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Abstract: We consider functions F : Z≥0 → Z≥0 for which there exists a positive integer n
such that two conditions hold: F (p) divides n for every prime p, and for each divisor d of n and
every prime p, we have that d divides F (p) iff d divides F (p mod d). Following an approach
of Khrennikov and Nilsson, we employ the prime number theorem for arithmetic progressions to
derive an expression for the average value of such an F over all primes p, recovering a theorem of
these authors as a special case. As an application, we compute the average number of r-periodic
points of a multivariate power map defined on a product Zf1(p) × · · · × Zfm(p) of cyclic groups,
where fi(t) is a polynomial.
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1 Introduction and Main result

The famous Prime Number Theorem for Arithmetic Progressions provides an asymptotic formula
(as M → ∞) for the number of primes less than or equal to M and congruent to a modulo n,
where n, a ∈ N are relatively prime. To state the this result precisely, let us fix some notation.
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Given integers n, a and M > 0, let

π(n, a,M) = |{p ≤ M : p prime, p ≡ a (mod n)}|.

(We denote π(1, 0,M), the number of primes less than or equal to M , simply by π(M).) For each
k ∈ N, let φ(k) equal the number of positive integers less than or equal to k and relatively prime
to k. The result is as follows.

Theorem 1. Let n, a ∈ N with gcd(n, a) = 1. Then

π(n, a,M) ∼ π(M)

φ(n)
as M → ∞.

According to Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely
many primes of the form a + nk when a, n are relatively prime. Intuitively, Theorem 1 says that
the primes are evenly distributed among those congruence classes modulo n that accommodate
infinitely many of them.

In [1], Khrennikov and Nilsson derive the following interesting formula as a consequence of
Theorem 1. Below, τ(n) denotes the number of positive divisors of n.

Theorem 2. For any positive integer n, we have

lim
M→∞

1

π(M)

∑
p ≤ M

p prime

gcd(n, p− 1) = τ(n).

Khrennikov and Nilsson apply Theorem 2 to study the distribution (with respect to the
parameter p) of periodic points of a single-variable power map x 7→ xn defined on the p-adic
numbers. In this note, we shall derive a vast generalization of the above formula. As an
application, we mimic the approach in [1] to prove analogous results concerning periodic points
of a multivariate power map (x1, . . . , xm) 7→ (xn1

1 , . . . , xnm
m ) defined on defined on a product

Zf1(p) × · · · × Zfm(p) of cyclic groups, where fi(t) is a polynomial with integer coefficients.
For a discussion of the prime numbers’ role in a variety of theoretical and practical applications,

we suggest [2].
Our main result is as follows.

Theorem 3. Let F : Z≥0 → Z≥0 for which there exists n ∈ N such that two conditions hold:

1. F (p)|n for each prime p.

2. For each divisor d of n, we have that d|F (p) ⇐⇒ d|F (p mod d).

Then

lim
M→∞

1

π(M)

∑
p ≤ M

p prime

F (p) =
∑
d|n

|{0 ≤ y ≤ d− 1 : d|F (y) and gcd(y, d) = 1}|. (1)

Before deriving Theorem 3, let us look at some particular instances of the function F .
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Example 4. For any fixed n ∈ N and f ∈ Z[t], the function F (x) = gcd(n, f(x)) satisfies the
hypotheses of the theorem. Indeed, the range of this F consists of divisors of n, and the second
condition is satisfied since polynomials preserve congruence. We get

lim
M→∞

1

π(M)

∑
p ≤M

gcd(n, f(p)) =
∑
d|n

|{0 ≤ y ≤ d− 1 : d|f(y) and gcd(y, d) = 1}|.

Setting f(t) = t − 1 yields Khrennikov and Nilsson’s formula, as the right-hand side reduces to∑
d|n

1 = τ(n) in this case.

Example 5. We may just as well take F to be the gcd of more than two quantities, e.g.,

F (x) = gcd(n, f(x), g(x)),

for a fixed positive integer n and f, g ∈ Z[t]. For instance, take n = 6, f(t) = t2 − 1, and
g(t) = 3t3 + 1 to get

F (x) = gcd(6, x2 − 1, 3x3 + 1).

In this case, the right-hand side of (1) evaluates to 2, so we have

lim
M→∞

1

π(M)

∑
p≤M

gcd(6, p2 − 1, 3p3 + 1) = 2.

