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1 Introduction

Balancing numbers were introduced by Behera and Panda in 1999 [2]. For n € N, a balancing
number is defined as follows

I+2+-4+m—-1D)=0+D)+0+2)+ -+ (n+7),

for some € N. For any positive number n, the balancing numbers { B,, }°° , satisfy the recurrence
relation
Bn+1 - 6Bn - Bn—h n Z 17

with initial conditions By = 0, B; = 1 (see [9]).
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In 2015, Ray studied balancing and Lucas-balancing sums by matrix methods [17]. In [6],
Frontczak obtained an interesing general hybrid convolution identity involving balancing and
Lucas balancing numbers. Also, he studied sums of balancing and Lucas-balancing numbers
with binomial coefficients (see [7]).

For any integers n > 1 and k£ > 0, let ®(n) and oy (n) be the Euler Phi function and the
sum of the k-th powers of the divisors of n, respectively. In [4], solutions to some Diophantine
equations about these functions of balancing and Lucas-balancing numbers are discussed. Also,
balancing polynomials which were also applied to coding theory were introduced by Frontczak
in 2019 [8]. There are many works devoted to study of the generalized balancing numbers, for
example see [11,13].

In [19], Stakhov introduced the Fibonacci code which is used in source coding, as well as in
cryptography. Many authors have studied the generalized Fibonacci sequence and coding theory
(see [1,5,10,12,15,18]). In [14] an encoding and decoding techinque based on the matrices 7™
was introduced, where
Bny1 —Bg

B, —B,,

T =

Prasad [16] introduced a matrix, whose elements are balancing polynomials, and developed
a new coding and decoding method following from it. Here, by using the generalized balancing
sequence matrix, we give a coding and decoding method.

In Section 2, we define the generalized balancing sequence and its matrix. Also, we get
the n-th power of its matrix and inverse, respectively. These are employed as the encoding and
decoding matrices. Sections 3 and 4 are devoted to obtain some codes by using the generalized
balancing matrix.

2 The generalized balancing sequence

In this section, we define the generalized balancing sequence. Then we give some useful results
which be used later.

Definition 2.1. For m > 3, the generalized balancing sequence { By, , }72 is defined by
Byn =681 —Bnna—""—Bnn-m, n>m,
with initial conditions By, o = Bp,1 = -+ = By, ;m—2 = 0and By, ;-1 = 1.
For example, when m = 3, we have {Bs,,}2°, = {0,0,1,6,35,203,1177,...}.

Definition 2.2. For m > 3, let (),,, be an m x m generalized balancing matrix that is defined as

follows i i
6 -1 -1 -~ =1 -1

1 0 o0 -~ 0 0

Qn=10 1 0 0 0
00 0 1 0]




For example

6 —1 —1
Qs= 1|1 0 0
0 1 0
Let
Bm,71,+7n—1 *(Bm,n + -+ B7n,n+m—2) *(Bm,,n+1 + -+ Bm,71,+7n—2) Tt *Bm,n-&-m—Q
Bm,n+m—2 _(Bm,n—l R Bm,n+m—3) _(Bm,n + -+ Bm,n+m—3) Tt _Bm,n+m—3
Wm’n = Bm,n+m73 _(Bm,n72 + -+ Bm,n+m74) _(Bm,nfl + -+ Bm7n+m74) e _Bm,n+m74
Bm,n _(Bm,n—m+l + -+ Bm;ﬂ—l) _(Bm7n—m+2 + -+ Bm,n—l) e _Bmm—l

where B, ,, is the element of the generalized balancing sequence.
Theorem 2.1. For n > 2 and m = 3, we have

Bsnio  —(Bspy1+ Bsn)  —DBsatr
Qg = B3,n+1 _(B3,n + BS,n71> _B3,n = WS,na
Bs, —(Bsn-1+ Bsn—2) —Bsn_1

where
6 —1 -1
Qs=11 0 0
0 1 0

Proof. By using the induction method on n, setting n = 2 and by Definition 2.2, we have

