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Abstract: For each positive integer n, we assign a digraph Γ(n, 11) whose set of vertices is
Zn = {0, 1, 2, . . . , n − 1} and there exists exactly one directed edge from the vertex a to the
vertex b iff a11 ≡ b (mod n). Using the ideas of modular arithmetic, cyclic vertices are presented
and established for n = 3k in the digraph Γ(n, 11). Also, the number of cycles and the number
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is (2k + 1) and for k > 2 the digraph Γ(3k, 11) has (k − 1) non-isomorphic cycles of length
greater than 1, whereas the number of components of the digraph Γ(7k, 11) is (8k − 3).
Keywords: Digraph, Fixed point, Power digraph, Carmichael λ-function, Cycles, Components.
2020 Mathematics Subject Classification: 05C20, 11A07, 11A15.

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



1 Introduction

For each pair of integers n (≥ 1) and k (≥ 1), a power digraph modulo n denoted by Γ(n, k)

is a digraph with vertex set Zn = {0, 1, 2, . . . , n − 1} and the ordered pair (a, b) is a directed
edge of Γ(n, k) from a to b if and only if ak ≡ b (mod n), where a, b ∈ Zn(for detail see [15]).
It has evolved a powerful connection between number theory, group theory and graph theory. The
concept of power digraph was introduced in the year 1967 by Bryant [2] in which for each element
x of a finite group, a point P (x) was assigned and joined with P (x2) by a directed line arising
a graph called the graph of the group. Thereafter, Blanton et al. [1], Somer and Křı́žek [7, 13],
Szalay [16], Rogers [11] have considered and investigated the properties of a variety of power
digraphs corresponding to the quadratic congruence a2 ≡ b (mod n). In 1996, Lucheta et al. [8]
studied the power digraph using the congruence ak ≡ b (mod p), where k ≥ 2 is a positive
integer and p is a prime. Skowronek- Kaziw et al. [12], Rahmati [10] defined the power digraphs
using the congruences a3 ≡ b (mod n) and a5 ≡ b (mod n) respectively and established some
results. Mateen et al. [9] discussed the power digraph with the help of the congruence a7 ≡ b

(mod n) and gave explicit formula for fixed points and the condition for which the digraph has
exactly 7 components.

It is important to mention that the problem of enumeration of cyclic vertices, cycles and
components of power digraph Γ(n, k) is still open. In this paper, we try to enumerate the cyclic
vertices and components with respect to the congruence a11 ≡ b (mod n) for n = 3k. We
organize our paper as follows:

In Section 2, we provide some definition from graph theory and number theory. In Section
3, we have discussed some properties of Carmichael lambda function. Finally, in Section 4, we
have tried to formulate an explicit formula to enumerate the cyclic vertices and components of
the digraphs Γ(3k, 11) and Γ(7k, 11), where k is any positive number. Throughout the paper all
notations are usual. For example, the greatest common divisor of two integers m and n is denoted
by gcd(m,n), the order of a modulo n is denoted by ordn(a) etc.

2 Preliminaries

For a positive integer n, Zn = {0, 1, 2, . . . , n − 1} denotes the complete set of residues modulo
n. We consider a directed graph Γ(n, 11) whose vertex set is Zn and any two vertices a, b ∈ Zn

are connected by exactly one directed edge from a to b iff

a11 ≡ b (mod n) (2.1)

The distinct vertices a1, a2, a3, . . . , at in Zn will form a cycle of length t if

a111 ≡ a2 (mod n)

a112 ≡ a3 (mod n)

a113 ≡ a4 (mod n)

...

a11t ≡ a1 (mod n)
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We call a cycle of length t as a t-cycle and a cycle of length 1 is named as a fixed point.
A vertex is isolated if it is not connected to any other vertex in Γ(n, 11).

The indegree of a vertex a ∈ Zn, denoted by indeg(a) is the number of directed edges coming
into the vertex a and the outdegree of a vertex a, denoted by outdeg(a) is the number of directed
edges leaving the vertex a. Since the residue of a number modulo n is unique, so outdeg(a) = 1

and indeg(a) ≥ 0 for each vertex a ∈ Zn. Also, for an isolated fixed point a ∈ Zn, outdeg(a) =
indeg(a) = 1.

A component of a digraph is a subdigraph which is a maximal connected subgraph of the
associated nondirected graph (for details see [5]). As the outdegree of each vertex of the digraph
Γ(n, 11) is equal to 1, so the number of components of Γ(n, 11) is equal to the number of
all cycles. The cycles may or may not be isolated. Moreover, by using the properties of the
congruence relation (2.1) and the definition of cycle, it can be established that the digraph
Γ(k11t − k, 11) has a t-cycle containing the vertex k, for an arbitrary integer t ≥ 1.

