The group determinants for $\mathbb{Z}_{\boldsymbol{n}} \times \boldsymbol{H}$

Bishnu Paudel ${ }^{1}$ and Chris Pinner ${ }^{2}$

${ }^{1}$ Department of Mathematics, Kansas State University Manhattan KS 66506, United States
e-mail: bpaudel@ksu.edu
${ }^{2}$ Department of Mathematics, Kansas State University Manhattan KS 66506, United States
e-mail: pinner@math.ksu.edu

Received: 22 March 2023
Revised: 4 August 2023
Accepted: 11 August 2023
Online First: 25 August 2023

Abstract

Let \mathbb{Z}_{n} denote the cyclic group of order n. We show how the group determinant for $G=\mathbb{Z}_{n} \times H$ can be simply written in terms of the group determinant for H. We use this to get a complete description of the integer group determinants for $\mathbb{Z}_{2} \times D_{8}$ where D_{8} is the dihedral group of order 8 , and $\mathbb{Z}_{2} \times Q_{8}$ where Q_{8} is the quaternion group of order 8 .

Keywords: Integer group determinant, Dihedral group, Quaternion group.
2020 Mathematics Subject Classification: 11C20, 15B36; Secondary: 11C08, 43A40.

1 Introduction

At the meeting of the American Mathematical Society in Hayward, California, in April 1977, Olga Taussky-Todd [15] asked whether one could characterize the values of the group determinant when the entries are all integers. There was particular interest in the case of \mathbb{Z}_{n}, the cyclic group of order n, where the group determinant corresponds to the $n \times n$ circulant determinant. For a prime p, a complete description was obtained for the cyclic groups \mathbb{Z}_{p} and $\mathbb{Z}_{2 p}$ in [11] and [7], and for $D_{2 p}$ and $D_{4 p}$ in [8] and [1]. Here $D_{2 n}$ denotes the dihedral group of order $2 n$. In general though this quickly becomes a hard problem, with only partial results known even for $\mathbb{Z}_{p^{2}}$ once

	Copyright © 2023 by the Authors. This is an Open Access paper distributed under the (i) terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https: //creativecommons.org/licenses/by/4.0/

$p \geq 7$ (see [12] and [10]). A complete description has though been obtained for all groups of order less than 16 (see [14] and [13]), and for 6 of the 14 groups of order 16, D_{16} and the five Abelian groups $\mathbb{Z}_{16}, \mathbb{Z}_{2} \times \mathbb{Z}_{8}, \mathbb{Z}_{2}^{4}, \mathbb{Z}_{4}^{2}$ and $\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4}$ (see [1,16,18,20,21] and [19]). We write $\mathcal{S}(G)$ for the set of integer group determinants for the group G.

Our goal here is to show how the group determinant for a group of the form $G=\mathbb{Z}_{n} \times H$ can be straightforwardly related to the group determinants for the group H. We use this to give a complete description for two more non-Abelian groups of order 16 , namely $\mathbb{Z}_{2} \times D_{8}$ and $\mathbb{Z}_{2} \times Q_{8}$ where Q_{8} is the quaternion group.

Here we shall think of the group determinants as being defined on elements of the group ring $\mathbb{C}[G]$

$$
\mathcal{D}_{G}\left(\sum_{g \in G} a_{g} g\right)=\operatorname{det}\left(a_{g h-1}\right),
$$

although our ultimate interest is of course in the integer group determinants $\mathbb{Z}[G]$. We observe the multiplicative property

$$
\begin{equation*}
\mathcal{D}_{G}(x y)=\mathcal{D}_{G}(x) \mathcal{D}_{G}(y), \tag{1.1}
\end{equation*}
$$

using that

$$
x=\sum_{g \in G} a_{g} g, \quad y=\sum_{g \in G} b_{g} g \Rightarrow x y=\sum_{g \in G}\left(\sum_{h k=g} a_{h} b_{k}\right) g .
$$

2 Products with \mathbb{Z}_{n}

We show that when $G=\mathbb{Z}_{n} \times H$ we can write our integer group G-determinant as a product of n group H-determinants of elements in $\mathbb{Z}\left[\omega_{n}\right][H]$, where $\omega_{n}:=e^{2 \pi i / n}$. This is Lemma 1 of [9].

Theorem 2.1. If $G=\mathbb{Z}_{n} \times H$ then for any $a_{i h}$ in \mathbb{C}

$$
\begin{equation*}
\mathcal{D}_{G}\left(\sum_{i=0}^{n-1} \sum_{h \in H} a_{i h}(i, h)\right)=\prod_{y^{n}=1} \mathcal{D}_{H}\left(\sum_{h \in H}\left(\sum_{i=0}^{n-1} a_{i h} y^{i}\right) h\right) . \tag{2.1}
\end{equation*}
$$

Results of this flavour have been obtained before [17], but here we do not need to assume that H is Abelian.

Proof. One way to see this is to use Frobenius' factorisation [5] of the group determinant in terms of the irreducible, non-isomorphic, representations ρ of G (see for example [2] or [6])

$$
\mathcal{D}_{G}\left(\sum_{g \in G} a_{g} g\right)=\prod_{\rho} \operatorname{det}\left(\sum_{g \in G} a_{g} \rho(g)\right)^{\operatorname{deg}(\rho)}
$$

Observe that every representation ρ for H extends to n representations for G

$$
\rho_{y}(i, h)=y^{i} \rho(h),
$$

where y runs through the n-th roots of unity.

More directly we can alternatively follow Newman's proof [11] of the factorization of the group determinant for $G=\mathbb{Z}_{n}$. Newman observes that the group matrix M for $\sum_{i \in \mathbb{Z}_{n}} A_{i} i$, that is the circulant matrix with first row $A_{0}, A_{1}, \ldots, A_{n-1}$, takes the form

$$
M=A_{0} I_{n}+A_{1} P+\cdots+A_{n-1} P^{n-1}, \quad P=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

Now P has eigenvalues $y, y^{n}=1$, so the matrix M will have the same eigenvectors as P but with eigenvalues

$$
\begin{equation*}
A_{0}+A_{1} y+\cdots+A_{n-1} y^{n-1}, \quad y=1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1} \tag{2.2}
\end{equation*}
$$

Hence the matrix of eigenvectors B will yield a diagonal matrix $B^{-1} M B$ with the values (2.2) down the diagonal.

Now suppose that $H=\left\{h_{1}, \ldots, h_{m}\right\}$ and order the elements so that the first row of the $G=\mathbb{Z}_{n} \times H$ group matrix \mathcal{M} for $\sum_{i \in \mathbb{Z}_{n}, h \in H} a_{i h}(i, h)$ consists of the

$$
a_{0 h_{1}}, \ldots, a_{0 h_{m}}, a_{1 h_{1}}, \ldots, a_{1 h_{m}}, \ldots, a_{(n-1) h_{1}}, \ldots, a_{(n-1) h_{m}} .
$$

Then it is not hard to see that first m rows of our G group matrix \mathcal{M} will consists of $m \times m$ blocks $A_{0}, A_{1}, \ldots, A_{n-1}$, where A_{i} is the group H matrix associated to $\sum_{h \in H} a_{i h} h$, and the subsequent rows the same blocks cyclically permuted.

Hence if we take the $n \times n$ matrix B and replace each entry $a_{i j}$ with the $m \times m$ block $a_{i j} I_{m}$ we obtain an $n m \times n m$ matrix \mathcal{B}, where $\mathcal{B}^{-1} \mathcal{M B}$ will now be a block matrix with entries the same linear combinations of the blocks A_{i} as occured for the elements in $B^{-1} M B$; that is blocks (2.2) down the diagonal and zeros elsewhere. The result is then plain.

Notice that if we start with an integer G group determinant, then we can assemble the n determinants in (2.1) into $\tau(n)$ integers by combining the primitive d th roots of unity, $d \mid n$. If H is Abelian, then these will be integer H group determinants

$$
\begin{equation*}
\prod_{\substack{y==\omega_{d}^{j} \\ \operatorname{gcd}(j, d)=1}} \mathcal{D}_{H}\left(\sum_{h \in H}\left(\sum_{i=0}^{n-1} a_{i h} y^{i}\right) h\right)=\mathcal{D}_{H}\left(\prod_{\substack{y=\omega_{d}^{j} \\ \operatorname{gcd}(j, d)=1}} \sum_{h \in H}\left(\sum_{i=0}^{n-1} a_{i h} y^{i}\right) h\right), \tag{2.3}
\end{equation*}
$$

since the resulting coefficients will be symmetric expressions in the conjugates and hence in \mathbb{Z}. In particular, an integer $G=\mathbb{Z}_{n} \times H$ group determinant is an integer group H determinant, though this can be seen more directly (if $H=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$, then the G group determinant reduces to a product of an integer polynomial $F\left(y, x_{1}, \ldots, x_{k}\right)$ over the n, n_{1}, \ldots, n_{k} th roots of unity and $\prod_{y^{n}=1} F\left(y, x_{1}, \ldots, x_{k}\right)$ is just an integer polynomial in one less variable; see also [16, Theorem 1.4]). If H is non-Abelian, then the process (2.3) may leave elements in $\mathbb{Z}\left[\omega_{d}\right][H]$, and we are unable to say that an integer G group determinant must be an integer H group determinant, except for the case when $n=2$.