6 -1 —1|[6 -1 —1 35 —7 —6
Q=11 0 0|1 0 O0|=1]6 -1 —1|="Ws,.
01 0]]o 1 o0 1 0 0

Now, suppose that the statement holds for n = k. Therefore, for n = k + 1 we have

6 —1 —1| |Bskte —(Bsgi1+ Bsi) DBsria
(@)'=11 0 0 Bsyy1  —(Bsg+ Bsi—1)  Bsy
0 1 0 Bsp —(Bsg—1+ Bsj-a) Bsjp1

-B3,k+3 —(Bsji2+ Bs 1) Bsjpto
= |Bsjra —(Bsg+1+ DBsk)  Bsgr1| = Wajpqr. O
| Bsp+1 —(Bsg+ Bsg+1)  Bsg

Now, we are ready to generalize the idea of the n-th power of the matrix ()3 to the n-th power
of the matrix @Q),,(m > 3). Here, we calculate the n-th power of this matrix, denoted by Q7.

Lemma 2.1. For m > 3, we have QM ' = Wm—1-

Proof. Let v} and w! be the i-th rows of Q! and W, ;, by the Definitions 2.1 and 2.2, we have
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and

Then v} = wi and vj = wi. Also

and

—1 -1 -1
0 0 0
0 0 0
0 10|

- ZZ}Q Bm,1+i
m—3
Zi:O Bm,l-‘ri
m—4
Zizfl Bm,1+i
Z'_:lferQ Bm,lJri
_Bm,mfl_
0
0
0 —
221712 Bm,2+i
2?;_03 Bm,2+i

—1
i=—m+2 Bma2+i

_<Bm,m—1 + Bm,m) _<Bm,m—1 + Bm,m)

6 —1
1 0
QL =Qn=10 1
0 0
Bm,m - Zjiaz Bm,1+i
Bm,m—l - Z;i:gl Bm,l—i—i
Bm,mf2 - 22142 Bm,lJri
L Bm,l - i_:lferl Bm,lJri
Bm,m _Bm,mfl _Bm,mfl
Bm,mfl 0 0
0 0 0
0 0 0
6 —1 —1 —1 1]
1 0 0 0 O
0 1 0 0 O
0 0 0 10|
[ Bm,m 2262 Bm,2+i
Bm,mfl - 2?;131 Bm,2+i
Bm,m—2 Z:Z__Zlg Bm,2+i
B, . .B
m,1 - i=—m+1 Pm,2+1i
Bm,m+1
Bm,m—l _Bm,m—l
Bm,m—l 0
0 0
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an,:meQm

Then v? = w?, v3

6 —1 —1 -1 -1
1 0 0 0 0
=10 1 O 0 0
0 0 0 10|
[ Bm,m Bm,m—l _Bm,m—l Bm,m—l _Bm,m—l-
Bm,m—l 0 0 0 0
X 0 1 0 0 0
0 0 0 1 0 |
_GBm,m - Bm,mfl _6Bm,mfl —1 _6Bm,mfl —1 _6Bm,m71_
Bm,m _Bm,mfl _Bm,mfl _Bm,mfl
_ Bonm-1 0 0 0
] 0 0 1 0
Bm,m+1 _(Bm,m—l + Bm,m) _(Bm,m—l + Bm,m) _Bm,m ]
Bm,m—l _Bm,m—l _Bm,m—l _Bm,m—l
— | Brmer 0 0 0
0 0 0 0 |

= v} = w} = w3 and v = vd = w) = w3. By continuing the above process,

m — 3 times, the lemma is proved.
Theorem 2.2. For m > 3 andn > m — 1, we have Q,, = W,, .