For n > 1, let Γ1(n, 11) and Γ2(n, 11) be two subdigraphs of the digraph Γ(n, 11), where
Γ1(n, 11) is the subdigraph induced on the set of vertices a ∈ Zn such that gcd(a, n) = 1 and
Γ2(n, 11) is the subdigraph induced on the set of vertices a ∈ Zn such that gcd(a, n) ̸= 1.
Clearly, the vertex set of Γ1(n, 11) is the unit group Z∗

n with order ϕ(n), where ϕ denotes Euler’s
totient function. Also, the vertices 1 and (n − 1) are the vertices of Γ1(n, 11) and 0 is always
a vertex of Γ2(n, 11). It can be easily observed that Γ1(n, 11) ∪ Γ2(n, 11) = Γ(n, 11) and
Γ1(n, 11) ∩ Γ2(n, 11) = ∅.

A tree is a connected acyclic graph. A tree in which one vertex has been designated as the root
is a rooted tree. The edges of a rooted tree can be assigned a natural orientation, either away from
or towards the root, in which case the structure becomes a directed rooted tree. When a directed
rooted tree has an orientation away from the root, it is called an arborescence or out-tree when it
has an orientation towards the root, it is called an anti-arborescence or in-tree.

3 Properties of the Carmichael λ-function

Definition 3.1 ([3]). The Carmichael lambda function of a positive integer n, denoted by λ(n) is
defined as the smallest positive integer m such that am ≡ 1 (mod n) for every integer a relatively
prime to n.

Lemma 3.2 ([3]). Let n be a positive integer, and ϕ denote Euler’s totient function. Then

λ(1) = 1 = ϕ(1)

λ(2) = 1 = ϕ(1)

λ(4) = 2 = ϕ(4)

λ(2k) = 2k−2 =
1

2
ϕ(2k) for k ≥ 3

λ(pk) = (p− 1)pk−1 = ϕ(pk) for any odd prime p and k ≥ 1

λ(pk11 pk22 · · · pkrr ) = lcm[λ(pk11 ), λ(pk22 ), . . . , λ(pkrr )],

where p1, p2, . . . , pr are distinct primes for ki ≥ 1, i = 1, 2, . . . , r.

527



It follows from Lemma 3.2, that λ(n) | ϕ(n),∀n and that λ(n) = ϕ(n) if and only if
n ∈ {1, 2, 4, qk, 2qk} where q is an odd prime and k ≥ 1.

The following theorem generalizes the well-known Euler’s Theorem which says that aϕ(n) ≡ 1

(mod n) if and only if gcd(a, n) = 1. It shows that λ(n) is the least possible order modulo n.

Theorem 3.3 (Carmichael’s Theorem, see [3, 6]). Let a, n ∈ N . Then

aλ(n) ≡ 1 (mod n) if and only if gcd(a, n) = 1.

Moreover, there exists an integer g such that ordn(g) = λ(n), where ordn(g) denotes the
multiplicative order of g modulo n.

Assume now that λ(n) has the following prime power factorization:

λ(n) = Πr
j=1q

lj
j ,

where q1 < q2 < · · · < qr are primes and lj > 0. It is evident that from the definition of λ that
q1 = 2 , if n > 2.

Theorem 3.4 ([4]). (i) Let n > 2. Then there exists a cycle of length t in the digraph Γ(n, 11) if
and only if t = ordd(11), for some even positive divisor d of λ(n).

(ii) If there exists a t-cycle in Γ(n, 11) then there exists a t-cycle in Γ1(n, 11).

Suppose At(Γ(n, k)) denotes the number of t-cycles in Γ(n, k) where t is a positive integer.

Theorem 3.5 ([14]). Let n = Πr
i=1p

αi
i , where pi, i = 1, 2, . . . , r are distinct primes. Then

At

(
Γ(n, k)

)
=

1

t

[ r∏
i=1

(
δigcd

(
λ(pαi

i ), kt − 1
)
+ 1

)
−

∑
d|t,d̸=t

dAd

(
Γ(n, k)

)]
,

where δi = 2 if 2 | kt − 1 and 8 | pαi
i , and δi = 1 otherwise.

4 Enumeration of cycles and components

In this section, we try to formulate an explicit formula to enumerate the cyclic vertices and
components of the digraph Γ(3k, 11), where k is a positive number. According to Theorem 3.4,
we need to calculate ordd(11), for every even positive divisor d of λ(n). The following two
lemmas showed that ord2·3r(11) = 2 · 3r−1 for 1 ≤ r ≤ k − 1.

Lemma 4.1. Suppose xn ≡ y (mod αpβ). Then xnp ≡ yp (mod αpβ+1).

Proof. Since xn ≡ y (mod αpβ), we have xn = y + αpβk for some integer k. A binomial
expansion yields

xnp = (y + αpβk)p = yp +

p∑
i=1

(
p

i

)
yp−i(αpβ)i.

We have
(
p
1

)
yp−1(αpβ) = αpβ+1yp−1 ≡ 0 (mod αpβ+1). For i ≥ 2, we have

(
p
i

)
yp−iαipiβ ≡ 0

(mod αpβ+1). Thus, xnp ≡ (y + αpβk)p ≡ yp (mod αpβ+1).