3 The group $\mathbb{Z}_{2} \times D_{8}$

Notice that when $n=2$ we can write an integer $\mathbb{Z}_{2} \times H$ group determinant as a product of two integer H group determinants:

$$
\mathcal{D}_{\mathbb{Z}_{2} \times H}\left(\sum_{h \in H} a_{h}(0, h)+\sum_{h \in H} b_{h}(1, h)\right)=\mathcal{D}_{H}\left(\sum_{h \in H}\left(a_{h}+b_{h}\right) h\right) \mathcal{D}_{H}\left(\sum_{h \in H}\left(a_{h}-b_{h}\right) h\right) .
$$

In the case of $H=D_{8}=\left\langle F, R \mid F^{2}=1, R^{4}=1, R F=F R^{3}\right\rangle$ we take the coefficients of the group elements $\left(0, R^{j}\right),\left(1, R^{j}\right),\left(0, F R^{j}\right)$ and $\left(1, F R^{j}\right)$, as the coefficients of x^{j} in four cubics, f_{1}, f_{2}, g_{1} and g_{2} respectively. The $\mathbb{Z}_{2} \times D_{8}$ determinant, which we will denote $\mathcal{D}\left(f_{1}, f_{2}, g_{1}, g_{2}\right)$, is then the product of two D_{8} determinants, which from [8] or [1] can be written

$$
\begin{equation*}
\mathcal{D}\left(f_{1}, f_{2}, g_{1}, g_{2}\right)=\mathcal{D}(1) \mathcal{D}(-1), \quad \mathcal{D}(z)=m_{1}(z) m_{2}(z) \ell(z)^{2} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& m_{1}(z)=\left(f_{1}(1)+z f_{2}(1)\right)^{2}-\left(g_{1}(1)+z g_{2}(1)\right)^{2} \\
& m_{2}(z)=\left(f_{1}(-1)+z f_{2}(-1)\right)^{2}-\left(g_{1}(-1)+z g_{2}(-1)\right)^{2}
\end{aligned}
$$

and

$$
\begin{equation*}
\ell(z)=\left|f_{1}(i)+z f_{2}(i)\right|^{2}-\left|g_{1}(i)+z g_{2}(i)\right|^{2} . \tag{3.2}
\end{equation*}
$$

We obtain a complete description of the $\mathbb{Z}_{2} \times D_{8}$ integer group determinants.
Theorem 3.1. For $G=\mathbb{Z}_{2} \times D_{8}$ the set of odd integer group determinants is

$$
A:=\{m(m+16 k): m, k \in \mathbb{Z}, m \text { odd }\}
$$

The even determinants are the $2^{16} m, m \in \mathbb{Z}$.
Notice the set of achieved odd values A consists of all the integers $1 \bmod 16$ and exactly those integers $9 \bmod 16$ which contain a prime $p \equiv \pm 3$ or $\pm 5 \bmod 16$. These are the same as the odd values found in [16] for $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$. In fact $\mathcal{S}\left(\mathbb{Z}_{2} \times D_{8}\right) \subsetneq \mathcal{S}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$. Sets of this type occur for other 2-groups.

Proposition 3.1. The odd integer group determinants for $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}$ are the

$$
\{m(m+|G| k): m, k \in \mathbb{Z}, m \text { odd }\} .
$$

The odd integer group determinants for $G=\mathbb{Z}_{2}^{n}$ or $\mathbb{Z}_{2}^{n} \times \mathbb{Z}_{4}$ are the $m \equiv 1 \bmod |G|$.
Note, for any group the $m \equiv 1 \bmod |G|$ are in $\mathcal{S}(G)$, with $1+k|G|$ obtained by taking $a_{g}=1+k$ for the identity and $a_{g}=k$ for the others.

Proof of Theorem 3.1. Achieving the values. We write $H(x):=(x+1)\left(x^{2}+1\right)$.
We achieve the values in A with $m= \pm 1, \pm 9 \bmod 16$ from

$$
\mathcal{D}(1+k H, k H, k H, k H)=1+16 k .
$$

We get those with $\pm m \equiv 5 \bmod 16$ from $(5+16 t)(5+16 k)$ achieved with

$$
\mathcal{D}\left(1+x+x^{2}+(t+k) H, x-x^{3}+(t-k) H, 1+x+(t+k) H, 1-x^{2}+(t-k) H\right)
$$

and those with $\pm m \equiv 3 \bmod 16$ from $(3+16 t)(3+16 k)$ achieved with $\mathcal{D}\left(1+x+(t+k) H, 1+x-x^{2}-x^{3}+(t-k) H, 1+x-x^{3}+(t+k) H, x-x^{3}+(t-k) H\right)$. We achieve the even values $2^{18} \mathrm{~m}$ using

$$
\mathcal{D}\left(1+x+x^{2}-m H, 1-x^{2}-x^{3}-m H, 1+x-x^{3}+m H, x+m H\right),
$$

the $2^{17}(2 m+1)$ with

$$
\mathcal{D}\left(1+x+x^{2}+x^{3}+m H, 1+x+m H, x+m H, 1+x^{2}-x^{3}+m H\right),
$$

the $2^{16}(1+4 m)$ from

$$
\mathcal{D}\left(1+x+x^{2}+x^{3}+m H, 1+x-x^{2}-x^{3}+m H, 1+x-x^{2}-x^{3}+m H, 1-x+m H\right),
$$

and the $2^{16}(-1+4 m)$ from

$$
\mathcal{D}\left(1+x+x^{2}-m H, 1+x-x^{3}-m H, 1-x^{3}-m H, x-x^{2}-m H\right) .
$$

The odd values. We show that any odd determinant must lie in A. We know that any $\mathbb{Z}_{2} \times D_{8}$ determinant must be the product of two D_{8} determinants, which we can write

$$
\begin{equation*}
\mathcal{D}_{1}=m_{1} m_{2} \ell_{1}^{2}, \quad \mathcal{D}_{2}=m_{3} m_{4} \ell_{2}^{2} \tag{3.3}
\end{equation*}
$$

with

$$
m_{1}=f(1)^{2}-g(1)^{2}, \quad m_{2}=f(-1)^{2}-g(-1)^{2}, \quad \ell_{1}=|f(i)|^{2}-|g(i)|^{2}
$$

and

$$
\begin{aligned}
m_{3} & =(f(1)+2 h(1))^{2}-(g(1)+2 k(1))^{2} \\
m_{4} & =(f(-1)+2 h(-1))^{2}-(g(-1)+2 k(-1))^{2} \\
\ell_{2} & =|f(i)+2 h(i)|^{2}-|g(i)+2 k(i)|^{2}
\end{aligned}
$$

Assume that $\mathcal{D}_{1} \mathcal{D}_{2}$ is odd. Switching f and g and replacing f by $-f$ as necessary, we shall assume that $f(1) \equiv 1 \bmod 4$ and $2 \mid g(1)$. The result will follow once we show that

$$
\mathcal{D}_{1} \equiv \mathcal{D}_{2} \quad(\bmod 16)
$$

We write
$h(x)=\sum_{i=0}^{3} a_{i}(x-1)^{i}, \quad k(x)=\sum_{i=0}^{3} b_{i}(x-1)^{i}, \quad f(x)=\sum_{i=0}^{3} c_{i}(x-1)^{i}, \quad g(x)=\sum_{i=0}^{3} d_{i}(x-1)^{i}$,
where $c_{0}=1 \bmod 4$ and $2 \mid d_{0}$. Now

$$
\begin{aligned}
m_{3}-m_{1} & =4 f(1) h(1)+4 h(1)^{2}-4 k(1) g(1)-4 k(1)^{2} \equiv 4 a_{0}+4 a_{0}^{2}-4 b_{0} d_{0}-4 b_{0}^{2} \bmod 16, \\
m_{4}-m_{2} & =4 f(-1) h(-1)+4 h(-1)^{2}-4 k(-1) g(-1)-4 k(-1)^{2} \\
& \equiv 4\left(a_{0}-2 a_{1}-2 a_{0} c_{1}\right)+4 a_{0}^{2}-4\left(b_{0} d_{0}-2 b_{0} d_{1}\right)-4 b_{0}^{2} \bmod 16,
\end{aligned}
$$

and

$$
\begin{aligned}
\ell_{2}-\ell_{1} & =\left(2 h(i) \overline{f(i)}+2 \overline{h(i)} f(i)+4|h(i)|^{2}\right)-\left(2 k(i) \overline{g(i)}+2 \overline{k(i)} g(i)+4|k(i)|^{2}\right) \\
& \equiv\left(4 a_{0}-4 a_{0} c_{1}-4 a_{1}+4 a_{0}^{2}\right)-\left(-4 b_{0} d_{1}+4 b_{0}^{2}\right) \bmod 8
\end{aligned}
$$

and

$$
\ell_{2}^{2} \equiv \ell_{1}^{2}+8\left(a_{0}-a_{0} c_{1}-a_{1}+a_{0}^{2}+b_{0} d_{1}-b_{0}^{2}\right) \bmod 16
$$

Since $m_{1}, m_{2}, \ell_{1}^{2} \equiv 1 \bmod 4$ we get

$$
\begin{aligned}
\mathcal{D}_{1}-\mathcal{D}_{2} \equiv & 4\left(a_{0}+a_{0}^{2}-b_{0} d_{0}-b_{0}^{2}\right)+4\left(a_{0}-2 a_{1}-2 a_{0} c_{1}+a_{0}^{2}-b_{0} d_{0}+2 b_{0} d_{1}-b_{0}^{2}\right) \\
& +8\left(a_{0}-a_{0} c_{1}-a_{1}+a_{0}^{2}+b_{0} d_{1}-b_{0}^{2}\right) \equiv 0 \bmod 16
\end{aligned}
$$

The even values. We know from [1] that the even D_{8} determinants are divisible by 2^{8}. So any even $\mathbb{Z}_{2} \times D_{8}$ determinant $\mathcal{D}_{1} \mathcal{D}_{2}$ must be a multiple of 2^{16}, and all these are achieved.

