m3m4/2
12 ≡ 1 mod 8.

Similarly, when δ = ε we have

λ1 =
1

2
(v(1)− u(1)) + h1(1)− k1(1),

λ2 = ε+ v(1) + u(1) + 2h1(1) + 2k1(1).

Since
λ1 = εα2 +

1

2
(1− ε)v(1)− 1

2
(1− ε)u(1) + h1(1)− k1(1),

we have 2 | 1
2
(1− ε)v(1)− 1

2
(1− ε)u(1) + h1(1)− k1(1), and

λ2 = εα1 + (1− ε)v(1) + (1− ε)u(1) + 2h1(1) + 2k1(1) ≡ εα1 mod 4.

So λ2 ≡ εα1 mod 8, 4 | 1
2
(1− ε)v(1) + 1

2
(1− ε)u(1) + h1(1) + k1(1) and

λ1λ2 ≡ (εα2 − (1− ε)u(1)− 2k1(1))εα1 ≡ α1α2 − (1− ε)u(1)− 2k1(1) mod 4,

giving m1m3/2
6 ≡ 1 mod 8, iff 2 | 1

2
(1− ε)u(1) + k1(1). Again m ≡ 1 mod 8.

(ii) Suppose that u(1) + v(1) is odd. In this case

α1 = v(1)− u(1), α2 =
1

2
(1 + u(1) + v(1)).

When δ = −ε we have

λ1 =
1

2
(ε+ v(1)− u(1)) + h1(1)− k1(1),

λ2 = v(1) + u(1) + 2h1(1) + 2k1(1).

So
λ1 = εα2 +

1

2
(1− ε)v(1)− 1

2
(1 + ε)u(1) + h1(1)− k1(1),

and 2 | 1
2
(1− ε)v(1)− 1

2
(1 + ε)u(1) + h1(1)− k1(1), giving

λ2 = εα1 + (1− ε)v(1) + (1 + ε)u(1) + 2h1(1) + 2k1(1) ≡ εα1 mod 4.

Hence λ2 ≡ εα1 mod 8, 4 | 1
2
(1− ε)v(1) + 1

2
(1 + ε)u(1) + h1(1) + k1(1) and

λ1λ2 ≡ (εα2 − (1 + ε)u(1)− 2k1(1))εα1 ≡ α1α2 − (1 + ε)u(1)− 2k1(1) mod 4.

Thus m1m3/2
6 ≡ 1 mod 8 iff 2 | 1

2
(1 + ε)u(1) + k1(1). Again m ≡ 1 mod 8.
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When δ = ε we have

λ1 =
1

2
(ε+ v(1) + u(1)) + h1(1) + k1(1),

λ2 = v(1)− u(1) + 2h1(1)− 2k1(1).

Hence
λ1 = εα2 +

1

2
(1− ε)v(1) +

1

2
(1− ε)u(1) + h1(1) + k1(1),

and 2 | 1
2
(1− ε)v(1) + 1

2
(1− ε)u(1) + h1(1) + k1(1), giving

λ2 = εα1 − (1− ε)u(1) + (1− ε)v(1) + 2h1(1)− 2k1(1) ≡ εα1 mod 4.

So λ2 ≡ εα1 mod 8, 4 | 1
2
(1− ε)v(1)− 1

2
(1− ε)u(1) + h1(1)− k1(1), and

λ1λ2 ≡ (εα2 + (1− ε)u(1) + 2k1(1))εα1 ≡ α1α2 + (1− ε)u(1) + 2k1(1) mod 4.

Hence m1m3/2
6 ≡ 1 mod 8 iff 2 | 1

2
(1− ε)u(1) + k1(1). Again m ≡ 1 mod 8.
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