Proof. By Lemma 2.1, we have
Q%il - Wm,mfl-

Then by induction on n, we get

(Q )n+1
m
6 -1 —1 —1 —1]
1 0 0 0 0
=10 1 0 0 O
0 0 0 1 0
_Bm,n+m—1 *(Bm,n +---+ Bm,n+m—2) *(Bm,n—kl + -+ Bm,n+m—2)
B7n,n+m—2 _(Bm,n—l + -+ Bm,n+m—3) _(Bm,n + -+ B77L,7L+77L—3)
X Bm,n+m73 _(Bm,n72 + -+ Bm,n+m74) _(Bm,nfl + -+ Bm7n+mf4)
L Bm,n _(Bm,n—m—i-l + -+ Bm,n—l) _(Bm,n—m-‘rQ R Bm,n—l)
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_B7n,n+m—3
_Bm7n+m74

_Bm,n—l
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Bm,7z+7rz _(Bm,n+1 + -+ Bm,n—&-m—l) _(Bm,n+2 + -+ Bm,n-i—m—l) e _Bm,n—i-m—l

Bm,n«kmfl _(Bm,n + -+ Bm,n+mf2) _(Bm,nJrl + -+ Bm7n+mf2) e _Bm,n+mf2
= Bm,n+m72 _(Bm,nfl +-+ Bm,n+m73) _(Bm,n + -+ Bm,n+m73) T _Bm,n+m73
Bm,nJrl _(Bm,n7m+2 +---+ Bm,n) _(Bm,nferB +---+ Bm,n) o _Bm,n
= Wmmn+1: ]

Example 2.1. We have

By —(Bys+ Baa+ Bys) —(Bis+ Bsa) —Bags 203 —42 —41 =35
Q8 = Bys —(Bya+ Bis+ Bys) —(Bya+ Bss) —Baa _ 3% -7 -7 -6

Bys —(Bays+ Big+ Bs1) —(Bus+ Bs2) —DBags 6 -1 -1 -1

Bys —(Baa+ Big + Bag) —(Baz+ Biy) —Bap 1 0 0 0

Now, we can get the following corollary from Theorem 2.2.
Corollary 2.1. The determinant of W, ,, is equal to (—1)™".
Proof. By Theorem 2.2, we have det W, ,, = det Q"", = (—1)™". O
Lemma 2.2. Let gp(,) be the generating function of the generalized balancing sequence. Then

xmfl

IB@D T 6rr a2t tam M
Proof. Let gp(,) be the generating function of the generalized balancing sequence. We have
9B(z) = i By 2"
n=1
= B+ Bm72x2 + e+ Bm,m_lxm_l + f: B, 2"
=a" !+ i (6Byn1— Bmn-os—— Bunm)"
="y i 65, n—12" — i B poz" — - — i B n—ma"
= 2" 4 62 f: B, " — x? i By x" = —a™ i B, ,x"
n=1 n=1 n=1
= 2™+ 629p@) — T9B@) — T IB@) —  — 2" GB@)-
Thus,
9B(z) = o : O

1 -6z 4224 +2am

Theorem 2.3. The generalized balancing sequence {B,,,}°, has the following exponential

representation
>® i
m— €T 1
9B(x) = 1€XPZI:7(6—CC—-..—SC Y, 2)

where m > 3.
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Proof. By using (1), we have

ln—gB(xi =—In(l -6z 42>+ +2™).
-
Since
1
—1n(1—6x+:1:2+---—|—xm):—[—33(6—33—---—957”’1)—§x2(6—x—~--—xm’l)2
1
_ . pen 6_ - m—1\n __
(6= ],
we get the result. [
Let K (ki, ko, ..., k,) beav X v companion matrix as follows
kl k2 kv—l kv
10 - 0 0
K(ky, ko, ... k) =
o o0 - 1 0

Theorem 2.4 (Chen and Louck, [3]). The (i,j) entry ki'j(ki,ky,...,k,) in the matrix
K"(ky, ko, ..., ky) is given by the following formula

k(R K,

= Y bttt tle fhtlt -+l
T th+ta+ ...+, tita, ..ty

>k§1...k§v, 3)

(t1,t2,.tw)

where the summation is over nonnegative integers satisfying t; + 2to + - -- +vt, = n — 1+ J,

ity + Aty (Ll t -+ 1y)!
tita, .ty tilts! .t

is a multinomial coefficient, and the coefficients in (1) are defined to be 1 if n =i — j.
According to Theorem 2.4, we can obtain following result.