Proof of Proposition 3.1. Suppose that H is an abelian 2-group and $G=\mathbb{Z}_{2} \times H$. Then by [3, Theorem 2.3] we can write the G-determinant as a product of two H-determinants $\mathcal{D}=\mathcal{D}_{1} \mathcal{D}_{2}$ with $\mathcal{D}_{2} \equiv \mathcal{D}_{1} \bmod |G|$, and

$$
\begin{equation*}
\mathcal{S}\left(\mathbb{Z}_{2} \times H\right) \subseteq\{m(m+k|G|): m \in \mathcal{S}(H)\} \tag{3.4}
\end{equation*}
$$

For $G=\mathbb{Z}_{2} \times \mathbb{Z}_{t}, t=2^{n}$, the determinants take the form

$$
\begin{aligned}
& \mathcal{D}_{1}=\prod_{x^{t}=1} F(x, 1), \\
& \mathcal{D}_{2}=\prod_{x^{t}=1} F(x,-1)
\end{aligned}
$$

for some $F(x, y)=f(x)+y h(x)$, the coefficients of x^{i} in f and h corresponding to the a_{g} for $g=(0, i)$ and $(1, i)$ respectively. For an odd positive integer m, taking

$$
F(x, y)=\prod_{p^{\alpha} \| m}\left(\frac{x^{p}-1}{x-1}\right)^{\alpha}+k(y+1)\left(\frac{x^{t}-1}{x-1}\right)
$$

achieves $m(m+k|G|)$.
For $G=\mathbb{Z}_{2}^{n}$ all the odd values must be $1 \bmod |G|$ by [4, Lemma 2.1]. For $G_{n}=\mathbb{Z}_{2}^{n} \times \mathbb{Z}_{4}$ observe when $n=1$ that $m(m+8 k) \equiv m^{2} \equiv 1 \bmod 8$, and in general that if $m \equiv 1 \bmod \left|G_{n-1}\right|$ then $m\left(m+\left|G_{n}\right| k\right) \equiv m^{2} \equiv 1 \bmod \left|G_{n}\right|$.

Interestingly, (3.4) also holds for the non-Abelian groups $H=D_{8}$ and Q_{8}.

4 The group $\mathbb{Z}_{2} \times Q_{8}$

A $\mathbb{Z}_{2} \times Q_{8}$ determinant will be a product of two Q_{8} determinants, which by [14] can be written in a very similar way to (3.1);

$$
\begin{equation*}
\mathcal{D}\left(f_{1}, f_{2}, g_{1}, g_{2}\right)=\mathcal{D}(1) \mathcal{D}(-1), \quad \mathcal{D}(z)=m_{1}(z) m_{2}(z) \ell(z)^{2}, \tag{4.1}
\end{equation*}
$$

with

$$
\begin{aligned}
& m_{1}(z)=\left(f_{1}(1)+z f_{2}(1)\right)^{2}-\left(g_{1}(1)+z g_{2}(1)\right)^{2}, \\
& m_{2}(z)=\left(f_{1}(-1)+z f_{2}(-1)\right)^{2}-\left(g_{1}(-1)+z g_{2}(-1)\right)^{2},
\end{aligned}
$$

but now

$$
\ell(z)=\left|f_{1}(i)+z f_{2}(i)\right|^{2}+\left|g_{1}(i)+z g_{2}(i)\right|^{2} .
$$

Writing $Q_{8}=\left\langle A, B: A^{4}=1, B^{2}=A^{2}, A B=B A^{-1}\right\rangle$, the coefficient of x^{i} in the cubic f_{1}, f_{2}, g_{1} and g_{2}, corresponds to the a_{g} in the $\mathbb{Z}_{2} \times Q_{8}$ group determinant for $g=\left(0, A^{i}\right),\left(1, A^{i}\right)$, $\left(0, B A^{i}\right)$ and $\left(1, B A^{i}\right)$, respectively.

We obtain a complete description of the $\mathbb{Z}_{2} \times Q_{8}$ integer group determinants.
Theorem 4.1. When $G=\mathbb{Z}_{2} \times Q_{8}$ the odd integer group determinants are the integers $1 \bmod 16$, plus the integers $9 \bmod 16$ of the form

$$
s_{1} s_{2}\left(\ell_{1} \ell_{2}\right)^{2}, \quad s_{1}, s_{2} \equiv-3 \bmod 8, \quad \ell_{1}, \ell_{2} \equiv 3 \bmod 4
$$

for some s_{1}, s_{2} in \mathbb{Z} and ℓ_{1}, ℓ_{2} in \mathbb{N}, with

$$
\begin{equation*}
s_{1} \equiv s_{2} \bmod 16 \quad \text { and } \quad \ell_{1} \equiv \ell_{2} \bmod 8 \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
s_{1} \equiv s_{2}+8 \bmod 16 \text { and } \ell_{1} \equiv \ell_{2}+4 \bmod 8 . \tag{4.3}
\end{equation*}
$$

The even values are the $2^{18} m, m$ in \mathbb{Z}, the

$$
2^{17}(2 m+1) p^{2}, \quad m \in \mathbb{Z}, \quad p \equiv 3 \bmod 4,
$$

the $2^{16} m$ with $m \equiv 1,3$ or $5 \bmod 8$, and those with $m \equiv 7 \bmod 8$ of the form

$$
\begin{equation*}
2^{16}(8 t-1) \ell^{2}, \quad t \in \mathbb{Z}, \quad \ell \in \mathbb{N}, \quad \ell \equiv 1 \bmod 4, \quad \ell \geq 5 \tag{4.4}
\end{equation*}
$$

or

$$
\begin{equation*}
(8 t+3)(8 k-3) 2^{16}, \quad t, k \in \mathbb{Z} \tag{4.5}
\end{equation*}
$$

For the three non-Abelian groups of order 16 whose $\mathcal{S}(G)$ is now known we have:

$$
\mathcal{S}\left(\mathbb{Z}_{2} \times Q_{8}\right) \subsetneq \mathcal{S}\left(\mathbb{Z}_{2} \times D_{8}\right) \subsetneq \mathcal{S}\left(D_{16}\right)=\{4 m+1: m \in \mathbb{Z}\} \cup\left\{2^{10} m: m \in \mathbb{Z}\right\} .
$$

Proof. Achieving the odd values. We write $H(x):=(x+1)\left(x^{2}+1\right)$.
We achieve the values $1 \bmod 16$ from

$$
\mathcal{D}(1+k H, k H, k H, k H)=1+16 k .
$$

To achieve the specified values $9 \bmod 16$ we write the ℓ_{i} as a sum of four squares. Notice that since they are $3 \bmod 4$, we must have three of them, say, A_{i}, B_{i}, C_{i}, odd and one, D_{i}, even, with $2 \| D_{i}$ if $\ell_{i} \equiv 7 \bmod 8$ and $4 \mid D_{i}$ if $\ell_{i} \equiv 3 \bmod 8$. Hence with a choice of sign we can write

$$
\ell_{i}=A_{i}^{2}+B_{i}^{2}+C_{i}^{2}+D_{i}^{2}, \quad A_{i}, B_{i}, C_{i} \text { odd, } \quad D_{i} \text { even, }
$$

with

$$
A_{1} \equiv A_{2} \bmod 4, \quad B_{1} \equiv B_{2} \bmod 4, \quad C_{1} \equiv C_{2} \bmod 4
$$

and

$$
D_{1} \equiv D_{2} \bmod 4 \quad \text { if } \quad \ell_{1} \equiv \ell_{2} \bmod 8,
$$

and

$$
D_{1} \equiv D_{2}+2 \quad(\bmod 4) \quad \text { if } \quad \ell_{1} \equiv \ell_{2}+4 \quad(\bmod 8) .
$$