Lemma 4.2. Suppose k ≥ 2 and 1 ≤ r ≤ k−1. Then ord2·3r(11) = 2 ·3r−1. Also, ord3r+1(11) =

2 · 3r for 0 ≤ r ≤ k − 1.
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Proof. It is easy to check that ord6(11) = 2. So, we assume r ≥ 2. We need to show that
112·3

r−1 ≡ 1 (mod 2 ·3r) and 11d ̸≡ 1 (mod 2 ·3r) for every positive proper divisor d of 2 ·3r−1.
Since every proper divisor of 2 · 3r−1 divides either 2 · 3r−2 or 3r−1, it suffices to show that
11d ̸≡ 1 (mod 2 · 3r) for d ∈ {2 · 3r−2, 3r−1}.

We use induction to show that 112·3r−1 ≡ 1 (mod 2 · 3r), 113r−1 ≡ −1 (mod 2 · 3r), and
112·3

r−2 ≡ 1+4·3r−1 (mod 2·3r). A calculation verifies that 112·31 ≡ 1 (mod 2·32), 1131 ≡ −1

(mod 2 · 32), and 112·3
0 ≡ 1 + 4 · 31 (mod 2 · 32). This establishes the base case.

Suppose that for r ≥ 2, we have 112·3
r−1 ≡ 1 (mod 2 · 3r), 113r−1 ≡ −1 (mod 2 · 3r), and

112·3
r−2 ≡ 1+4 · 3r−1 (mod 2 · 3r). We need to show that 112·3r ≡ 1 (mod 2 · 3r+1), 113

r ≡ −1

(mod 2 ·3r+1), and 112·3
r−1 ≡ 1+4 ·3r (mod 2 ·3r+1). By Lemma 4.1, we have 112·3r ≡ 13 ≡ 1

(mod 2 · 3r+1), 113
r ≡ (−1)3 ≡ 1 (mod 2 · 3r+1), and 112·3

r−1 ≡ (1+ 4 · 3r−1)3 (mod 2 · 3r+1).
Since 3i ≡ 3 (mod 2 · 3) for i ≥ 1, we have 3i ≡ 3r+1 (mod 2 · 3r+1) for i ≥ r+ 1. A binomial
expansion yields

112·3
r−1 ≡ (1 + 4 · 3r−1)3 ≡ 1 + 3 · 4 · 3r−1 + 3 · 42 · 32r−2 + 43 · 33r−3

≡ 1 + 4 · 3r + 3 · 42 · 3r+1 + 43 · 3r+1

≡ 1 + 4 · 3r (mod 2 · 3r+1).

A similar argument shows that ord3r+1(11) = 2 · 3r.

Theorem 4.3. For k ≥ 1,Γ(3k, 11) has 2k+1 cycles. There are three 1-cycles and two cycles of
length 2 · 3r for 0 ≤ r ≤ k − 2.

Proof. The proof is by induction. By Theorem 3.4, there is a t-cycle in Γ(3k, 11) if and only if
there exists an even divisor d of λ(3k) = 2·3k−1 such that ordd(11) = t. The only even divisors of
2 ·3k−1 are 2 ·3r for 0 ≤ r ≤ k−1. We have ord2(11) = 1. By Lemma 4.2, ord2·3r(11) = 2 ·3r−1

for 1 ≤ r ≤ k − 1. Thus, A1(Γ(3
k, 11)) ≥ 1, A2·3r(Γ(3

k, 11)) ≥ 1 for 0 ≤ r ≤ k − 2, and
Ad(Γ(3

k, 11)) = 0 for all other positive divisors d of 2 · 3k−1. By Theorem 3.5, we have

At(Γ(n̂, k̂)) =
1

t

[ r̂∏
i=1

(
δi gcd(λ(p

αi
i ), k̂t − 1) + 1

)
−

∑
d|t, d ̸=t

dAd

(
Γ(n̂, k̂)

)]
.

Since n̂ =
∏r̂

i=1 p
αi
1 = 3k, we have r̂ = 1, p1 = 3, and α1 = k. Also, k̂ = 11 and δ1 = 1. Thus

At

(
Γ(3k, 11)

)
=

1

t

[
gcd

(
λ(3k), 11t − 1

)
+ 1−

∑
d|t, d̸=t

dAd

(
Γ(3k, 11)

)]
.

