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Abstract: In this paper, we will focus on the study of a special type of exponential Diophantine
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equations, which can only be solved by the methods of elementary mathematics.
Keywords: Diophantine, Exponential, Equation, Elementary mathematics.
2020 Mathematics Subject Classification: 11D61.

1 Introduction

In this contribution, we focus on the specific type of exponential Diophantine equation and solve
it using only elementary mathematics. A special exponential equation, we mean Diophantine
equation in the following form

xm = yn + a,

where x and y are two distinct positive integers greater than one and also bases of the exponential
functions, a is a given positive integer, and m,n are unknown integers. The main contribution of
this paper is a generalization of this type of the exponential Diophantine equation, including the
proof in which we use methods of elementary mathematics. An investigated type of exponential
equations is similar to generalized Ramanujan–Nagell Diophantine equations. Ramanujan–Nagell
Diophantine equations are studied by many authors and there exist a lot of works concerning this
topic. There are still open problems in this topic, which are not fully resolved yet.
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This paper offers an elementary method of solving a special type of Diophantine equations,
which could be of interest to a large audience.

This article follows on from the articles [1–3] and at the same time summarizes this issue of
exponential Diophantine equations in a general form. In the following section, we first formulate
the type of investigated exponential Diophantine equations, and then present the theorem including
the proof.

2 The exponential Diophantine equations

Let xm − 1 = 2n + 24k+2, where x is an odd positive integer and x − 1 = 22k+1, k is given
nonnegative integer and exponents m,n are integers appearing in the given equation as unknown.

In such a generalized problem, let us first realize that m,n are always nonnegative integers
(even positive integers). So it probably applies

xm − 1 ≥ 24k+2,

or
xm ≥ 24k+2 + 1.

We get it with a simple adjustment

m ≥ logx (2
4k+2 + 1).

Since m ∈ N0 and holds x = 22k+1 + 1, then

1 < logx (2
4k+2 + 1) < 2.

So m ≥ 2.
Based on the estimate for m, inequality applies x2 − 1 ≤ 2n + 24k+2, which we adjust to the

form x2 − 1− 24k+2 ≤ 2n. Since n ∈ N0, then

n ≥ log2 (x
2 − 1− 24k+2).

Valid x = 22k+1 + 1, therefore

n ≥ log2 (2
4k+2 + 22k+2 + 1− 1− 24k+2),

n ≥ log2 2
2k+2.

So n ≥ 2k + 2.
In article [3], solved examples of the examined type of exponential Diophantine equations for

k = 0, 1 and 2 are presented, from which the formulations of the theorem below can be deduced.

Theorem 2.1. Generalized problem xm− 1 = 2n+24k+2, where x is an odd positive integer and
x − 1 = 22k+1, k is given by nonnegative integer and exponents m,n are integers appearing in
the given equation as unknown, it has exactly one solution in the form (m,n) = (2, 2k + 2).
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Proof. The proof of confirmation can be divided into two parts. In the first part we prove that the
ordered pair (m,n) = (2, 2k + 2) is a solution to a generalized problem. In the second part we
prove that this solution is the only possible one.

First part of the proof.
Substituting m and n into the task assignment, we verify whether the ordered pair (2, 2k + 2) is
a solution of the generalized problem for any nonnegative integer k. We get the equation

x2 − 1 = 22k+2 + 24k+2. (1)

Using a simple adjustment (x2 − 1 = (x− 1)(x+ 1)) we obtain the equation (1) in the form

(x− 1)(x+ 1) = 22k+1(2 + 22k+1).

Since x− 1 = 22k+1, then the equation (1) can be modified to the final form

22k+1(2 + 22k+1) = 22k+1(2 + 22k+1).

We have proved the first part of the proof that there is always a solution to a given equation.
In the following section, we prove that this solution is the only possible one.

Second part of the proof.
Suppose there are other solutions in the form:

a) Let (m,n) = (2, 2k + z) be a solution, where z is a positive integer and z ≥ 3. After
substituting into the generalized equation and subsequent modifications we get

x2 − 1 = 22k+z + 24k+2,

(x− 1)(x+ 1) = 22k+1(2z−1 + 22k+1),

22k+1(2 + 22k+1) = 22k+1(2z−1 + 22k+1),

2 + 22k+1 = 2z−1 + 22k+1,

2 = 2z−1.

And equality occurs just when z = 2. However, this is a dispute with the fact that z ≥ 3.

b) Let (m,n) = (y, 2k + 2) be a solution where y is a positive integer and y ≥ 3. After
substituting into the generalized equation and subsequent modifications we get

xy − 1 = 22k+2 + 24k+2,

(x− 1)(xy−1 + xy−2 + · · ·+ x+ 1) = 22k+1(2 + 22k+1),

22k+1(xy−1 + xy−2 + · · ·+ x+ 1) = 22k+1(2 + 22k+1),

xy−1 + xy−2 + · · ·+ x+ 1 = 2 + 22k+1,

xy−1 + xy−2 + · · ·+ x+ 1 = x+ 1.