In the case $\ell_{1} \equiv \ell_{2} \bmod 8$ we get $(8 m-3)(8 k-3)\left(\ell_{1} \ell_{2}\right)^{2}, m \equiv k \bmod 2$, from
$f_{1}=\frac{1}{4}\left(D_{1}+D_{2}\right)+\frac{1}{4}\left(B_{1}+B_{2}-2\right) x-\frac{1}{4}\left(D_{1}+D_{2}\right) x^{2}-\frac{1}{4}\left(B_{1}+B_{2}+2\right) x^{3}+\frac{1}{2}(m+k) H$,
$f_{2}=\frac{1}{4}\left(D_{1}-D_{2}\right)+\frac{1}{4}\left(B_{1}-B_{2}\right) x-\frac{1}{4}\left(D_{1}-D_{2}\right) x^{2}-\frac{1}{4}\left(B_{1}-B_{2}\right) x^{3}+\frac{1}{2}(m-k) H$,
$g_{1}=\frac{1}{4}\left(C_{1}+C_{2}-2\right)+\frac{1}{4}\left(A_{1}+A_{2}-2\right) x-\frac{1}{4}\left(C_{1}+C_{2}+2\right) x^{2}-\frac{1}{4}\left(A_{1}+A_{2}+2\right) x^{3}+\frac{1}{2}(m+k) H$,
$g_{2}=\frac{1}{4}\left(C_{1}-C_{2}\right)+\frac{1}{4}\left(A_{1}-A_{2}\right) x-\frac{1}{4}\left(C_{1}-C_{2}\right) x^{2}-\frac{1}{4}\left(A_{1}-A_{2}\right) x^{3}+\frac{1}{2}(m-k) H$.
In the case $\ell_{1} \equiv \ell_{2}+4 \bmod 8$ we get $(8 m-3)(5-8 k)\left(\ell_{1} \ell_{2}\right)^{2}, m \equiv k \bmod 2$, from
$f_{1}=\frac{1}{4}\left(D_{1}+D_{2}-2\right)+\frac{1}{4}\left(B_{1}+B_{2}-2\right) x-\frac{1}{4}\left(D_{1}+D_{2}+2\right) x^{2}-\frac{1}{4}\left(B_{1}+B_{2}+2\right) x^{3}+\frac{1}{2}(m+k) H$,
$f_{2}=\frac{1}{4}\left(D_{1}-D_{2}+2\right)+\frac{1}{4}\left(B_{1}-B_{2}\right) x-\frac{1}{4}\left(D_{1}-D_{2}-2\right) x^{2}-\frac{1}{4}\left(B_{1}-B_{2}\right) x^{3}+\frac{1}{2}(m-k) H$,
$g_{1}=\frac{1}{4}\left(C_{1}+C_{2}-2\right)+\frac{1}{4}\left(A_{1}+A_{2}-2\right) x-\frac{1}{4}\left(C_{1}+C_{2}+2\right) x^{2}-\frac{1}{4}\left(A_{1}+A_{2}+2\right) x^{3}+\frac{1}{2}(m+k) H$,
$g_{2}=\frac{1}{4}\left(C_{1}-C_{2}\right)+\frac{1}{4}\left(A_{1}-A_{2}\right) x-\frac{1}{4}\left(C_{1}-C_{2}\right) x^{2}-\frac{1}{4}\left(A_{1}-A_{2}\right) x^{3}+\frac{1}{2}(m-k) H$.
Odd values must be of the stated form. We proceed as in the case of $\mathbb{Z}_{2} \times D_{8}$, with (3.3) becoming

$$
\begin{equation*}
\mathcal{D}_{1}=m_{1} m_{2} \ell_{1}^{2}, \quad \mathcal{D}_{2}=m_{3} m_{4} \ell_{2}^{2} \tag{4.6}
\end{equation*}
$$

where again

$$
\begin{aligned}
& m_{1}=f(1)^{2}-g(1)^{2}, \\
& m_{2}=f(-1)^{2}-g(-1)^{2}, \\
& m_{3}=(f(1)+2 h(1))^{2}-(g(1)+2 k(1))^{2}, \\
& m_{4}=(f(-1)+2 h(-1))^{2}-(g(-1)+2 k(-1))^{2},
\end{aligned}
$$

but this time

$$
\ell_{1}=|f(i)|^{2}+|g(i)|^{2}, \quad \ell_{2}=|f(i)+2 h(i)|^{2}+|g(i)+2 k(i)|^{2} .
$$

This does not change $\ell_{1}-\ell_{2} \bmod 8$, so again we must have $\mathcal{D}_{1} \equiv \mathcal{D}_{2} \bmod 16$ and $\mathcal{D}_{1} \mathcal{D}_{2}$ is 1 or $9 \bmod 16$. The $1 \bmod 16$ are all achievable, so assume $\mathcal{D}_{1} \mathcal{D}_{2} \equiv 9 \bmod 16$. Since all the $m_{i} \equiv m_{1} \bmod 4$, plainly the $\mathcal{D}_{i} \equiv m_{1}^{2} \ell_{i}^{2} \equiv 1 \bmod 4$, so we can assume that $\mathcal{D}_{1}, \mathcal{D}_{2} \equiv-3 \bmod 8$.

Since the $\ell_{i}^{2} \equiv 1 \bmod 8$, we get $m_{1} m_{2}, m_{3} m_{4} \equiv-3 \bmod 8$. Since m_{1} and m_{2} are $1 \operatorname{or}-3 \bmod 8$ we must have one of each, and $2 \| g(1)$ and $4 \mid g(-1)$ or vice versa. Hence d_{1} must be odd and

$$
\ell_{1} \equiv\left(c_{0}+c_{1}\right)^{2}+c_{1}^{2}+\left(d_{0}+d_{1}\right)^{2}+d_{1}^{2} \equiv 3 \bmod 4
$$

From above we also know that $\ell_{1} \equiv \ell_{2} \bmod 4$. That is, $\mathcal{D}_{1} \mathcal{D}_{2}=s_{1} s_{2}\left(\ell_{1} \ell_{2}\right)^{2}$ with $s_{1} \equiv s_{2} \equiv$ $-3 \bmod 8$ and $\ell_{1} \equiv \ell_{2} \equiv 3 \bmod 4$. Plainly we have $s_{1} s_{2} \equiv 9 \bmod 16$ if $s_{1} \equiv s_{2} \equiv-3$ or $5 \bmod 16$ and $s_{1} s_{2} \equiv 1 \bmod 16$ if one is -3 and the other $5 \bmod 16$, while $\ell_{1} \ell_{2} \equiv 1 \bmod 8$ and $\left(\ell_{1} \ell_{2}\right)^{2} \equiv 1 \bmod 16$ if $\ell_{1} \equiv \ell_{2} \equiv 3$ or $7 \bmod 8$ and $\ell_{1} \ell_{2} \equiv-3 \bmod 8$ and $\left(\ell_{1} \ell_{2}\right)^{2} \equiv 9 \bmod 16$ if one is 3 and the other $7 \bmod 8$. Hence the restrictions (4.2) and (4.3) to get $\mathcal{D}_{1} \mathcal{D}_{2} \equiv 9 \bmod 16$.
Achieving the even values. We obtain the $2^{18} m, m$ odd, from

$$
\begin{array}{ll}
f_{1}=1+x^{2}+\frac{1}{2}(m+1) H, & f_{2}=\frac{1}{2}(m-1) H \\
g_{1}=-(1+x)+\frac{1}{2}(m+1) H, & g_{2}=\frac{1}{2}(m-1) H
\end{array}
$$

and the $2^{19} \mathrm{~m}$ from

$$
\begin{array}{ll}
f_{1}=1+x+x^{2}-m H, & f_{2}=-x-x^{3}-m H, \\
g_{1}=x+x^{3}+m H, & g_{2}=-x^{3}+m H .
\end{array}
$$

We get the $2^{16}(4 m+1)$ from

$$
\begin{array}{ll}
f_{1}=1+x+x^{2}+x^{3}+m H, & f_{2}=m H \\
g_{1}=1-x+m H, & g_{2}=m H
\end{array}
$$

We get $2^{16}(8 t+3)(4 s+1)$ from

$$
\begin{array}{ll}
f_{1}=1+x+x^{2}+x^{3}+(t+s) H, & f_{2}=1+x^{2}-x^{3}+(t-s) H, \\
g_{1}=(t-s) H, & g_{2}=x^{3}+(t+s) H,
\end{array}
$$

with $s=0$ giving us the $2^{16} m, m \equiv 3 \bmod 8$, and $s=2 k-1$ the values (4.5). For $\ell \geq 5$ with $\ell \equiv 1 \bmod 4$ we can write $2 \ell-4 \equiv 6 \bmod 8$ as a sum of three squares with two of them odd and the other $2 \bmod 4$:

$$
2 \ell=(4 a+1)^{2}+2^{2}+(4 c-1)^{2}+(4 d-2)^{2}
$$

and we can get $2^{16}(4 m-1) \ell^{2}$, and hence (4.4), from

$$
\begin{aligned}
& f_{1}=\left(1-x+x^{2}\right)+a\left(1-x^{2}\right)+m H \\
& f_{2}=-x(1+x)+a\left(1-x^{2}\right)+m H \\
& g_{1}=-x+\left(1-x^{2}\right)(c+d x)+m H, \\
& g_{2}=-(1+x)+\left(1-x^{2}\right)(c+d x)+m H .
\end{aligned}
$$