Now for the proof, which essentially reproduces the argument for Theorem 2 appearing in [1]
at the appropriate level of abstraction.

Proof of Theorem 3. Let the assumptions on F hold. It is a basic fact that for each N ∈ N,

N =
∑
d|N

φ(d).

Therefore, for each prime p, we obtain

F (p) =
∑
d|F (p)

φ(d).

Summing over all p ≤ M gives ∑
p≤M

F (p) =
∑
p≤M

∑
d|F (p)

φ(d).

Recalling that each value F (p) is a divisor of n, we may rearrange the right-hand side to get∑
p≤M

F (p) =
∑
d|n

φ(d)π(d,M),

where π(d,M) := |{p ≤ M : d|F (p)}|. For each d|n, let

C(d) := |{0 ≤ y ≤ d− 1 : d|F (y), gcd(y, d) = 1}|.

We have
1

π(M)

∑
p≤M

F (p) =
∑
d|n

C(d) = 0

π(d,M)φ(d)

π(M)
+

∑
d|n

C(d) > 0

π(d,M)φ(d)

π(M)
. (2)
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Suppose that d|n with C(d) = 0. Let p ≤ M such that d|F (p). Let y = p mod d. By
assumption, d|F (y), and it follows that gcd(y, d) > 1. But gcd(y, d) = gcd(p, d), so we get that
gcd(y, d) = p. In particular, p|d. Hence, π(d,M) is bounded. Thus,

lim
M→∞

π(d,M)φ(d)

π(M)
= 0,

so the first sum in (2) tends to zero as M → ∞. Now suppose that C(d) > 0. Let

S(d) := {0 ≤ y ≤ d− 1 : d|F (y)}.

The hypotheses on F ensure that

{p ≤ M : d|F (p)} = {p ≤ M : p ≡ y (mod d) for some y ∈ S(d)}.

But the primes are equally distributed among the congruence classes (mod d) of those y ∈ S(d)

with gcd(y, d) = 1, so we have

π(d,M) ∼ C(d)
π(M)

φ(d)

as M → ∞. That is,

lim
M→∞

π(d,M)φ(d)

C(d)π(M)
= 1.

Thus, from (2), we get

lim
M→∞

1

π(M)

∑
p≤M

F (p) = lim
M→∞

∑
d|n

C(d)>0

π(d,M)φ(d)

C(d)π(M)
C(d) =

∑
d|n

C(d).

Therefore,

lim
M→∞

1

π(M)

∑
p ≤ M

p prime

F (p) =
∑
d|n

|{0 ≤ y ≤ d− 1 : d|F (y) and gcd(y, d) = 1}|.

Theorem 3 is obtained. □

We can modify the function from Example 4 as follows. Fix n1, . . . , nm ∈ N and f1, . . . , fm ∈
Z[t]. The function F (x) =

∏
1≤i≤m

gcd(ni, fi(x)) satisfies the hypotheses of Theorem 3. (Take n

to be the product of the ni’s.) Thus, we get the following corollary, which will be useful for our
application.

Corollary 6. For any n1, . . . , nm ∈ N and any f1, . . . , fm ∈ Z[t],

lim
M→∞

1

π(M)

∑
p≤M

∏
1≤i≤m

gcd(ni, fi(p))

=
∑

d|n1···nm

∣∣{0 ≤ y ≤ d− 1 : d|
∏

1≤i≤m

gcd(ni, fi(y)) and gcd(y, d) = 1}
∣∣.
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2 Application: Periodic points of a multivariate power map

We now present an application of Corollary 6. Let p represent a prime number and let
F = {f1, . . . , fm} be a family of polynomials over Z taking positive values on the primes. For
positive integers n1, . . . , nm, define

f : Zf1(p) × · · · × Zfm(p) → Zf1(p) × · · · × Zfm(p)

by
f(x1, . . . , xm) = (xn1

1 , . . . , xnm
m ), (3)

where for each k ∈ N, Zk refers to the cyclic group of order k. A point (x1, . . . , xm) is called
periodic if f r(x1, . . . , xm) = (x1, . . . , xm) for some positive integer r, where f r, the r-th iterate
of f , is the composition of f with itself r times. The period of such a point is the smallest positive
integer r such that f r(x1, . . . , xm) = (x1, . . . , xm). We refer to a periodic point with period r as
r-periodic.

