The Dirichlet divisor problem over square-free integers and unitary convolutions

André Pierro de Camargo

Federal University of the ABC Region, Brazil
e-mail: andrecamargo.math@gmail.com

Abstract

We obtain an asymptotic formula for the sum \tilde{D}_{2} of the divisors of all square-free integers less than or equal to x, with error term $O\left(x^{1 / 2+\epsilon}\right)$. This improves the error term $O\left(x^{3 / 4+\epsilon}\right)$ presented in [7] obtained via analytical methods. Our approach is elementary and it is based on the connections between the function \tilde{D}_{2} and unitary convolutions.

Keywords: Dirichlet divisor problem, Square-free integers, Unitary convolutions.
2020 Mathematics Subject Classification: 11N56, 11N37.

1 Introduction

One of the oldest unsolved problems in Analytic Number Theory (the classical Dirichlet divisor problem) is determining the smallest positive number η such that the error term $\Delta(x)$ in

$$
\begin{equation*}
D(x):=\sum_{n \leq x} \sum_{d \mid n} 1=x \log (x)+(2 \gamma-1) x+\Delta(x) \tag{1}
\end{equation*}
$$

satisfies $\Delta(x)=O\left(x^{\eta+\epsilon}\right)$ for every $\epsilon>0(\gamma$ is the Euler-Mascheroni constant). In 1849, Dirichlet showed that

$$
\begin{equation*}
\Delta(x)=O(\sqrt{x}) \tag{2}
\end{equation*}
$$

and many mathematicians have worked on improving Dirichlet's estimate since. Hardy proved that η can not be smaller than $1 / 4$ and it is widely conjectured that $\Delta(x)=O\left(x^{1 / 4+\epsilon}\right) \forall \epsilon>0$.

[^0]The sharpest known bound $\Delta(x)=O\left(x^{131 / 416+\epsilon}\right) \forall \epsilon>0$ is due to Huxley (see [2] for a recent survey of the subject).

Variants of the Dirichlet divisor problem can be obtained by imposing some conditions over the summation index n or/and considering only the divisors d of n that fulfill some requirements. For instance, in 1874, Mertens considered the problem of estimating the sum

$$
D_{2}(x):=\sum_{n \leq x} \sum_{d \mid n}|\mu(d)|
$$

in the left-hand side of (1) only for square-free divisors d of n [9]. In 1932, Hölder [6] considered the Dirichlet divisor problem for k-free divisors, an extension of the square-free ($k=2$) case (a positive integer n is k-free if n is not divisible by the k-th power of any prime number). Let us also mention some problems concerning the estimation of sums like

$$
\sum_{\substack{n \leq x \\ n \in \mathcal{A}}} \sum_{d \mid n} 1,
$$

when \mathcal{A} is a residue class [10] (or some union of residue classes [8]), or, more generally, when \mathcal{A} is the image of some polynomial with positive integer coefficients (see [12], pp. 84-85, or [3] and the references therein).

Recently, Jakimczuk and Lalín [7] estimated the number $\tilde{D}_{2}(x)$ of the divisors of all square-free integers that do not exceed x :

$$
\begin{equation*}
\tilde{D}_{2}(x)=\sum_{n \leq x}|\mu(n)| \sum_{d \mid n} 1=\sum_{n \leq x}|\mu(n)| \sum_{d \mid n}|\mu(d)|=\sum_{i j \leq x}|\mu(i j)| . \tag{3}
\end{equation*}
$$

Combining Perron's formula with an Euler-type-product formula for the Dirichlet series with coefficients $a_{n}=|\mu(n)| \sum_{d \mid n} 1$, they proved the following result.