For $p \equiv 3 \bmod 4$ we write $2 p=A^{2}+B^{2}+C^{2}+D^{2}$ where, since $2 p \equiv 6 \bmod 8$, two of A, B, C, D must be odd and two even, with one of them divisible by 4 , the other $2 \bmod 4$. Changing signs
as necessary we assume that $A=1+4 a, B=4 b, C=1+4 c$, and $D=2+4 d$. We achieve $2^{17}(2 m+1) p^{2}$ with

$$
\begin{aligned}
& f_{1}=(1+x)\left(x^{2}+1\right)+a\left(1-x^{2}\right)+b x\left(1-x^{2}\right)+m H, \\
& f_{2}=1+(x-1)\left(x^{2}+1\right)+a\left(1-x^{2}\right)+b x\left(1-x^{2}\right)+m H, \\
& g_{1}=1+x+c\left(1-x^{2}\right)+d x\left(1-x^{2}\right)+m H, \\
& g_{2}=x+c\left(1-x^{2}\right)+d x\left(1-x^{2}\right)+m H .
\end{aligned}
$$

Even values must be of the stated form. We know if the $\mathbb{Z}_{2} \times Q_{8}$ determinant is even, then both Q_{8} determinants are even, and by [14] must each be multiples of 2^{8}. Hence the even determinants must be multiples of 2^{16}. Note, if the determinant is even we must have $f(1)$ and $g(1)$ the same parity, and all the terms $m_{1}, m_{2}, m_{3}, m_{4}, \ell_{1}, \ell_{2}$ in (4.6) must be even.
The $2^{17} \| \mathcal{D}$ are of the stated form. Suppose that we had a determinant $2^{17} m, m$ odd, with m not divisible by the square of a prime $3 \bmod 4$. Writing

$$
\begin{equation*}
\ell_{2}-\ell_{1} \equiv 4\left(a_{0} c_{0}-a_{0} c_{1}-a_{1} c_{0}+a_{0}^{2}\right)+4\left(b_{0} d_{0}-b_{0} d_{1}-b_{1} d_{0}+b_{0}^{2}\right) \bmod 8 \tag{4.7}
\end{equation*}
$$

we see that $2 \| \ell_{1}, \ell_{2}$ or $4 \mid \ell_{1}, \ell_{2}$. If $f(1), g(1)$ are both odd then $2^{3} \mid m_{1}, m_{2}, m_{3}, m_{4}$ and we must have $2 \| \ell_{1}, \ell_{2}$ (else $2^{12+8} \mid \mathcal{D}$). Now if $2^{u} \| f(1)$ and $2^{v} \| g(1)$ with $u, v \geq 1$ then $2^{2 \min \{u, v\}} \| m_{1}$ if $u \neq v$, while if $u=v$ we have $2^{2 u+3} \mid m_{1}$. Likewise for m_{2}, m_{3}, m_{4}. To obtain an odd power of two we must therefore have at least one of the m_{i} with $u=v$. We cannot have two of them (else $2^{5+5+4+4} \mid \mathcal{D}$). Again we can assume that $2 \| \ell_{1}, \ell_{2}$ (otherwise $2^{5+6+8} \mid \mathcal{D}$). Since ℓ_{1} and ℓ_{2} do not contain any primes $3 \bmod 4$ we have $\ell_{1} \equiv \ell_{2} \equiv 2 \bmod 8$ and (4.7) gives

$$
\begin{equation*}
a_{0} c_{0}-a_{0} c_{1}-a_{1} c_{0}+a_{0}^{2}+b_{0} d_{0}-b_{0} d_{1}-b_{1} d_{0}+b_{0}^{2} \equiv 0 \bmod 2 . \tag{4.8}
\end{equation*}
$$

Suppose first that $f(1), g(1)$ are odd. Since c_{0} and d_{0} are odd, (4.8) becomes

$$
\begin{equation*}
-a_{0} c_{1}-b_{0} d_{1} \equiv a_{1}+b_{1} \bmod 2 \tag{4.9}
\end{equation*}
$$

To get power 17 , rearranging if necessary to make the highest power on m_{1}, we must have $2^{4}\left\|m_{1}, 2^{3}\right\| m_{2}, m_{3}, m_{4}$. That is, $m_{1} \equiv 0 \bmod 16$, and $m_{2} \equiv m_{3} \equiv m_{4} \equiv 8 \bmod 16$. From

$$
m_{1}=c_{0}^{2}-d_{0}^{2} \equiv 0 \bmod 16, \quad m_{3}=\left(c_{0}+2 a_{0}\right)^{2}-\left(d_{0}+2 b_{0}\right)^{2} \equiv 8 \bmod 16
$$

we get

$$
\begin{equation*}
a_{0} c_{0}+a_{0}^{2}-b_{0}^{2}-b_{0} d_{0} \equiv 2 \bmod 4 \tag{4.10}
\end{equation*}
$$

From

$$
\begin{aligned}
m_{4} & \equiv\left(c_{0}-2 c_{1}+4 c_{2}+2 a_{0}-4 a_{1}\right)^{2}-\left(d_{0}-2 d_{1}+4 d_{2}+2 b_{0}-4 b_{1}\right)^{2} \bmod 16 \\
& \equiv m_{2}+4 a_{0}^{2}+4\left(a_{0} c_{0}-2 a_{0} c_{1}-2 a_{1} c_{0}\right)-4 b_{0}^{2}-4\left(d_{0} b_{0}-2 d_{1} b_{0}-2 d_{0} b_{1}\right) \bmod 16,
\end{aligned}
$$

we get

$$
a_{0}^{2}+a_{0} c_{0}-b_{0}^{2}-b_{0} d_{0}-2\left(a_{0} c_{1}+a_{1}-d_{1} b_{0}-b_{1}\right) \equiv 0 \bmod 4
$$

Applying (4.9), this becomes $a_{0}^{2}+a_{0} c_{0}-b_{0}^{2}-b_{0} d_{0} \equiv 0 \bmod 4$, contradicting (4.10).

Now suppose that $2^{u} \| f(1), g(1), u \geq 1$. Since c_{0} and d_{0} are even, (4.8) becomes

$$
\begin{equation*}
-a_{0} c_{1}+a_{0}^{2}-b_{0} d_{1}+b_{0}^{2} \equiv 0 \bmod 2 \tag{4.11}
\end{equation*}
$$

Notice we cannot have c_{1}, d_{1} both odd or both even, else

$$
\ell_{1}=\left|c_{0}-c_{1}+i c_{1}+2 \alpha\right|^{2}+\left|d_{0}-d_{1}+i d_{1}+2 \beta\right|^{2} \equiv 2 c_{1}^{2}+2 d_{1}^{2} \bmod 4
$$

would be divisible by 4 .
We cannot have a_{0}, b_{0} both odd, else (4.11) becomes $c_{1}+d_{1} \equiv 0 \bmod 2$, contradicting c_{1}, d_{1} having opposite parity. If $u=1$ we can rule out a_{0}, b_{0} both even, else $2 \| f(1)+2 h(1)=c_{0}+2 a_{0}$, $g(1)+2 k(1)=d_{0}+2 b_{0}$ (we ruled out m_{1} and m_{3} both having $u=v$). If $u \geq 2$ we cannot have a_{0}, b_{0} both even, else 4 divides both terms, $2^{4}\left|m_{3}, 2^{7}\right| m_{1}$ and $2^{7+2+4+2+4} \mid D$. So a_{0}, b_{0} like c_{1}, d_{1} have opposite parity. From

$$
f(-1)+2 h(-1) \equiv c_{0}-2 c_{1}+2 a_{0} \bmod 4, \quad g(-1)+2 k(-1)=d_{0}-2 d_{1}+2 b_{0} \bmod 4
$$

we cannot have $a_{0} \equiv c_{1} \bmod 2$ and $b_{0} \equiv d_{1} \bmod 2$, else if $u=1$ we would have a single 2 dividing both (ruled out) and if $u=2$ we would have 4 dividing both and $2^{4}\left|m_{4}, 2^{7}\right| m_{1}$. Hence we must have $a_{0} \equiv d_{1}, b_{0} \equiv c_{1} \bmod 2$ and (4.11) becomes $a_{0}^{2}+b_{0}^{2} \equiv 0 \bmod 2$, contradicting that a_{0}, b_{0} have opposite parity.
The $\mathbf{2}^{\mathbf{1 6}} \| \mathcal{D}$ are of the stated form. Suppose now that we have $\mathcal{D}=2^{16} m$, with $m \equiv-1 \bmod 8$, that is not of the form (4.4) or (4.5). Note, $\ell_{1} \ell_{2}$ does not contain a prime $p \equiv 1 \bmod 4$ or two primes $p_{1}, p_{2} \equiv 3 \bmod 4$ (else it will be type (4.4) with $\ell=p$ or $p_{1} p_{2}$), and \mathcal{D} has no factor $\pm 3 \bmod 8$ (else it will be type (4.5)).