We have

A1

(
Γ(3k, 11)

)
=

1

1

[
gcd

(
λ(3k), 111 − 1

)
+ 1−

∑
d|1, d̸=1

dAd

(
Γ(3k, 11)

)]
=

[
gcd

(
2 · 3k−1, 10

)
+ 1− 0

]
= 2 + 1− 0 = 3

and

A2

(
Γ(3k, 11)

)
=

1

2

[
gcd

(
λ(3k), 112 − 1

)
+ 1−

∑
d|2, d̸=2

dAd

(
Γ(3k, 11)

)]
=

1

2

[
gcd

(
2 · 3k−1, 120

)
+ 1− 1 · A1

(
Γ(3k, 11)

)]
=

1

2
[6 + 1− 3] = 2.
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Suppose r ≥ 1 and A2·3i
(
Γ(3k, 11)

)
= 2 for all 0 ≤ i < r. We need to show A2·3r

(
Γ(3k, 11)

)
=

2. Since A3i
(
Γ(3k, 11)

)
= 0 for all 1 ≤ i ≤ r, we have

A2·3r
(
Γ(3k, 11)

)
=

1

2 · 3r
[
gcd

(
2·3k−1, 112·3

r−1
)
+1−1·A1

(
Γ(3k, 11)

)
−

r−1∑
i=0

2·3i·A2·3i
(
Γ(3k, 11)

)]
By Lemma 4.2, ord2·3r+1(11) = 2·3r and ord2·3r+2(11) = 2·3r+1. Thus, 112·3r ≡ 1 (mod 2·3r+1)

and 112·3
r+1 ≡ 1 (mod 2 · 3r+2), but 112·3r ̸≡ 1 (mod 2 · 3r+2). Hence, 2 · 3r+1 | (112·3r − 1),

but 2 · 3r+2 ∤ (112·3r − 1). Therefore, gcd
(
2 · 3k−1, 112·3

r − 1
)
= 2 · 3r+1. We have

A2·3r
(
Γ(3k, 11)

)
=

1

2 · 3r
[
2 · 3r+1 + 1− 1 · 3−

r−1∑
i=0

2 · 3i · 2
]

=
1

2 · 3r
[
2 · 3r+1 + 1− 3−

(22 · 3r − 22

3− 1

)]
= 2.

Thus, A1

(
Γ(3k, 11)

)
= 3 and A2·3r

(
Γ(3k, 11)

)
= 2, 0 ≤ r ≤ k − 2. So, by using addition

principle of counting, total number of cycles in Γ(3k, 11) = 3+2 + 2 + · · ·+ 2︸ ︷︷ ︸
(k−1) terms

= 2k+1. Hence,

there are (2k + 1) number of cycles in the digraph Γ(3k, 11), k ≥ 1.

Fig. 1 displays the digraph Γ(3k, 11) for k = 5. It illustrates that the number of cycles of
Γ(3k, 11) is 2 · 5 + 1 = 11.

Figure 1. Γ(35, 11)
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Lemma 4.4. Suppose k ≥ 2 and 1 ≤ r ≤ k−1. Then vertices 1+3r and −1+3r lie on different
cycles.

Proof. A binomial expansion yields

(1 + 3r)120 = 1 + 120 · 3r +
120∑
i=2

(
120

i

)
3ir ≡ 1 (mod 3r+1).

Thus,
(1 + 3r)11

2 ≡ 1 + 3r ̸≡ −1 + 3r (mod 3r+1).

Furthermore, we have

(1 + 3r)11 = 1 + 11 · 3r +
11∑
i=2

(
11

i

)
3ir ≡ 1 + 2 · 3r ̸≡ −1 + 3r (mod 3r+1).

Hence, (1 + 3r)11
s ̸≡ −1 + 3r (mod 3k) for any positive integer s. This complete the proof.

Theorem 4.5. Suppose k ≥ 2,m = ⌊k/2 − 1⌋, and 0 < r ≤ m. Then the sequences of vertices
given by

(
(1 + 3k−(r+1))11

s
: 0 ≤ s ≤ 2 · 3r

)
and

(
(−1 + 3k−(r+1))11

s
: 0 ≤ s ≤ 2 · 3r

)
are the

two cycles of length 2 · 3r in Γ(3k, 11). Also, the three 1-cycles are 0, 1, and −1.

Proof. It is clear 0, 1, and −1 are the three 1-cycles. A binomial expansion yields

(
1 + 3k−(r+1)

)n
= 1 + n · 3k−(r+1) +

n∑
i=2

(
n

i

)
3i(k−r−1).

Since i ≥ 2 and r ≤ k/2−1, we have i(k−r−1) ≥ 2k−2(r+1) ≥ k. Thus,
(
1+3k−(r+1)

)n ≡
1 + n · 3k−(r+1) (mod 3k). Let n = 11s. Then

(
1 + 3k−(r+1)

)11s ≡ 1 + 11s · 3k−(r+1) (mod 3k).
By Lemma 4.2, ord3r+1(11) = 2 · 3r. Thus, 112·3r ≡ 1 (mod 3r+1) and 11d ̸≡ 1 (mod 3r+1) for

every positive proper divisor d of 2 · 3r. Hence,
(
1 + 3k−(r+1)

)112·3r ≡ 1 + 3k−(r+1) (mod 3k)

and
(
1 + 3k−(r+1)

)11d ̸≡ 1 + 3k−(r+1) (mod 3k) for every positive proper divisor d of 2 · 3r.
Therefore, the sequence of vertices given by ((1 + 3k−(r+1))11

s
: 0 ≤ s ≤ 2 · 3r) is a cycle

of length 2 · 3r in Γ(3k, 11). A similar argument shows that the sequence of vertices given by(
(−1 + 3k−(r+1))11

s
: 0 ≤ s ≤ 2 · 3r

)
is a cycle of length 2 · 3r in Γ(3k, 11).