Theorem 1.1 ([7]). There is $\beta \in \mathbb{R}$ such that, for every $\epsilon>0$,

$$
\begin{equation*}
\tilde{D}_{2}(x)=\prod_{p \text { prime }}\left[1-\frac{3}{p^{2}}+\frac{2}{p^{3}}\right] x \log (x)+\beta x+O_{\epsilon}\left(x^{3 / 4+\epsilon}\right) . \tag{4}
\end{equation*}
$$

In this note we present an elementary approach for estimating \tilde{D}_{2} based on its connections with unitary convolutions [5]. We express the summatory functions of unitary convolutions in terms of the summatory functions of ordinary Dirichlet convolutions. Using this result, we write \tilde{D}_{2} in terms of the Dirichlet function (1) and obtain the following improvement over (4).

Theorem 1.2. There is $\beta \in \mathbb{R}$ such that, for every $\epsilon>0$,

$$
\begin{equation*}
\tilde{D}_{2}(x)=\frac{1}{\zeta^{2}(2)}\left[\prod_{p \text { prime }}\left(1-\frac{1}{(p+1)^{2}}\right)\right] x \log (x)+\beta x+O_{\epsilon}\left(x^{1 / 2+\epsilon}\right) \tag{5}
\end{equation*}
$$

(ζ is the Riemann zeta function).

Using the Euler product for ζ, one can easily check that the leading coefficients of \tilde{D}_{2} in (4) and (5) are identical. However, the representation of the coefficient c of the leading term $x \log (x)$ of \tilde{D}_{2} in (5) looks more informative because it immediately tells us that $c<\frac{1}{\zeta(2)^{2}}$. This is already expected because

$$
\begin{equation*}
\tilde{D}_{2}(x) \leq \sum_{i j \leq x}|\mu(i) \| \mu(j)| \quad \forall j \geq 1 \tag{6}
\end{equation*}
$$

and the right-hand side of (6) is easily seen to be asymptotic to $\frac{1}{\zeta(2)^{2}} x \log (x)$.

2 Summatory functions of unitary convolutions

Let $\chi_{i, .}: j \longmapsto \chi_{i, j}$ denote the Dirichlet principal character modulus i

$$
\chi_{i, j}= \begin{cases}1, & (i, j)=1 \\ 0, & (i, j)>1\end{cases}
$$

In the beginning of the sixties, Cohen [5] studied the properties of unitary convolutions. The unitary convolution of the arithmetic functions g and h is defined by

$$
\begin{equation*}
f(n)=\sum_{i j=n} g(i) h(j) \chi_{i, j}, \quad n \geq 1 . \tag{7}
\end{equation*}
$$

This subject is very close to the divisor problem we are concerned with. In fact,

$$
\begin{equation*}
\tilde{D}_{2}(x)=\sum_{i \leq x} \sum_{j \leq x / i}|\mu(i)||\mu(j)| \chi_{i, j} \tag{8}
\end{equation*}
$$

is the summatory function of the unitary convolution of the function $|\mu|$ with itself. Cohen presented asymptotic formulae for the sums

$$
\sum_{j \leq x}|\mu(j)| \chi_{i, j} \quad \text { and } \quad \sum_{j \leq x} j|\mu(j)| \chi_{i, j}
$$

([5], Lemmas 5.2 and 5.3). For instance, we have

$$
\begin{gathered}
\sum_{j \leq x}|\mu(j)| \chi_{i, j}=x \frac{1}{\zeta_{i}(2)}\left(\sum_{d \mid i} \frac{\mu(d)}{d}\right)+\left(\sum_{d \mid i} 1\right) O(\sqrt{x}), \\
\zeta_{i}(z):=\sum_{j=1}^{\infty} \frac{\chi_{i, j}}{j^{z}}, \mathfrak{R} e(z)>1, i \geq 1 .
\end{gathered}
$$

Using this information in (8), we obtain

$$
\begin{equation*}
\tilde{D}_{2}(x) \sim x \sum_{i \leq x} \frac{|\mu(i)|}{i \zeta_{i}(2)}\left(\sum_{d \mid i} \frac{\mu(d)}{d}\right) . \tag{9}
\end{equation*}
$$