By mimicking the approach in [1], we shall compute the average number of r-periodic points
of f over the primes p. Specifically, if N(r, p, n1, . . . , nm,F) denotes the number of r-periodic
points of the map (3), then our task is to evaluate

lim
M→∞

1

π(M)

∑
p ≤M

N(r, p, n1, . . . , nm,F)

in terms of the parameters r, p, n1, . . . , nm,F .
Following Khrennikov and Nilsson, let us begin by computing N(r, p, n1, . . . , nm,F) when

p is fixed and ni ≥ 2, 1 ≤ i ≤ m. As usual, µ will denote the Möbius function. It is a basic
fact that if g ∈ Zk and the equation xn = g has a solution in Zk, then there are exactly gcd(n, k)

solutions. But (x1, . . . , xm) ∈ Zf1(p) × · · · × Zfm(p) has period dividing r if and only if

x
nr
i

i = xi ⇐⇒ x
nr
i−1

i = 1 for each 1 ≤ i ≤ m.

The latter equation above has gcd(nr
i − 1, fi(p)) solutions in Zfi(p), so there are∏
1≤i≤m

gcd(nr
i − 1, fi(p))

periodic points in Zf1(p) × · · · × Zfm(p) whose period divides r. That is,∑
d|r

N(d, p, n1, . . . , nm,F) =
∏

1≤i≤m

gcd(nr
i − 1, fi(p)).

By Möbius inversion, we obtain the following theorem.

Theorem 7. For f as in (3) with ni ≥ 2 for each 1 ≤ i ≤ m, the number N(r, p, n1, . . . , nm,F)

of r-periodic points of f equals∑
d|r

µ(d)
∏

1≤i≤m

gcd(n
r
d
i − 1, fi(p)).
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Example 8. Consider the map f : Z3 × Z4 given by f(x1, x2) = (x2
1, x

3
2). Here, we can take

p = 2, f1 = x + 1, f2 = x2, n1 = 2, and n2 = 3. For r = 2, the number of 2-periodic points is
found to be 10.

An r-cycle for the map f in (3) is a set {x, f(x), . . . , f r−1(x)}, where x ∈ Zf1(p)×· · ·×Zfm(p)

is an r-periodic point. Letting K(r, p, n1, . . . , nm,F) denote the number of r-cycles associated
with f , we see that

K(r, p, n1, . . . , nm,F) =
N(r, p, n1, . . . , nm,F)

r
,

since each r-cycle contains r periodic points of period r. In particular, we obtain the following
interesting number-theoretic fact, which extends the result of Remark 3.3 in [1]: For any prime p,
any 2 ≤ n1, . . . , nm ∈ N, and any F = {f1, . . . , fm} ⊆ Z[t] such that fi(p) > 0, the quantity∑
d|r

µ(d)
∏

1≤i≤m gcd(n
r
d
i − 1, fi(p)) is divisible by r.

The next theorem, which follows in light of Corollary 6 and Theorem 7, summarizes our
findings.

Theorem 9. Let n1, . . . , nm ∈ N with each ni ≥ 2, and let F = {f1, . . . , fm} be polynomials
over Z taking positive values on the primes. For p prime, define f : Zf1(p) × · · · × Zfm(p) →
Zf1(p) × · · · × Zfm(p) by

f(x1, . . . , xm) = (xn1
1 , . . . , xnm

m ).

If N(r, p, n1, . . . , nm,F) denotes the number of r-periodic points of f corresponding to the prime
p, then

lim
M→∞

1

π(M)

∑
p≤M

N(r, p, n1, . . . , nm,F) =
∑
(d, e)

d|r and e|(n
r
d
1 − 1) · · · (n

r
d
m − 1)

µ(d)C(d, e),

where

C(d, e) :=
∣∣{0 ≤ y ≤ e− 1 : e divides

∏
1≤i≤m

gcd(n
r
d
i − 1, fi(y)) and gcd(y, e) = 1}

∣∣.
Example 10. Consider the map

f : Zp2−1 × Z3p4+2p2−1 × Zp7+p3−1 → Zp2−1 × Z3p4+2p2−1 × Zp7+p3−1

defined by f(x1, x2, x3) = (x3
1, x

6
2, x

7
3). Here, m = 3, f1 = t2 − 1, f2 = 3t4 + 2t2 − 1,

f3 = t7 + t3 − 1, and (n1, n2, n3) = (3, 6, 7). For r = 2, the average number of 2-periodic points
is calculated to be 36.
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