The equality occurs just when y = 2. However, this is a dispute with the fact that y ≥ 3.

c) Let the solution be an ordered pair (m,n) = (y, 2k+ z), where y > 2 and at the same time
2k + z > 2k + 2. So a pair of equations must hold
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xy − 1 = 22k+z + 24k+2, (2)

x2 − 1 = 22k+2 + 24k+2. (3)

Subtracting the equation (3) from the equation (2) we get the equation

xy − x2 = 22k+z − 22k+2. (4)

By successive modifications of the equation (4) we get

x2(xy−2 − 1) = 22k+1(2z−1 − 2),

x2(x− 1)(xy−3 + xy−4 + · · ·+ x+ 1) = 22k+1(2z−1 − 2),

22k+1x2(xy−3 + xy−4 + · · ·+ x+ 1) = 22k+1(2z−1 − 2),

x2(xy−3 + xy−4 + · · ·+ x+ 1) = 2z−1 − 2.

By multiplying the left side of the last given equation and dividing the number 2 from the
right side, we obtain the equation

xy−1 + xy−2 + · · ·+ x3 + x2 = 2(2z−2 − 1). (5)

So 2 | (xy−1 + xy−2 + · · · + x3 + x2). Since 2 ∤ x2 (x is an odd positive integer), then
necessarily 2 | (xy−3 + xy−4 + · · ·+ x+ 1). This can only be done if y is an even number
(given the assumption of y ≥ 4). We further modify the equation (5)

x2(x+ 1)(xy−4 + · · ·+ x2 + 1) = 2(2z−2 − 1),

x2(22k+1 + 2)(xy−4 + · · ·+ x2 + 1) = 2(2z−2 − 1).

We get the equation by a simple modification

x2(22k + 1)(xy−4 + · · ·+ x2 + 1) = 2z−2 − 1. (6)

Expression (22k + 1) | (2z−2 − 1), i.e., a fraction of 2z−2 − 1

22k + 1
must be an integer (even a

positive integer). From this fraction follows the assumption that z − 2 ≥ 2k holds

2z−2 − 1

22k + 1
= 2z−2k−2 − 2z−2k−2 + 1

22k + 1
,

i.e., a given fraction is a positive integer just when the positive integer is also a fraction
2z−2k−2 + 1

22k + 1
. From the given fraction follows another assumption that z − 2k − 2 ≥ 2k and

holds
2z−2k−2 + 1

22k + 1
= 2z−4k−2 − 2z−4k−2 − 1

22k + 1
,

i.e., a given fraction is a positive integer just when the positive integer (or 0) is also a
fraction 2z−4k−2 − 1

22k + 1
.

We can continue this process. Suppose that the algorithm does not end after a finite number
of steps, it is infinite, therefore, the conditions for z go to infinity for any k ∈ N. The
number z must be greater than all the limits arising from the algorithm, i.e., such z ∈ N
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does not exist. For k = 0 the condition follows 2 = (20 + 1) | (2z−2 − 1), where 2z−2 − 1

is either an odd number or equal to 0 for z = 2. In the first case, we get a dispute because
there is no odd number that is divisible by 2, in the latter case we have a dispute assuming
since z > 2.

The algorithm must therefore end after a finite number of steps. It is also obvious that it
must end after an even number of steps and therefore z = 4kp + 2, where k, p ∈ N (case
k = 0 we solved in case b). We also found that y must be even, i.e., y = 2l, where l ∈ N
a l ≥ 2. Equation (2) using the relation x2 = (22k+1 + 1)2 = 24k+2 + 22k+2 + 1 can be
rewritten into shape

xy−2 · (24k+2 + 22k+2 + 1)− 1 = 2z−2 · 22k+2 + 24k+2.

Using the relations z = 4kp+ 2 and y = 2l, we obtain an equation in the form

x2l−2 · (24k+2 + 22k+2 + 1)− 1 = 24kp · 22k+2 + 24k+2. (7)

Equality in the equation (7) occurs just when p = 0 (implies l = 1), which is a dispute with
the assumptions l ≥ 2, p ∈ N. Otherwise, the equation (7) can be modified as follows:

x2l−2 · x2 = 24k+2 + 22k+2 + 1 + (24kp − 1) · 22k+2

x2l−2 · x2 = x2 + (24kp − 1) · 22k+2

x2 · (x2l−2 − 1) = (24kp − 1) · 2 · (x− 1).

So x2 | (24kp − 1) · 2 · (x− 1). Since x2 ∤ 2 and x2 ∤ (x− 1), then necessarily x2 | (24kp − 1). The
fraction 24kp − 1

x2
= 24kp − 1

24k+2 + 22k+2 + 1
must be integer.

Continuing with the procedure described above, we would obtain infinitely many conditions
for p ∈ N that would produce an infinite decreasing sequence of positive integers, which is not
possible. So p must be 0.

3 Conclusion

The investigated type of exponential Diophantine equations has just one solution, always in the
form (m,n) = (2, 2k + 2), where k ∈ N0.
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