The main problem with this approach is that it is not much clear how to interpret the sum in the right-hand side of (9). In order to avoid this difficulty, we express the summatory functions of
unitary convolutions in a more convenient way. Given two arithmetic functions g, h and $r \geq 1$, let

$$
V_{r}[g, h](x)=\sum_{i j \leq x / r^{2}} g(r i) h(r j), x \geq 1
$$

Lemma 2.1. Let $g, h: \mathbb{N} \rightarrow \mathbb{C}$ be two arithmetic functions and let f be the unitary convolution of g and h defined by (7). For $x \geq 1$,

$$
\begin{equation*}
\sum_{n \leq x} f(n)=\sum_{r \leq \sqrt{x}} \mu(r) V_{r}[g, h](x) . \tag{10}
\end{equation*}
$$

Proof. For $x \geq 1, r \leq \sqrt{x}$ and $r^{\prime} \leq \sqrt{x} / r$, we group all i, j with $i j \leq x / r^{2}$ and $\operatorname{gcd}(i, j)=r^{\prime}$:

$$
\begin{equation*}
\sum_{i j \leq x / r^{2}} g(r i) h(r j)=\sum_{r r^{\prime} \leq \sqrt{x}} \sum_{i^{\prime} j^{\prime} \leq x /\left(r r^{\prime}\right)^{2}} g\left(r r^{\prime} i^{\prime}\right) h\left(r r^{\prime} j^{\prime}\right) \chi_{i^{\prime}, j^{\prime}} . \tag{11}
\end{equation*}
$$

In order to simplify the notation, for $\ell=1,2, \ldots, \tau:=\lfloor\sqrt{x}\rfloor$, let

$$
z_{\ell}=\sum_{i j \leq x / \ell^{2}} g(\ell i) h(\ell j) \chi_{i, j}, \quad w_{\ell}=\sum_{i j \leq x / \ell^{2}} g(\ell i) h(\ell j) .
$$

The relations (11) for $r=1,2, \ldots, \tau$ can be expressed as the system of linear equations

$$
\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 0 & 1 & 0 & 1 & \ldots \\
0 & 0 & 1 & 0 & 0 & 1 & \ldots \\
0 & 0 & 0 & 1 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots
\end{array}\right] \times\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
\vdots \\
z_{\tau}
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4} \\
\vdots \\
w_{\tau}
\end{array}\right] .
$$

By Cramer's rule,

$$
z_{1}=\left|\begin{array}{cccccc}
w_{1} & w_{2} & w_{3} & w_{4} & \ldots & w_{\tau} \tag{12}\\
1 & 1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 \\
1 & 1 & 0 & 1 & \ldots & 0 \\
1 & 0 & 0 & 0 & \ldots & 0 \\
1 & 1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right| .
$$

The right-hand side of (12) is a Redheffer determinant [$1,4,11]$. Hence,

$$
z_{1}=\sum_{r=1}^{\tau} \mu(r) w_{r} .
$$

Applying Lemma 2.1 to the functions g and h defined by

$$
\begin{equation*}
g(i)=h(i)=|\mu(i)|, \tag{13}
\end{equation*}
$$

we obtain the following result.

Corollary 1.

$$
\begin{equation*}
\tilde{D}_{2}(x)=\sum_{r \leq \sqrt{x}} \mu(r) V_{r}(x), \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{r}(x)=\sum_{i j \leq x / r^{2}}|\mu(r i)||\mu(r j)| . \tag{15}
\end{equation*}
$$

Remark 1. Note that the indexes i and j do not appear simultaneously as arguments of χ in (15) (as they do in (8)) and this avoids dealing with expressions like the one in the right-hand side of (9).

3 Proof of Theorem 1.2

In some previous investigations, we combined (15) and some asymptotic formulae for

$$
\sum_{i \leq x}|\mu(r i)|, \quad \sum_{i \leq x} i|\mu(r i)|, \quad \sum_{i \leq x}\left|\frac{\mu(r i)}{i}\right|
$$

to estimate \tilde{D}_{2}. Curiously, that attempt led to same estimate [7]

$$
O\left(x^{3 / 4}+\epsilon\right)
$$

obtained by Jakimczuk and Lalín for the error term. In order to obtain sharper results, we express $V_{r}(x)$ directly (see the proof at the end of this section) in terms of the Dirichlet function (1).