Corollary 2.2. For the generalized balancing sequence {B,, ,, }2°, we have
. t1+t2‘|‘"‘+tm t tot-+t

Bm o = 601 (—1)%2 m

(Z) ' Z < t17t27"'7tm ) ( )
(t1,t2, tm)
where the summation is over nonnegative integers satsfying t1 + 2to +-- -+ mt,, =n —m — 1.
t t t I

(i)  Bun=-— 3. " ( Ll m) 61 (— 1)t

t1+t2++tm t17t27"'7tm

(t,t2, tm)

where the summation is over nonnegative integers satsfying t| + 2t + - - - +mt,, = n + L

Proof. (i) By Theorem 2.2, for m > 3 and n > m — 1, we have W, ,, = Q7. On the other hand,
the (m, 1) entry in the matrix W, , is By, . Then for i = m and j = 1, by Theorem 2.4, we
obtain
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Bun= Y bt tat ottt (t1 +t2+...+tm>6t1(_1)t2+.‘.+tm
(t1st2,est )t1+t2+.”+tm tita, o tm

_ Z t1+t2—|—...+tm 6t1<_1)t2+"'+tm.
) t17t27'

o tm
(t1,t2, tm !

For the proof of (ii), we know that the (m — 1,m) entry in the matrix W} is — B, ,,. Then for
1 =m — 1 and 5 = m, by Theorem 2.4, we obtain

—Bpn = Z tm (tl +lo+---+ tm) 6l (—1)ttFtm,
titto+ - +tn \ t1, lo,..., Iy
(t1,t2,....tm)

This completes the proof of corollary. [

3 Blocking method on the generalized balancing matrix

Here, we construct a blocking method by using the generalized balancing matrix. For this, we
consider P as a message matrix of order 3m and explain the symbols of this coding method. For
1 <i < m?, we present E; and C; as follows

E;:=le, el egl, Ci = |} & ¢
€7 €g €y G G Gy

For the blocking matrix P, we pursue the following five steps.

e Step 1. The matrix P is divided into submatrices C;(1 < i < m?) of 3 x 3 from left to right.
Note that if the number of entries are less, then the rest of the entries are set to zero.
e Step 2. We define c and n such that c is the number of C;s and we get n by the following relation:
2, ife<A4,
n= i
5], ife>4
e Step 3. By using Table 1, we obtain ¢!, 1 < s < 9.
e Step 4. For 1 < i < m?, we get determinant C; and denote by d;.
e Step 5. Construct the block matrix W := [d;, ¢.|sc11,2,4,5,6,7,8,9}-

S

Now, we get the decoding matrix by pursuing the following four steps.

e Step 1. We calculate ()% and put following relations:

Bsnio  —(Bsps1+ Bsn)  —Bsnin ap az as
Q5 = |Bsny1  —(Bsn+ Bspn-1) —Bs, | = |aa a5 ag
B3, —(Bsn-1+ Bsn-2) —Bs,_1 ar ag Gy

510



e Step 2. For 1 < i < m?, let
cya1 + craq + cgar — ey,
Cyap + csas + cgag — ex,
c4a3 + Cyag + Cgag — e,
Cra1 + cgay + cyar — ez,
Cray + cgas + cyag — eg,
crag + Cgag + Cog — €.

e Step 3. For 1 < i < m?, we get d;

d; = (a1 + cyaq + yiar)(eseq — egeg) — (clag + chas + yias)(ejey — eget)
+ (clas + cyae + yiag)(ejeg — exer).
e Step 4. We put y; = ¢4 and construct C;. Thus, we obtain the message P.

Example 3.1. Let a message P be

“mathematics is beautiful and the mother of sciences”.

We have ~ _
m a t h e m a t 1
c s 01 s 0 b e a
u t ¢t f u L 0 an
d 0t h e 0 m ot
P=1h e r 0 o f 0 s cf|,
1 en c e s . 00
0O 00O0OO0OO0O O O0O0
0O 0O0OO0OO0OO0O O O0O0
0O 0O0O0OO0OO0O O O0TO0
and submatrices C;, 1 < i < 9, are as follows
(‘m a t (h e m [0 t i
Ci=]c s 0], Co=11 s 0}, Cs=1|b al,
KR _f u 0 a n
(d 0 t (h e 0] ‘m o t
Ci=1|h e 1|, Cs=10 o f], Ce=10 s ¢,
1 e n c e s 00
[0 0 0 (0 0 0 (0 0 0
Cr;=10 0 0f, Cs=10 0 0Of, Co=10 0 0
000 00 0 000