If $2^{2} \mid \ell_{1}$ or ℓ_{2} then $2^{2} \| \ell_{1}, \ell_{2}$ and $2^{2} \| m_{1}, m_{2}, m_{3}, m_{4}$ and $f(1), g(1)$ are even. Now $m_{1} / 4=(f(1) / 2)^{2}-(g(1) / 2)^{2} \equiv \pm 1 \bmod 8$ and likewise for $m_{2} / 4, m_{3} / 4$ and $m_{4} / 4$, with their product $-1 \bmod 8$. Switching f and g as necessary and rearranging, we can assume $m_{1} / 4 \equiv-1 \bmod 8$ and $m_{2} / 4, m_{3} / 4, m_{4} / 4 \equiv 1 \bmod 8$. That is $4 \mid f(1) / 2$ and $f(1) / 2+h(1)$, $f(-1) / 2, f(-1) / 2+h(-1)$ are all odd. From the first two $h(1)$ is odd, from the second two, $h(-1)$ is even, but $h(1)$ and $h(-1)$ must have the same parity. Hence we can assume that $2 \| \ell_{1}, \ell_{2}$, moreover that $\ell_{1}=\ell_{2}=2$, or one is 2 and the other $2 p$ for some prime $p=3 \bmod 4$.

If $f(1)=c_{0}$ and $g(1)=d_{0}$ are odd, then plainly $2^{3} \| m_{1}, m_{2}, m_{3}, m_{4}$. We rule out one of ℓ_{1}, ℓ_{2} being $2 \bmod 8$ and the other $6 \bmod 8$. In this case (4.7) becomes

$$
\begin{equation*}
1 \equiv-a_{0} c_{1}-a_{1}-b_{0} d_{1}-b_{1} \bmod 2 \tag{4.12}
\end{equation*}
$$

But the difference of

$$
m_{4} \equiv\left(c_{0}-2 c_{1}+4 c_{2}+2 a_{0}-4 a_{1}\right)^{2}-\left(d_{0}-2 d_{1}+4 d_{2}+2 b_{0}-4 b_{1}\right)^{2} \equiv 8 \bmod 16
$$

and

$$
m_{2} \equiv\left(c_{0}-2 c_{1}+4 c_{2}\right)^{2}-\left(d_{0}-2 d_{1}+4 d_{2}\right)^{2} \equiv 8 \bmod 16
$$

gives

$$
4\left(a_{0}^{2}+a_{0} c_{0}-b_{0}^{2}-b_{0} d_{0}\right)-8\left(a_{1} c_{0}+a_{0} c_{1}-b_{1} d_{0}-b_{0} d_{1}\right) \equiv 0 \bmod 16,
$$

where

$$
4\left(a_{0}^{2}+a_{0} c_{0}-b_{0}^{2}-b_{0} d_{0}\right)=m_{3}-m_{1} \equiv 0 \bmod 16,
$$

and $a_{1}+a_{0} c_{1}-b_{1}-b_{0} d_{1} \equiv 0 \bmod 2$, contradicting (4.12). This just leaves us with the case $\ell_{1}=\ell_{2}=2$ considered in the lemma below.

Suppose $f(1)=c_{0}=2 c, g(1)=d_{0}=2 d$ are even. If c and d have opposite parity then $2^{2} \| m_{1}$, if both are odd then $2^{5} \mid m_{1}$ and if $c=2 c^{\prime \prime}, d=2 d^{\prime \prime}$ then $2^{4} \| m_{1}$ if $c^{\prime \prime}$ and $d^{\prime \prime}$ have opposite parity and $2^{6} \mid m_{1}$ otherwise. Moreover if c and d have the same parity and 2^{2} divides

$$
m_{1} / 4=c^{2}-d^{2},
$$

then 2^{4} must also divide at least one of the other m_{i}. To see this observe that if a_{0} and b_{0} have the same parity then 2^{2} divides

$$
\begin{equation*}
m_{3} / 4=\left(c+a_{0}\right)^{2}-\left(d+b_{0}\right)^{2} \tag{4.13}
\end{equation*}
$$

if c_{1} and d_{1} have the same parity then 2^{2} divides

$$
\begin{equation*}
m_{2} / 4 \equiv\left(c-c_{1}+2 c_{2}\right)^{2}-\left(d-d_{1}+2 d_{2}\right)^{2} \bmod 8 \tag{4.14}
\end{equation*}
$$

and if both a_{0} and b_{0}, and c_{1} and d_{1} have opposite parity, then $a_{0}-c_{1}$ and $b_{0}-d_{1}$ have the same parity and 2^{2} divides

$$
\begin{equation*}
m_{4} / 4 \equiv\left(c-c_{1}+2 c_{2}+a_{0}-2 a_{1}\right)^{2}-\left(d-d_{1}+2 d_{2}+b_{0}-2 b_{1}\right)^{2} \bmod 8 \tag{4.15}
\end{equation*}
$$

Hence, rearranging as necessary, we can assume that $2^{4} \| m_{1}$ and one other m_{i}, and $2^{2} \| m_{i}$ for the other two m_{i}. In particular $c_{0}=4 c^{\prime}$ and $d_{0}=4 d^{\prime}$ with c^{\prime}, d^{\prime} of opposite parity. Suppose now that one of ℓ_{1}, ℓ_{2} is $2 \bmod 8$ and the other $6 \bmod 8$, so that (4.7) becomes

$$
\begin{equation*}
1 \equiv-a_{0} c_{1}+a_{0}^{2}-b_{0} d_{1}+b_{0}^{2} \bmod 2 \tag{4.16}
\end{equation*}
$$

Notice that this rules out a_{0}, b_{0} both even or c_{1}, d_{1} both odd. We can rule out a_{0}, b_{0} both odd, else $2^{3} \mid m_{3} / 4$ in (4.13), and c_{1}, d_{1} both even else

$$
\ell_{1}=\left|4 c^{\prime}+c_{1}(i-1)+2 i \alpha\right|^{2}+\left|4 d^{\prime}+d_{1}(i-1)+2 i \beta\right|^{2} \equiv 0 \bmod 4 .
$$

Hence $a_{0}-c_{1}$ and $b_{0}-d_{1}$ have the same parity, but cannot be odd, else $2^{3} \mid m_{4} / 4$ in (4.15). Hence $c_{1} \equiv a_{0} \bmod 2$ and $d_{1} \equiv b_{0} \bmod 2$, violating (4.16). This just leaves the case $\ell_{1}=\ell_{2}=2$ dealt with in the next lemma.

Lemma 4.1. All $\mathbb{Z}_{2} \times Q_{8}$ determinants $2^{16} m$ with $m \equiv 7 \bmod 8$ and $\ell_{1}=\ell_{2}=2$ in (4.6) must be of the form (4.5).

Proof. Suppose that $\mathcal{D}=2^{16} m$, where $\ell_{1}=\ell_{2}=2$, and all the factors of m are $\pm 1 \bmod 8$. We show that $m \equiv 1 \bmod 8$. Hence any with $m \equiv-1 \bmod 8$ must have a factor $\pm 3 \bmod 8$ and be of the form (4.5).

Case 1: $\boldsymbol{f}(\mathbf{1})$ and $\boldsymbol{g}(\mathbf{1})$ are even. Since $|f(i)|^{2}$ and $|g(i)|^{2}$ are both even, we must have one of them 2 and the other 0 . Switching f and g and replacing $f(x)$ by $\pm f(\pm x)$ as necessary, we can assume that $f(i)=1+i$ and $g(i)=0$. Hence we can write

$$
f(x)=1+x+\left(x^{2}+1\right) v(x), \quad g(x)=\left(x^{2}+1\right) u(x) .
$$

Note 2^{2} divides $|g(i)+2 k(i)|^{2}$, so this term must also be zero, while $f(i)+2 h(i)=\varepsilon+\delta i$ with $\delta, \varepsilon= \pm 1$, and

$$
\begin{aligned}
& f(x)+2 h(x)=\varepsilon+\delta x+\left(x^{2}+1\right)\left(v(x)+2 h_{1}(x)\right) \\
& g(x)+2 k(x)=\left(x^{2}+1\right)\left(u(x)+2 k_{1}(x)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& m_{1} / 4=(1+v(1))^{2}-u(1)^{2} \\
& m_{2} / 4=v(-1)^{2}-u(-1)^{2} \\
& m_{3} / 4=\left(\frac{1}{2}(\varepsilon+\delta)+v(1)+2 h_{1}(1)\right)^{2}-\left(u(1)+2 k_{1}(1)\right)^{2} \\
& m_{4} / 4=\left(\frac{1}{2}(\varepsilon-\delta)+v(-1)+2 h_{1}(-1)\right)^{2}-\left(u(-1)+2 k_{1}(-1)\right)^{2} .
\end{aligned}
$$

Note, one of $1+v(1)$ and $v(-1)$ must be odd, and hence $u(1), u(-1)$ must be even (else $2^{3} \mid m_{1} / 4$ or $m_{2} / 4$).
(i) Suppose that $\boldsymbol{v}(\mathbf{1})$ is odd. Since $m_{2} / 4 \not \equiv-3 \bmod 8$ we must have $m_{2} / 4 \equiv 1 \bmod 8$, $4 \mid u(-1)$, and

$$
\frac{m_{1}}{2^{4}}=\left(\frac{1+v(1)}{2}\right)^{2}-\left(\frac{u(1)}{2}\right)^{2}
$$

If $\delta=-\varepsilon$ then $m_{3} / 4 \equiv 1 \bmod 8,4 \mid\left(u(1)+2 k_{1}(1)\right)$, and

$$
\frac{m_{4}}{2^{4}}=\left(\frac{\varepsilon+v(-1)}{2}+h_{1}(-1)\right)^{2}-\left(\frac{u(-1)}{2}+k_{1}(-1)\right)^{2}
$$