Lemma 3.1. If $\mu(r) \neq 0$, the function V_{r} defined in (15) satisfies

$$
\begin{aligned}
V_{r}(x) & =\sum_{\left(d, d^{\prime}, n, n^{\prime}\right) \in \mathcal{A}} \mu(d) \mu\left(d^{\prime}\right) \mu(n) \mu\left(n^{\prime}\right) \chi_{r, n} \chi_{r, n^{\prime}} D\left(\frac{x / r^{2}}{d^{\prime} d n^{2}\left(n^{\prime}\right)^{2}}\right), \\
\mathcal{A} & =\left\{\left(d, d^{\prime}, n, n^{\prime}\right): d, d^{\prime} \mid r, n \leq \sqrt{\frac{x}{r^{2}}}, n^{\prime} \leq \sqrt{\frac{x}{\frac{x}{r^{\prime}}}} \frac{d d^{2} n^{2}}{}\right\}
\end{aligned}
$$

The proof of Theorem 1.2 follows directly by Corollary 1 and Lemma 3.1, combined with Dirichlet estimates (2), after elementary, but somewhat tedious, handwork. For instance, the coefficient c of the leading term $x \log (x)$ in \tilde{D}_{2} is

$$
\begin{aligned}
c & =\sum_{r=1}^{\infty} \frac{\mu(r)}{r^{2}} \sum_{d, d^{\prime} \mid r} \frac{\mu(d)}{d} \frac{\mu\left(d^{\prime}\right)}{d^{\prime}} \sum_{n^{\prime}=1}^{\infty} \frac{\mu(n) \chi_{r, n}}{n^{2}} \sum_{n^{\prime}=1}^{\infty} \frac{\mu\left(n^{\prime}\right) \chi_{r, n^{\prime}}}{\left(n^{\prime}\right)^{2}} \\
& =\sum_{r=1}^{\infty} \frac{\mu(r)}{r^{2}} \prod_{\substack{p \mid r \\
p \text { prime }}}\left(1-\frac{1}{p}\right)^{2} \prod_{\substack{p \nmid r \\
p \text { prime }}}\left(1-\frac{1}{p^{2}}\right)^{2} \\
& =\frac{1}{\zeta(2)^{2}} \sum_{r=1}^{\infty} \mu(r) \prod_{\substack{p \mid r \\
p \text { prime }}} \frac{1}{p^{2}}\left(\frac{1-\frac{1}{p}}{1-\frac{1}{p^{2}}}\right)^{2} \\
& =\frac{1}{\zeta(2)^{2}} \prod_{\substack{p \mid r \\
p \text { prime }}}\left(1-\frac{1}{(p+1)^{2}}\right) .
\end{aligned}
$$

In the same vein, the coefficient β of x in \tilde{D}_{2} is $\beta=c-c^{\prime}$, with

$$
\begin{equation*}
c^{\prime}=\sum_{r=1}^{\infty} \frac{\mu(r)}{r^{2}} \sum_{d, d^{\prime} \mid r} \frac{\mu(d)}{d} \frac{\mu\left(d^{\prime}\right)}{d^{\prime}} \sum_{n^{\prime}=1}^{\infty} \frac{\mu(n) \chi_{r, n}}{n^{2}} \sum_{n^{\prime}=1}^{\infty} \frac{\mu\left(n^{\prime}\right) \chi_{r, n^{\prime}}}{\left(n^{\prime}\right)^{2}} \log \left(r^{2} d d^{\prime} n^{2} n^{\prime 2}\right) . \tag{16}
\end{equation*}
$$