Conjecture 4.6. Suppose k ≥ 2,m = ⌊k/2 − 1⌋, and m < r ≤ k − 2. Then the sequences of
vertices given by

(
(1 + 3k−(r+1))11

s
: 0 ≤ s ≤ 2 · 3r

)
and

(
(−1 + 3k−(r+1))11

s
: 0 ≤ s ≤ 2 · 3r

)
are the two cycles of length 2 · 3r in Γ(3k, 11).

Note that, for k > 1, the digraph Γ(3k, 11) is classified into two subdigraphs Γ1(3
k, 11) and

Γ2(3
k, 11) , where Γ1(3

k, 11) is the subdigraph induced on the set of vertices a ∈ Z3k such that
gcd(a, 3k) = 1 and Γ2(3

k, 11) is the subdigraph induced on the set of vertices a ∈ Z3k such that
gcd(a, 3k) ̸= 1. Clearly, the vertices 1 and 3k − 1 (or −1) are the vertices of Γ1(3

k, 11) and the
vertex 0 is always a vertex of Γ2(3

k, 11). Clearly, 0, 1 and −1 are the fixed points of the digraph
Γ(3k, 11). Also, Γ1(3

k, 11) ∪ Γ2(3
k, 11) = Γ(3k, 11) and Γ1(3

k, 11) ∩ Γ2(3
k, 11) = ∅.
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Theorem 4.7. Suppose k ≥ 2. The digraph Γ(3k, 11) is a directed rooted in-tree with root 0. The
in-degree of the root 0 is 3k−⌈k/11⌉−1. Let k1 = ⌈(⌈k/11⌉)/11⌉ and k2 = ⌊(k−1)/11⌋. Then the
number of branch points (non-leaf vertices adjacent to the root 0) in Γ2(3

k, 11) is given below:

• If k ≤ 11, then Γ2(3
k, 11) has no branch points.

• If k > 11, then the number of branch points in Γ2(3
k, 11) is

2 · 3k−11k2−1 ·
(
311(k2−k1+1) − 1

)
/(311 − 1).

Furthermore, if k > 11, the number of leaves adjacent to the root 0 is

3k−⌈k/11⌉ − 1− 2 · 3k−11k2−1 ·
(
311(k2−k1+1) − 1

)
/(311 − 1).

Proof. Since every vertex v in Γ2(3
k, 11) is divisible by 3, there exist integers i and t such that

v = 3it, i ≥ 1, 1 ≤ t ≤ 3k−i and gcd(3, t) = 1. Let ℓ = ⌈log11 k⌉. Then 11ℓ ≥ k. Thus
v11

ℓ ≡ 3i11
ℓ
t11

ℓ ≡ 0 (mod 3k). Hence, Γ(3k, 11) is a directed rooted in-tree with root 0.
Suppose 3it is a vertex of Γ2(3

k, 11) such that ⌈k/11⌉ ≤ i ≤ k−1 and t is an integer satisfying
1 ≤ t < 3k−i and gcd(3, t) = 1. Since i < k, 3it is not the root 0. Also, since i ≥ ⌈k/11⌉, we
have i ≥ k/11. Thus, (3it)11 ≡ 311it11 ≡ 0 (mod 3k). Hence, 3it is adjacent to the root 0. On
the other hand, if i < ⌈k/11⌉, then 11i < 11(⌈k/11⌉ − 1) < k. Thus, 3it is not adjacent to the
root 0. Hence, for fixed ⌈k/11⌉ ≤ i ≤ k − 1, the number of distinct vertices of the form 3it

adjacent to the root 0 is ϕ(3k−i) = 2 · 3k−i−1. Therfore, the number of vertices adjacent to the
root 0 is

k−1∑
i=⌈k/11⌉

ϕ(3k−i) =
k−1∑

i=⌈k/11⌉

2 · 3k−i−1 = 3k−⌈k/11⌉ − 1.

Suppose vertex 3it is adjacent to the root 0 where ⌈k/11⌉ ≤ i ≤ k − 1, 1 ≤ t < 3k−i and
gcd(3, t) = 1. If 11 | i, then i = 11j for some integer j such that ⌈k/11⌉ ≤ 11j ≤ k − 1.
Then k1 ≤ j ≤ k2. Since gcd(11, ϕ(3k−11j)) = gcd(11, 2 · 3k−11j−1) = 1, the mapping x 7→ x11

(mod 3k−11j) is an automorphism of U(3k−11j). So, there exists an integer s in U(3k−11j) such
that s11 ≡ t (mod 3k−11j). Thus, (3js)11 ≡ 3it (mod 3k). Hence, 3it is a branch point of
Γ2(3

k, 11). On the other hand, if 11 ∤ i, then there is no vertex 3js such that (3js)11 ≡ 3it