If $2 \mid u(1) / 2$ then $2\left|k_{1}(1), 2\right|\left(u(-1) / 2+k_{1}(-1)\right)$, and $m_{1} / 2^{4}, m_{4} / 2^{4} \equiv 1 \bmod 8$. If $2 \nmid u(1) / 2$ then $2 \nmid k_{1}(1), 2 \nmid\left(u(-1) / 2+k_{1}(-1)\right)$, and $m_{1} / 2^{4}, m_{4} / 2^{4} \equiv-1 \bmod 8$. In both cases $m_{1} m_{2} m_{3} m_{4} / 2^{12} \equiv 1 \bmod 8$.
If $\delta=\varepsilon$ we have $m_{4} / 4 \equiv 1 \bmod 8,4\left|\left(u(-1)+2 k_{1}(-1)\right), 2\right| k_{1}(-1), k_{1}(1)$ and

$$
\frac{m_{3}}{2^{4}}=\left(\frac{\varepsilon+v(1)}{2}+h_{1}(1)\right)^{2}-\left(\frac{u(1)}{2}+k_{1}(1)\right)^{2} .
$$

If $2 \mid u(1) / 2$ then $m_{1} / 2^{4}, m_{3} / 2^{4} \equiv 1 \bmod 8$ and if $2 \nmid u(1) / 2$ both are $-1 \bmod 8$. Again $m_{1} m_{2} m_{3} m_{4} / 2^{12} \equiv 1 \bmod 8$.
(ii) Suppose that $\boldsymbol{v}(\mathbf{1})$ is even. In this case $m_{1} / 4 \equiv 1 \bmod 8,4 \mid u(1)$ and

$$
\frac{m_{2}}{2^{4}}=\left(\frac{v(-1)}{2}\right)^{2}-\left(\frac{u(-1)}{2}\right)^{2}
$$

If $\delta=-\varepsilon$ then $m_{4} / 4 \equiv 1 \bmod 8,4 \mid\left(u(-1)+2 k_{1}(-1)\right)$, and

$$
\frac{m_{3}}{2^{4}}=\left(\frac{v(1)}{2}+h_{1}(1)\right)^{2}-\left(\frac{u(1)}{2}+k_{1}(1)\right)^{2}
$$

If $2 \mid u(-1) / 2$ then $m_{2} / 2^{4} \equiv 1 \bmod 8$ and $2\left|k_{1}(-1), 2\right|\left(u(1) / 2+k_{1}(1)\right)$ and $m_{3} / 2^{4} \equiv$ $1 \bmod 8$. If $2 \nmid u(-1) / 2$ then $m_{2} / 2^{4} \equiv-1 \bmod 8,2 \nmid k_{1}(-1), 2 \nmid\left(u(1) / 2+k_{1}(1)\right)$ and $m_{3} / 2^{4} \equiv-1 \bmod 8$. Again, $m_{1} m_{2} m_{3} m_{4} / 2^{12} \equiv 1 \bmod 8$.
If $\delta=\varepsilon$ then $m_{3} / 4 \equiv 1 \bmod 8,4\left|\left(u(1)+2 k_{1}(1)\right), 2\right| k_{1}(1), k_{1}(-1)$ and

$$
\frac{m_{4}}{2^{4}}=\left(\frac{v(-1)}{2}+h_{1}(-1)\right)^{2}-\left(\frac{u(-1)}{2}+k_{1}(-1)\right)^{2} .
$$

If $2 \mid u(-1) / 2$ then $m_{2} / 2^{4}, m_{4} / 2^{4} \equiv 1 \bmod 8$. If $2 \nmid u(-1) / 2$ then $m_{2} / 2^{4}, m_{4} / 2^{4} \equiv$ $-1 \bmod 8$. In both cases $m_{1} m_{2} m_{3} m_{4} / 2^{12} \equiv 1 \bmod 8$.

In conclusion, there are no cases where $\mathcal{D} / 2^{16}=m_{1} m_{2} m_{3} m_{4} / 2^{12} \equiv-1 \bmod 8$.
Case 2: $\boldsymbol{f}(\mathbf{1})$ and $\boldsymbol{g}(1)$ are odd. In this case we have $2^{3} \| m_{1}, m_{2}, m_{3}, m_{4}$. From $\ell_{1}=\ell_{2}=2$ we must have $f(i), g(i), f(i)+2 h(i), g(i)+2 k(i)= \pm 1$ or $\pm i$. Multiplying the f and h or the g and k through by ± 1 or $\pm x$ we can assume that $f(i)=1$ and $g(i)=1$ and

$$
f(x)=1+\left(x^{2}+1\right) v(x), \quad g(x)=1+\left(x^{2}+1\right) u(x) .
$$

Clearly we must have $f(i)+2 h(i), g(i)+2 k(i)= \pm 1$ and

$$
f(x)+2 h(x)=\varepsilon+\left(x^{2}+1\right)\left(v(x)+2 h_{1}(x)\right), \quad g(x)+2 k(x)=\delta+\left(x^{2}+1\right)\left(u(x)+2 k_{1}(x)\right)
$$

for some $\varepsilon, \delta= \pm 1$. Hence

$$
\begin{gathered}
\frac{m_{1}}{4}=(1+u(1)+v(1))(v(1)-u(1)), \\
\frac{m_{3}}{4}=\left(\frac{\varepsilon+\delta}{2}+v(1)+u(1)+2 h_{1}(1)+2 k_{1}(1)\right)\left(\frac{\varepsilon-\delta}{2}+v(1)-u(1)+2 h_{1}(1)-2 k_{1}(1)\right) .
\end{gathered}
$$

Similarly for $m_{2} / 4$ and $m_{4} / 4$ with $u(-1), v(-1), h_{1}(-1), k_{1}(-1)$ in place of $u(1), v(1), h_{1}(1)$, $k_{1}(1)$.
(i) Suppose that $\boldsymbol{u}(\mathbf{1})+\boldsymbol{v}(\mathbf{1})$ is even. In this case $m_{1} / 8=\alpha_{1} \alpha_{2}$ with

$$
\alpha_{1}=1+u(1)+v(1), \quad \alpha_{2}=\frac{1}{2}(v(1)-u(1))
$$

When $\delta=-\varepsilon$ we have $m_{3} / 8=\lambda_{1} \lambda_{2}$, with

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}(v(1)+u(1))+h_{1}(1)+k_{1}(1) \\
& \lambda_{2}=\varepsilon+v(1)-u(1)+2 h_{1}(1)-2 k_{1}(1)
\end{aligned}
$$

Recall that by assumption all these factors are $\pm 1 \bmod 8$. Since

$$
\lambda_{1}=\varepsilon \alpha_{2}+\frac{1}{2}(1-\varepsilon) v(1)+\frac{1}{2}(1+\varepsilon) u(1)+h_{1}(1)+k_{1}(1),
$$

we have $2 \left\lvert\, \frac{1}{2}(1-\varepsilon) v(1)+\frac{1}{2}(1+\varepsilon) u(1)+h_{1}(1)+k_{1}(1)\right.$ and

$$
\lambda_{2}=\varepsilon \alpha_{1}+(1-\varepsilon) v(1)-(1+\varepsilon) u(1)+2 h_{1}(1)-2 k_{1}(1) \equiv \varepsilon \alpha_{1} \bmod 4 .
$$

Hence $\lambda_{2} \equiv \varepsilon \alpha_{1} \bmod 8$ and $4 \left\lvert\, \frac{1}{2}(1-\varepsilon) v(1)-\frac{1}{2}(1+\varepsilon) u(1)+h_{1}(1)-k_{1}(1)\right.$. So

$$
\lambda_{1} \lambda_{2} \equiv\left(\varepsilon \alpha_{2}+(1+\varepsilon) u(1)+2 k_{1}(1)\right) \varepsilon \alpha_{1} \equiv \alpha_{1} \alpha_{2}+(1+\varepsilon) u(1)+2 k_{1}(1) \bmod 4,
$$

and $m_{3} / 8 \equiv m_{1} / 8 \bmod 4$, and $m_{1} m_{3} / 2^{6} \equiv 1 \bmod 8$, iff $2 \left\lvert\, \frac{1}{2}(1+\varepsilon) u(1)+k_{1}(1)\right.$. Clearly $2 \left\lvert\, \frac{1}{2}(1+\varepsilon) u(1)+k_{1}(1)\right.$ iff $2 \left\lvert\, \frac{1}{2}(1+\varepsilon) u(-1)+k_{1}(-1)\right.$, giving $m_{1} m_{3} / 2^{6} \equiv m_{2} m_{4} / 2^{6} \bmod$ 8 , and $m=m_{1} m_{2} m_{3} m_{4} / 2^{12} \equiv 1 \bmod 8$.
Similarly, when $\delta=\varepsilon$ we have

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}(v(1)-u(1))+h_{1}(1)-k_{1}(1) \\
& \lambda_{2}=\varepsilon+v(1)+u(1)+2 h_{1}(1)+2 k_{1}(1) .
\end{aligned}
$$