Using that $\sum_{d \mid r} 1=O_{\epsilon}\left(r^{\epsilon}\right) \forall \epsilon>0$, one can readily see that the series in the right-hand side of (16) is absolutely convergent. In addition, the overall error term $E(x)$ for \tilde{D}_{2} associated to the error term $O(\sqrt{x})$ in Dirichlet formula satisfies

$$
\begin{aligned}
& E(x) \ll \sum_{r \leq \sqrt{x}}|\mu(r)| \sum_{\substack{d, d^{\prime} \mid r, n \leq \sqrt{\left(x / r^{2}\right)}}}\left(\frac{x / r^{2}}{\left(n^{\prime}\right)^{2} d d^{\prime} n^{2}}\right)^{1 / 2} \\
& \ll{ }_{\epsilon} \sum_{r \leq \sqrt{x}}|\mu(r)| \sum_{\substack{\frac{x r^{2}}{d d^{\prime}}}}\left(\frac{x / r^{2}}{d d^{\prime} \mid r, n^{2}}\right)^{1 / 2+\epsilon} \\
& n \leq \sqrt{\left(x / r^{2}\right)} \\
& \ll \epsilon_{\epsilon} \sum_{r \leq \sqrt{x}}|\mu(r)| \sum_{d, d^{\prime} \mid r}\left(\frac{x / r^{2}}{d d^{\prime}}\right)^{1 / 2+\epsilon} \\
& \ll \epsilon_{\epsilon} x^{1 / 2+\epsilon} \sum_{r \leq \sqrt{x}}|\mu(r)| \prod_{p \mid r} \frac{1}{p^{1+2 \epsilon}}\left(1+\frac{1}{p^{1 / 2+\epsilon}}\right)^{2} \\
& \ll \operatorname{K}_{\epsilon} x^{1 / 2+\epsilon} \prod_{p \text { prime }}\left[1+\frac{1}{p^{1+2 \epsilon}}\left(1+\frac{1}{p^{1 / 2+\epsilon}}\right)^{2}\right] \\
& \ll \epsilon x^{1 / 2+\epsilon .}
\end{aligned}
$$

We leave the rest of the details to the interested reader.

3.1 Proof of Lemma 3.1

Lemma 3.2. Let $g: \mathbb{N} \rightarrow \mathbb{C}$ be an arithmetic function. For $x \geq 1$,

$$
\begin{equation*}
\sum_{j \leq x} g(j)|\mu(j)|=\sum_{n \leq \sqrt{x}} \mu(n) \sum_{i \leq x / n^{2}} g\left(i n^{2}\right) . \tag{18}
\end{equation*}
$$

Proof. Using

$$
\sum_{n^{2} \mid j} \mu(n)=|\mu(j)|,
$$

we obtain

$$
\sum_{n \leq \sqrt[2]{x}} \mu(n) \sum_{i \leq x / n^{2}} g\left(i n^{2}\right)=\sum_{j \leq x} g(j) \sum_{n^{2} \mid j} \mu(n)=\sum_{j \leq x} g(j)|\mu(j)| .
$$

Let $r \geq 1$ with $\mu(r) \neq 0$. For $x \geq 1$, let

$$
f(x)=\sum_{j \leq x}|\mu(r j)| .
$$

We have

$$
\begin{aligned}
V_{r}(x) & =\sum_{i \leq\left(x / r^{2}\right)}|\mu(i)| f\left(\frac{x / r^{2}}{i}\right) \chi_{r, i} \\
& \stackrel{(18)}{=} \sum_{n \leq \sqrt{x / r^{2}}} \mu(n) \chi_{r, n} \sum_{i \leq\left(x / r^{2}\right) / n^{2}} f\left(\frac{x / r^{2}}{i n^{2}}\right) \chi_{r, i} \\
& =\sum_{n \leq \sqrt{x / r^{2}}} \mu(n) \chi_{r, n} \sum_{d \mid r} \mu(d) \sum_{i \leq \frac{x / r^{2}}{d n^{2}}} f\left(\frac{x / r^{2}}{d i n^{2}}\right) .
\end{aligned}
$$