By noting that 1 < i <9, we get c = 9 and n = 3. So, by using Definition 1.1 and Table 1, we

have
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‘m a t 16 4 h e m 11 8 16
Ci=1c s 0 6 22 2 Co=17 s 0| =112 22 2
| u t 24 23 12 _f T 9 24 15
_atz- (4 23 12 (d 0 t 7 2 23
Cs3=1|b al =15 8 4], Ci=|h e r| =111 8 21},
_O a n| _2 4 17 _z’ e n 12 8 17
(hoe 0] [11 8 2 [(m o ¢ 16 18 23
Cs=10 o f|l =12 18 9], Ce=10 cl =12 22 6
¢ e s] _6 8 22 - 0 3 2 2
[0 0 o] [3 3 3] (0 0 0 33 3
C:=10 0 0| =13 3 3], Cs=10 0 0| =13 3 3],
000 [333 000 [333
[0 0 0] [3 3 3]
Co=10 0 0| =13 3 3
000 [333
We calculate det(C;) := d;, fori=1,2,...,0.
dy = —5578 = 22 (mod 28),  dy =26 (mod 28),  ds = 17 (mod 28),
ds = 2 (mod 28), ds = 16 (mod 28), dg = 10 (mod 28),
d7 = 0 (mod 28), ds = 0 (mod 28), dg = 0 (mod 28).
Then, by Step 5, we have the block matrix W :
(22 16 4 6 22 2 24 13 12]
26 11 8 12 22 2 9 24 15
17 4 23 5 &8 4 2 4 17
2 7 2 11 8 21 12 8 17
W=116 11 8 2 18 9 6 & 22
10 16 18 2 22 6 3 2 2
o 3 3 3 3 3 3 3 3
o 3 3 3 3 3 3 3 3
o 3 3 3 3 3 3 3 3
Now, we get decoding. Since n = 3, we have
33,5 —(3374+B3’3> —33,4 203 —41 -35 a; Qg asg
ng B3,4 —(3373+B3’2) —3373 = 35 —7 —6 — ay a5 Qg
Bss —(Bs2+ Bsi1) —Bso 6 -1 -1 ar; ag ag
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For1l <1 <9, we obtain

ey = 2000, ei=—402, e5=—344, e} =>5749, ef=—1157, ey = —990,
e] =3218, e =—0648, ef=—554, e =2757, e5=—552, e5=—4T4,
;} 1319, ef = —265, ef=—227, =648, e5=—127, e5=—111,
€; =2639, i =528, e5=—454, e1=2818, 3= —565 e5= —485,
e? =1090, el =217, e2=-187, €5 =1630, e}=—-324, ej= —280,
e§ =1212, €S =-242, b =-208, €5=691, ef=-139, ef=—119,

el =732, el=—147, ef=-126, el=732, ef=—147, ef=—126,

e} =732, ef=-—147, 8= -126, =732, ef =147, e§=—126,

el =732, el =-147, eg=-126, € =732, eg=—147, ej=—126.

For1 <1 <9, by using
d; = (¢ ay + chay + ysar)(ebely — ebes) — (chag + chas + yiag)(ehey — ekel)

+ (clas + chag + yiag)(eles — ekel),
we get

y1 =23, yo =16, y3 =12, ys = 23, y5 = 2, y¢ = 23, y7 =3, ys = 3, yg = 3.