(mod 3k). Thus, 3it is a leaf.
If k ≤ 11, then every vertex of the form 311jt, where j is a positive integer, is the root 0. Thus,

Γ2(3
k, 11) has no branch points. On the other hand, if k > 11, we observe that the list of vertices

of the form 311jt, where k1 ≤ j ≤ k2, 1 ≤ t ≤ 3k−11j and gcd(3, t) = 1, is a list of the distinct
branch points of Γ2(3

k, 11). Hence, the number of branch points of Γ2(3
k, 11) is

k2∑
j=k1

ϕ(3k−11j) =

k2∑
j=k1

2 · 3k−11j−1 = 2 · 3k−11k2−1 ·
(
311(k2−k1+1) − 1

)
/(311 − 1).

Also, if k > 11, the number of leaves adjacent to the root 0 is

3k−⌈k/11⌉ − 1− 2 · 3k−11k2−1 ·
(
311(k2−k1+1) − 1

)
/(311 − 1).
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Figures 2(a) and 2(b) display the digraph Γ2(3
k, 11) for k = 12 and k = 13. They illustrate

that the vertices of Γ2(3
k, 11) form a directed rooted in-tree with root at 0 and have 2 · 3k−12

branch points in the case when 11 < k ≤ 22.

(a) Γ2(3
12, 11)

(b) Γ2(3
13, 11)

Figure 2. Digraph Γ2(3
k, 11) for k = 12 and k = 13

Note. We have observed that the digraph Γ(3k, 11) has a subdigraph Γ1(3
k, 11) that consist of two

1-cycle and two cycles of length 2 · 3r for each 0 ≤ r ≤ k − 2, and a subdigraph Γ2(3
k, 11) that

is a directed rooted in-tree with root 0. For an odd prime q < 11, we tried to determine for which
values of q does the digraph Γ(qk, 11) have a structure similar to that of Γ(3k, 11). We were able
to show that the digraph Γ(7k, 11) has three 1-cycles, two 2-cycles, four cycles of length 3 · 7r,
0 ≤ r ≤ k − 2, four cycles of length 6 · 7r, 0 ≤ r ≤ k − 2 and a directed rooted in-tree with root
0. First we show that ord2·7r(11) = 3 · 7r−1 and ord6·7r(11) = 6 · 7r−1 for 1 ≤ r ≤ k − 1.

Lemma 4.8. Suppose k ≥ 2 and 1 ≤ r ≤ k − 1. Then ord2·7r(11) = 3 · 7r−1 and ord6·7r(11) =

6 · 7r−1.

Proof. We show that ord6·7r(11) = 6 · 7r−1. The proof that ord2·7r(11) = 3 · 7r−1 is similar, and
we leave the details of the proof to the reader. It is easy to check that ord6·71(11) = 6 · 70. So,
we assume r ≥ 2. We need to show that 116·7r−1 ≡ 1 (mod 6 · 7r) and 11d ̸≡ 1 (mod 6 · 7r) for
every positive proper divisor d of 6 · 7r−1.

We use induction to show that 116·7r−1 ≡ 1 (mod 6 · 7r) and 116·7
r−2 ≡ 1 − 12 · 7r−1

(mod 6 ·7r) for r ≥ 2. A calculation verifies that 116·71 ≡ 1 (mod 6 ·72) and 116·7
0 ≡ 1−12 ·71

(mod 6 ·72). Suppose we have 116·7r−1 ≡ 1 (mod 6 ·7r) and 116·7
r−2 ≡ 1−12 ·7r−1 (mod 6 ·7r)

for r ≥ 2. By Lemma 4.1, we have 116·7r ≡ 17 ≡ 1 (mod 6 ·7r+1) and 116·7
r−1 ≡ (1−12 ·7r−1)7

(mod 6·7r+1). Since 7i ≡ 7 (mod 6·7) for i ≥ 1, we have 7i ≡ 7r+1 (mod 6·7r+1) for i ≥ r+1.
A binomial expansion yields:
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(1− 12 · 7r−1)7 ≡ 1− 12 · 7r + 3 · 12 · 72r−1 +
7∑

i=3

(
7

i

)
(−1)i · 22i · 3i · 7ir−i

≡ 1− 12 · 7r + 6 · 6 · 7r+1 +
7∑

i=3

(
7

i

)
(−1)i · 22i−1 · 3i−1 · 6 · 7r+1

≡ 1− 12 · 7r (mod 6 · 7r+1).