In addition,

$$
\begin{aligned}
f(x) & =\sum_{j \leq x}|\mu(j)| \chi_{r, j} \stackrel{(18)}{=} \sum_{n^{\prime} \leq \sqrt{x}} \mu\left(n^{\prime}\right) \chi_{r, n^{\prime}} \sum_{i \leq x /\left(n^{\prime}\right)^{2}} \chi_{r, i} \\
& =\sum_{n^{\prime} \leq \sqrt{x}} \mu\left(n^{\prime}\right) \chi_{r, n^{\prime}}\left(\sum_{d^{\prime} \mid r} \mu\left(d^{\prime}\right)\left\lfloor\frac{x}{\left(n^{\prime}\right)^{2} d^{\prime}}\right\rfloor\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& V_{r}(x)=\sum_{d, d^{\prime} \mid r,} \mu(d) \mu\left(d^{\prime}\right) \mu(n) \mu\left(n^{\prime}\right) \chi_{r, n} \chi_{r, n^{\prime}}\left\lfloor\frac{x / r^{2}}{\left(n^{\prime}\right)^{2} d^{\prime} d i n^{2}}\right\rfloor \\
& n \leq \sqrt{x / r^{2}} \\
& i \leq \frac{x / r^{2}}{d n^{2}} \\
& n^{\prime} \leq \sqrt{\frac{x / r^{2}}{d d^{2} i^{2}}} \\
& =\sum_{d, d^{\prime} \mid r,} \mu(d) \mu\left(d^{\prime}\right) \mu(n) \mu\left(n^{\prime}\right) \chi_{r, n} \chi_{r, n^{\prime}} D\left(\frac{x / r^{2}}{\left(n^{\prime}\right)^{2} d d^{\prime} n^{2}}\right) \text {. } \\
& n \leq \sqrt{x / r^{2}} \\
& n^{\prime} \leq \sqrt{\frac{x / r^{2}}{d d^{2} n^{2}}}
\end{aligned}
$$

References

[1] Barrett, W. W., \& Jarvis. T. J. (1992). Spectral properties of a matrix of Redheffer. Linear Algebra and Its Applications, 162-164, 673-683.
[2] Berndt B. C., Kim, S., \& Zaharescu, A. (2018). The circle problem of Gauss and the divisor problem of Dirichlet-Still unsolved. The American Mathematical Monthly, 125(2), 99-114.
[3] Broughan, K. A. (2002). On the distribution of k-free integers in residue classes. Acta Arithmetica, 101, 105-114.
[4] Camargo, A. (2021). Dirichlet matrices: Determinants, permanents and the Factorisatio Numerorum problem. Linear Algebra and Its Applications, 628, 115-129.
[5] Cohen, E. (1960). Arithmetical functions associated with the unitary divisors of an integer. Mathematische Zeitschrift, 74, 66-80.
[6] Hölder, O. (1932). Über einen asymptotischen ausdruck. Acta Mathematica, 59, 89-97.
[7] Jakimczuk, R., \& Lalín, M. (2022). Asymptotics of sums of divisor functions over sequences with restricted factorization structure. Notes on Number Theory and Discrete Mathematics, 28(4), 617-634.
[8] Kerr, B., \& Shparlinski, I. E. (2020). Bilinear sums of Kloosterman sums, multiplicative congruences and average values of the divisor function over families of arithmetic progressions. Research in Number Theory, 6, Article ID 16.
[9] Mertens, F. (1874). Ueber einige asymptotische Gesetze der Zahlentheorie. Journal für die reine und angewandte Mathematik, 77, 289-338.
[10] Pongsriiam, P., \& Vaugham, R. C. (2015). The divisor function on residur classes I. Acta Arithmetica, 168(4), 369-381.
[11] Redheffer, R. (1977). Eine explizit lösbare optimierungsaufgabe. In: Collatz, L., Meinardus, G., \& Wetterling, W. (Eds.). Numerische Methoden bei Optimierungsaufgaben Band 3. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, vol 36. Birkhäuser, Basel.
[12] Sándor. J., Mitrinović, D. S., \& Crstici, B. (2006). Handbook of Number Theory I. Springer, Dordrecht.

[^0]: Copyright © 2023 by the Author. This is an Open Access paper distributed under the
 terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