We put
y1:c§:23,y2:c§:16,y3:c§:12,y4—c3—23,y5—03—2,
Thus,
(16 4 3 m a t (11 8 16 h e m
Ci=16 22 2|=]¢c s 0], Co=112 22 2| =1i s 0
24 23 12 u toi (9 24 15 u 1
(4 23 12 a t i [7 2 23 d 0 t
C3=15 8 4| =1b e al, Cyi= 1|11 8 21| =1|h e 71|,
_2417 0 a n _12817 7 e n
(11 8 2 h e 0 16 18 23 m o t
Cs=12 18 9| =10 o f]|, Ce=12 22 6| =10 s ¢,
6 8 22 c e s 3 2 2 .00
3 3 3] Jo o o] (3 3 3 000
C.= 13 3 3/ =100 of, Cs=13 3 3/ =10 0 of,
333/ [0 0 0] 3 3 3 00 0
3 3 3] fo o 0
Co=13 3 3/ =10 0 0.
333/ [0 0 0]
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So,

‘m a t h e m a t il
c s 01 s 0 b e a
v t ¢ f u I 0 an
d 0t h e 0 m ot
P=1h e r 0 o f 0 s c
1 emn c e s . 00
0O 000 OO0 O O0O0
00000 O0O O 0O
0O 00O0OO0OO0O O O0TO0
Table 1. English Alphabet
a b c d e f g h i j
n+1l | n+2 || n+3 | n+4 || n+5 || n+6 || n+7 | n+8 || n+9 || n+10
k l m n 0 P q r S t
n+1l |n+12||n+13||n+14||ln+15||n+16||n+17 | n+18 || n+19 || n+ 20
U v w T Y z . 0 — —
n+21||n+22 || n+23 || n+24|n+25 || n+26| n+27 n — —

4 Coding and decoding on the generalized balancing matrix

Here, we discuss coding and decoding on the generalized balancing matrix ()7, and get its error

detection and correction.

For m > 3, we represent P, in the form of a square matrix P,, = (Di;)mxm. Where i,j =

1,2,...,m. We put the matrix ()}, as a coding matrix and its inverse matrix (), as a decoding

matrix. We name the transformation P, x Q') = E as generalized balancing matrix coding and

the transformation £ x Q)" = P, as generalized balancing matrix decoding.
Also, the matrix £ is given as a code matrix. We have

E=PFP, x an
P11 P12 Pim
| P21 P22 o Pom
Pm1i Pm2 *°° DPmm

B'm,n+m—1 _(B'm,n + -+ Bm,n-{-m,—Z) _(BTYI,,’YL+1 R Bm,n+m—2)
Bm7n+m72 _(Bm,nfl + -+ Bm,n+m73) _(Bm,n + -+ Bm7n+m73)
X Bm,nerfS _(Bm.,n72 +-- 4+ Bm,n+m74) _(Bm,nfl + -+ Bm,n+m74)

Bm,n _(Bm;nferl + -+ Bm,n71> _(Bm,nfm + -+ B’I‘I’L{I’L*l)
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| €21 E22 €2m
€ml €m2 " Emm
The entries of F,ejq,€19,. .., €mm and det(P,,) are sent throught the channel. Assuming that

the transmitted sequence is received with no errors, £ can be multiplied by ()" to recover the
message matrix. Then, we have

P,=ExQ,"
€11 €12 - €Eim
| €21 C22 €2m
€ml €m2 " Emm
—1
Bm,n+m71 _(Bm,n + -+ Bm,n+m72) _(Bm,n+1 +-- Bm,n+mf2) T _Bm,n+m72
B7n,n+m—2 *(Bm,n—l + -+ Bm,n-{—m—S) *(Bm,n +-- 4+ B7n,n+m—3) T *Bn+m—3
X Bm,n+m—3 _(Bm,n—2 + -+ Bm,n+m—4) _(Bm,n—l + -+ Bm,n+m—4) o _Bm,n+m—4
Bm,n _(Bm,n—m—i-l + -+ Bm,n—l) _(Bm,n—m +-+ Bm,n—l) e _Bm,n—l
Pin P12 - DPim
| P21 P22t Pom
Pmi Pm2 *°° DPmm

Example 4.1. Let m = 3, n = 4 and

1 2 4
P3 == 2 4 3
1 0 2
We have
Bss —(Bss+ Bss) —Bsp 1177 —238 —203
Qé - 3375 —<Bg74 —|— 8373) —3374 - 203 —41 —35
Bsy —(Bs3z+ Bsa) —Bss 35 -7 —6
By the above notations, we have
1 2 4 1177 —238 —203 1723 —348 —297
E=P;x Q§ =12 4 3| x|1203 —-41 =35 = [3271 —-661 -—564
1 0 2 35 -7 —6 1274 —-252 —215
Also, we obtain
P;=F x Q§4
1723 —348 —297 1 -7 7 1 2 4
= (3271 —-661 —-564| x |—=7 43 —-14| =12 4 3
1274 —-252 —-215 14 -91 57 1 0 2
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4.1 Relations among the code matrix elements