Thus, 116·7r−1 ≡ 1− 12 · 7r (mod 6 · 7r+1).
Since every proper divisor of 6 · 7r−1 divides either 3 · 7r−1, 2 · 7r−1, or 6 · 7r−2, it suffices

to show that 11d ̸≡ 1 (mod 6 · 7r) for d ∈ {3 · 7r−1, 2 · 7r−1, 6 · 7r−2}. We have already
verified that 116·7r−2 ≡ 1 − 12 · 7r−1 ̸≡ 1 (mod 6 · 7r). Since 11 ≡ −1 (mod 6), we have
113·7

r−1 ≡ (−1)3·7
r−1 ≡ −1 ̸≡ 1 (mod 6). Thus, 113·7r−1 ̸≡ 1 (mod 6 · 7r). By Fermat’s Little

Theorem, 117 ≡ 11 (mod 7). Thus 117i ≡ 11 (mod 7) for i ≥ 1. Hence, 112·7r−1 ≡ 112 ̸≡ 1

(mod 7). Therefore, 112·7r−1 ̸≡ 1 (mod 6 · 7r).

Remark 4.9. One may use Lemma 4.1 to show 113·7
r−1 ≡ 1 + 4 · 7r (mod 6 · 7r).

Theorem 4.10. For k ≥ 1,Γ(7k, 11) has 8k − 3 cycles. There are three 1-cycles, two 2-cycles,
four cycles of length 3 · 7r for 0 ≤ r ≤ k − 2, and four cycles of length 6 · 7r for 0 ≤ r ≤ k − 2.

Proof. The proof is by induction. By Theorem 3.4, there is a t-cycle in Γ(7k, 11) if and only if
there exists an even divisor d of λ(7k) = 6·7k−1 such that ordd(11) = t. The only even divisors of
6·7k−1 are 2·7r and 6·7r for 0 ≤ r ≤ k−1. We have ord2(11) = 1 and ord6(11) = 2. By Lemma
4.8, ord2·7r(11) = 3 ·7r−1 and ord6·7r(11) = 6 ·7r−1 for 1 ≤ r ≤ k−1. Thus A1(Γ(7

k, 11)) ≥ 1,
A2(Γ(7

k, 11)) ≥ 1, A3·7r(Γ(7
k, 11)) ≥ 1 and A6·7r(Γ(7

k, 11)) ≥ 1 for 0 ≤ r ≤ k − 2. Also,
A7r(Γ(7

k, 11)) = 0 and A2·7r(Γ(7
k, 11)) = 0 for 1 ≤ r ≤ k − 1, A3·7k−1(Γ(3k, 11)) = 0, and

A6·7k−1(Γ(3k, 11)) = 0. By Theorem 3.5, we have

At

(
Γ(n̂, k̂)

)
=

1

t

[ r̂∏
i=1

(
δigcd

(
λ(pαi

i ), k̂t − 1
)
+ 1

)
−

∑
d|t,d̸=t

dAd

(
Γ(n̂, k̂)

)]
.

Since n̂ =
∏r̂

i=1 p
αi
i = 7k, we have r̂ = 1, p1 = 7, and α1 = k. Also, k̂ = 11 and δ = 1. Thus

A1

(
Γ(7k, 11)

)
=

1

1

[
gcd

(
λ(7k), 111 − 1

)
+ 1−

∑
d|1,d ̸=1

Ad

(
Γ(7k, 11)

)]
=

[
gcd(6 · 7k−1, 2 · 5) + 1− 0

]
= 2 + 1− 0 = 3,

A2

(
Γ(7k, 11)

)
=

1

2

[
gcd

(
λ(7k), 112 − 1

)
+ 1−

∑
d|2,d ̸=2

Ad

(
Γ(7k, 11)

)]
=

1

2

[
gcd(6 · 7k−1, 23 · 3 · 5) + 1− 1 · 3

]
=

1

2
[6 + 1− 3] = 2,
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A3

(
Γ(7k, 11)

)
=

1

3

[
gcd

(
λ(7k), 113 − 1

)
+ 1−

∑
d|3,d̸=3

Ad

(
Γ(7k, 11)

)]
=

1

3

[
gcd(6 · 7k−1, 2 · 5 · 7 · 19) + 1− 1 · 3

]
=

1

3
[14 + 1− 3] = 4,

A6

(
Γ(7k, 11)

)
=

1

6

[
gcd

(
λ(7k), 116 − 1

)
+ 1−

∑
d|6,d̸=6

Ad

(
Γ(7k, 11)

)]
=

1

6

[
gcd(6 · 7k−1, 23 · 32 · 5 · 7 · 19 · 37) + 1− 1 · 3− 2 · 2− 3 · 4

]
=

1

6
[42 + 1− 3− 4− 12] = 4.

Suppose r ≥ 1 and A3·7i(Γ(7
k, 11)) = 4 for all 0 ≤ i < r. We need to show A3·7r(Γ(7

k, 11) =

4. Since A7i(Γ(7
k, 11)) = 0 for all 1 ≤ i ≤ r, we have

A3·7r
(
Γ(7k, 11)

)
=

1

3 · 7r
[
gcd

(
6·7k−1, 113·7

r−1
)
+1−1·A1

(
Γ(7k, 11)

)
−

r−1∑
i=0

3·7i·A3·7i
(
Γ(7k, 11)

)]
.