Since

$$
\lambda_{1}=\varepsilon \alpha_{2}+\frac{1}{2}(1-\varepsilon) v(1)-\frac{1}{2}(1-\varepsilon) u(1)+h_{1}(1)-k_{1}(1),
$$

we have $2 \left\lvert\, \frac{1}{2}(1-\varepsilon) v(1)-\frac{1}{2}(1-\varepsilon) u(1)+h_{1}(1)-k_{1}(1)\right.$, and

$$
\lambda_{2}=\varepsilon \alpha_{1}+(1-\varepsilon) v(1)+(1-\varepsilon) u(1)+2 h_{1}(1)+2 k_{1}(1) \equiv \varepsilon \alpha_{1} \bmod 4
$$

So $\lambda_{2} \equiv \varepsilon \alpha_{1} \bmod 8,4 \left\lvert\, \frac{1}{2}(1-\varepsilon) v(1)+\frac{1}{2}(1-\varepsilon) u(1)+h_{1}(1)+k_{1}(1)\right.$ and

$$
\lambda_{1} \lambda_{2} \equiv\left(\varepsilon \alpha_{2}-(1-\varepsilon) u(1)-2 k_{1}(1)\right) \varepsilon \alpha_{1} \equiv \alpha_{1} \alpha_{2}-(1-\varepsilon) u(1)-2 k_{1}(1) \bmod 4,
$$

giving $m_{1} m_{3} / 2^{6} \equiv 1 \bmod 8$, iff $2 \left\lvert\, \frac{1}{2}(1-\varepsilon) u(1)+k_{1}(1)\right.$. Again $m \equiv 1 \bmod 8$.
(ii) Suppose that $u(1)+v(1)$ is odd. In this case

$$
\alpha_{1}=v(1)-u(1), \quad \alpha_{2}=\frac{1}{2}(1+u(1)+v(1)) .
$$

When $\delta=-\varepsilon$ we have

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}(\varepsilon+v(1)-u(1))+h_{1}(1)-k_{1}(1), \\
& \lambda_{2}=v(1)+u(1)+2 h_{1}(1)+2 k_{1}(1) .
\end{aligned}
$$

So

$$
\lambda_{1}=\varepsilon \alpha_{2}+\frac{1}{2}(1-\varepsilon) v(1)-\frac{1}{2}(1+\varepsilon) u(1)+h_{1}(1)-k_{1}(1),
$$

and $2 \left\lvert\, \frac{1}{2}(1-\varepsilon) v(1)-\frac{1}{2}(1+\varepsilon) u(1)+h_{1}(1)-k_{1}(1)\right.$, giving

$$
\lambda_{2}=\varepsilon \alpha_{1}+(1-\varepsilon) v(1)+(1+\varepsilon) u(1)+2 h_{1}(1)+2 k_{1}(1) \equiv \varepsilon \alpha_{1} \bmod 4 .
$$

Hence $\lambda_{2} \equiv \varepsilon \alpha_{1} \bmod 8,4 \left\lvert\, \frac{1}{2}(1-\varepsilon) v(1)+\frac{1}{2}(1+\varepsilon) u(1)+h_{1}(1)+k_{1}(1)\right.$ and

$$
\lambda_{1} \lambda_{2} \equiv\left(\varepsilon \alpha_{2}-(1+\varepsilon) u(1)-2 k_{1}(1)\right) \varepsilon \alpha_{1} \equiv \alpha_{1} \alpha_{2}-(1+\varepsilon) u(1)-2 k_{1}(1) \bmod 4 .
$$

Thus $m_{1} m_{3} / 2^{6} \equiv 1 \bmod 8$ iff $2 \left\lvert\, \frac{1}{2}(1+\varepsilon) u(1)+k_{1}(1)\right.$. Again $m \equiv 1 \bmod 8$.

When $\delta=\varepsilon$ we have

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}(\varepsilon+v(1)+u(1))+h_{1}(1)+k_{1}(1), \\
& \lambda_{2}=v(1)-u(1)+2 h_{1}(1)-2 k_{1}(1) .
\end{aligned}
$$

Hence

$$
\lambda_{1}=\varepsilon \alpha_{2}+\frac{1}{2}(1-\varepsilon) v(1)+\frac{1}{2}(1-\varepsilon) u(1)+h_{1}(1)+k_{1}(1),
$$

and $2 \left\lvert\, \frac{1}{2}(1-\varepsilon) v(1)+\frac{1}{2}(1-\varepsilon) u(1)+h_{1}(1)+k_{1}(1)\right.$, giving

$$
\lambda_{2}=\varepsilon \alpha_{1}-(1-\varepsilon) u(1)+(1-\varepsilon) v(1)+2 h_{1}(1)-2 k_{1}(1) \equiv \varepsilon \alpha_{1} \bmod 4 .
$$

So $\lambda_{2} \equiv \varepsilon \alpha_{1} \bmod 8,4 \left\lvert\, \frac{1}{2}(1-\varepsilon) v(1)-\frac{1}{2}(1-\varepsilon) u(1)+h_{1}(1)-k_{1}(1)\right.$, and

$$
\lambda_{1} \lambda_{2} \equiv\left(\varepsilon \alpha_{2}+(1-\varepsilon) u(1)+2 k_{1}(1)\right) \varepsilon \alpha_{1} \equiv \alpha_{1} \alpha_{2}+(1-\varepsilon) u(1)+2 k_{1}(1) \bmod 4 .
$$

Hence $m_{1} m_{3} / 2^{6} \equiv 1 \bmod 8$ iff $2 \left\lvert\, \frac{1}{2}(1-\varepsilon) u(1)+k_{1}(1)\right.$. Again $m \equiv 1 \bmod 8$.

Acknowledgements

The authors are grateful to one of the referees for pointing out existing results in [8] and [9] as well as catching some typos.

References

[1] Boerkoel, T., \& Pinner, C. (2018). Minimal group determinants and the Lind-Lehmer problem for dihedral groups. Acta Arithmetica, 186(4), 377-395.
[2] Conrad, K. (1998). The origin of representation theory. L'Enseignement Mathématique, 44(3-4), 361-392.
[3] DeSilva, D., Mossinghoff, M., Pigno, V., \& Pinner, C. (2019). The Lind-Lehmer constant for certain p-groups. Mathematics of Computation, 88(316), 949-972.
[4] DeSilva, D., \& Pinner, C. G. (2014). The Lind-Lehmer constant for \mathbb{Z}_{p}^{n}. Proceedings of the American Mathematical Society, 142, 1935-1941.
[5] Frobenius, F. G. (1968). Über die Primefactoren der Gruppendeterminante. Gesammelte Ahhand-lungen, Band III. Springer, New York, pp. 38-77. MR0235974.
[6] Johnson, K. W. (2019). Group Matrices Group Determinants and Representation Theory. Lecture Notes in Mathematics 2233, Springer, Cham.
[7] Laquer, H. T. (1980). Values of circulants with integer entries. A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Association, Santa Clara, pp. 212-217. MR0624127.
[8] Mahoney, M. K. (1982). Determinants of integral group matrices for some nonabelian 2-generator groups. Linear and Multilinear Algebra, 11(2), 189-201.
[9] Mahoney, M. K., \& Newman, M. (1980). Determinants of abelian group matrices. Linear and Multilinear Algebra, 9(2), 121-132.
[10] Mossinghoff, M., \& Pinner, C. (2023). Prime power order circulant determinants. Illinois Journal of Mathematics, 67(2), 333-362.
[11] Newman, M. (1980). On a problem suggested by Olga Taussky-Todd. Illinois Journal of Mathematics, 24, 156-158.
[12] Newman, M. (1980). Determinants of circulants of prime power order. Linear Multilinear Algebra, 9(3), 187-191. MR0601702.
[13] Paudel, B., \& Pinner, C. (2022). Integer circulant determinants of order 15. Integers, 22, Article A4.
[14] Pinner, C., \& Smyth, C. (2020). Integer group determinants for small groups. The Ramanujan Journal, 51(2), 421-453.
[15] Taussky-Todd, O. (1977). Integral group matrices. Notices of the American Mathematical Society, 24(3), A-345. (Abstract no. 746-A15, 746th Meeting, Hayward, CA, Apr. 22-23, 1977).
[16] Yamaguchi, N., \& Yamaguchi, Y. (2022). Generalized Dedekind's theorem and its application to integer group determinants. arXiv: 2203.14420v2 [math.RT].
[17] Yamaguchi, N., \& Yamaguchi, Y. (2023). Remark on Laquer's theorem for circulant determinants. International Journal of Group Theory, 12(4), 265-269.
[18] Yamaguchi, Y., \& Yamaguchi, N. (2022). Integer group determinants for C_{4}^{2}. arXiv: 2211.01597 [math.NT].
[19] Yamaguchi, Y., \& Yamaguchi, N. (2022). Integer group determinants for abelian groups of order 16, arXiv: 2211.14761 [math.NT].
[20] Yamaguchi, Y., \& Yamaguchi, N. (2023). Integer group determinants for C_{2}^{4}. The Ramanujan Journal, DOI: 10.1007/s11139-023-00727-z.
[21] Yamaguchi, Y., \& Yamaguchi, N. (2023). Integer circulant determinants of order 16. The Ramanujan Journal, 61, 1283-1294.