By Lemma 4.8, ord2·7r+1(11) = 3 · 7r and ord2·7r+2(11) = 3 · 7r+1. Thus, 113·7r ≡ 1

(mod 2 · 7r+1) and 113·7
r+1 ≡ 1 (mod 2 · 7r+2), but 113·7r ̸≡ 1 (mod 2 · 7r+2). Hence, 2 · 7r+1 |

(113·7
r −1), but 2 ·7r+2 ∤ (113·7r −1). Since 113·7r ≡ (−1)3·7

r−1 ≡ −1 (mod 3), 3 ∤ (113·7r −1).
Therefore, gcd(6 · 7k−1, 113·7

r − 1) = 2 · 7r+1. We have

A3·7r(Γ(7
k, 11)) =

1

3 · 7r
[
2 · 7r+1 + 1− 1 · 3−

r−1∑
i=0

3 · 7i · 4
]

=
1

3 · 7r
[
2 · 7r+1 + 1− 3−

(3 · 4 · 7r − 3 · 4
7− 1

)]
= 4.

By Lemma 4.8, ord6·7r+1(11) = 6 · 7r and ord6·7r+2(11) = 6 · 7r+1. Thus 116·7r ≡ 1 (mod 6 ·
7r+1) and 116·7

r+1 ≡ 1 (mod 6·7r+2), but 116·7r ̸≡ 1 (mod 6·7r+2). Hence. 6·7r+1 | (116·7r−1),
but 6 · 7r+2 ∤ (116·7r − 1). Therefore, gcd(6 · 7k−1, 116·7

r − 1) = 6 · 7r+1.
Suppose, r ≥ 1 and A6·7i(Γ(7

k, 11)) = 4 for all 0 ≤ i < r. We need to show A6·7r(Γ(7
k, 11)) =

4. Since A7i(Γ(7
k, 11)) = 0 and A2·7i(Γ(7

k, 11)) = 0 for all 1 ≤ i ≤ r, we have

A6·7r
(
Γ(7k, 11)

)
=

1

6 · 7r
[
gcd

(
6 · 7k−1, 116·7

r − 1
)
+ 1− 1 · A1

(
Γ(7k, 11)

)
− 2 · A2

(
Γ(7k, 11)

)
−

r∑
i=0

3 · 7i · A3·7i
(
Γ(7k, 11)

)
−

r−1∑
i=0

6 · 7i · A3·7i
(
Γ(7k, 11)

)]
=

1

6 · 7r
[
6 · 7r+1 + 1− 1 · 3− 2 · 2−

r∑
i=0

3 · 7i · 4−
r−1∑
i=0

6 · 7i · 4
]

=
1

6 · 7r
[
6 · 7r+1 + 1− 3− 4− (2 · 7r+1 − 2)− (4 · 7r − 4)

]
= 4.

Thus, the number of cycles in Γ(7k, 11) is 3 + 2 + 4(k − 1) + 4(k − 1) = 8k − 3.
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Theorem 4.11. Suppose k ≥ 2. The digraph Γ(7k, 11) is s directed rooted in-tree with root 0.
The in-degree of the root 0 is 7k−⌈k/11⌉ − 1. Let k1 = ⌈(⌈k/11⌉)/11⌉ and k2 = ⌊(k − 1)/11⌋.
Then the number of branch points (non-leaf vertices adjacent to the root 0) in Γ2(7

k, 11) is given
below:

• If k ≤ 11, then Γ2(7
k, 11) has no branch points.

• If k > 11, then the number of branch points in Γ2(7
k, 11) is

6 · 7k−11k2−1 ·
(
711(k2−k1+1) − 1

)
/(711− 1).

Furthermore, if k > 11, the number of leaves adjacent to the root 0 is

7k−⌈k/11⌉ − 1− 6 · 7k−11k2−1 ·
(
711(k2−k1+1) − 1

)
/(711 − 1).

Proof. The proof is similar to the proof of Theorem 4.7.

5 Conclusion

In this paper, we have studied the cyclic vertices and components of the digraph Γ(qk, p) with
respect to congruence ap ≡ b (mod qk), with p = 11 and q = 3, 7. We have also enumerated
cycles and components of the digraph Γ(qk, p) for q = 3, 7. We proved that for the pair q = 3

and p = 11, the digraph Γ(qk, p) has a subdigraph Γ1(q
k, p) that consists of (q − 1) cycles of

length 1 and (q− 1) cycles of length (q− 1) · qr for each integer 0 ≤ r ≤ k− 2, and a subdigraph
Γ2(q

k, p) that is a directed rooted in-tree with root 0. For p = 11, we tried to investigate the other
primes q, for which the graph has the above structure. We found that for q = 7, along with some
other components the digraph Γ(qk, p) has 4 cycles of length 6 · 7r, 0 ≤ r ≤ k − 2. Therefore,
for p = 11 we found that there is no odd prime q ̸= 3 with q < 11 that could ensure a structure
similar to Γ(3k, 11). However, the existence of other pairs of odd primes (p, q), q < p for which
the digraph Γ(qk, p) has similar structure with Γ(3k, 11) could be a part of future investigations.
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