Here, we obtain the relations among the code matrix element considering the basic property that

det Q7 = (—1)™™. Then by using Corollary 2.1, we have
det E = det(P,, x Q) = det P, x det Q"

Suppose that m = 3 and n is an even positive number. Then we have

E=PyxQr

P11 P12 P13
= |P21 P22 D23
P31 P32 P33

€11 €12 €13
= | €21 €22 €93

€31 €32 €33

and
P3 =F x Q;n
€11 €12 €13 BS,n+2
= |ear €2 €| X |Bsnn
€31 €32 €33 B3,n
where
2
B37n_1 - B3,nB3,n—2
—-n _ 2
Q?) - B3,n+1B3,n71 - Bg,n
a
in which

2
a = Bgm + B3,nB3,n—1 - BB,n+1BB,n—1 - B3,n+1BB,n—27
b= Bspi2B3n-1+ BsyioBs 0 — B3, B3 pi1 —
2
¢c= B3, + BsnBsni1 — B3nBani2 — Bani2Ban1.

Hence, we have

X B3,n+1

Bsnyo  —(Bsny1+ Bsy)
_<B3,n + B3,n—1)
Bs, —(Bsn-1+Bsn_2) —Bs, 1

)

—(B3nt1+ Bsp)
—(Bsn + B3 1)

—(B3pn-1+ Bspn-2) —Bsn1

2
—Bs 183, + B3 n—2Bs ni1 Bg,n — B3 ,-1B3 n41
BS,nBS,nJrl - B3,n+2B3,n71

b

(—1)"™ x det Py,.

B3,n+233,n -

det Q% = By ny2B3, 1—BsnBsn—2Bsnr2—2B3 3 Bs 1831+ B3 1 By ot By, = 1, (4)

and

P11 = 611(B§7n,1 — B3B3 n2) + e12(Bsni1Ban-1 — Bgn)
+ 613(B§,n + B3y Bsn—1 — Bsni1Bs -1 — Bspp1Bspn_2) > 0,

p12 = e11(—Bspn-1B3n + B3 n_2B3ni1) + €12(B3n B3 ny1 — BapniaBsn-1)
+ e13(Bs n42Bs -1+ BspioBs o — B3 B3 i1 — B:?n) >0,

P13 = 611(B§7n - BS,nleS,nJrl) + 612(Bs,n+2B3,n
+ 613(B§7n+1 + B3B3 11 — B3 Bs 2 — B pniaBs 1) > 0,
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(6)

(7



pa1 = e21(B3,_y — B3 Bsy-2) + €22(Bs 1 Bs o1 — Bi,)

+ e23(B3,, + B3nBsn-1 — B3 ns1Bsn-1 — B3 ns1Bsn—2) > 0, )]
P22 = 621(—33,n—133,n + B3,n—233,n+1) + 622(33,nB3,n+1 - Bs,n+233,n—1)

+ e23(BsnioBs 1 + B3 nioBs o — B3 B3 i1 — B§n) > 0, 9
P23 = 621(B§7n — B3 1B3n11) + €22(B3ni2Bsp — Bg,nﬂ)

+ 623(B§,n+1 + B3 B3 i1 — B3 nBs o — BspiaBs 1) > 0, (10)
ps1 = e31(B3,_y — B3 Bsp-2) + €32(Bs i1 Bs o1 — Bi,)

+ e33(B3,, + B3nBsn-1 — Byni1Bsno1 — Byni1Bsn—2) >0, (11)
D32 = e31(—Bsn-1Bsn + Bsn—2Bsni1) + €32(Bs B3 i1 — Bsny2Bsn_1)

+ e33(Bsnt2Bs 1 + B3 nioBs o — B3 B3 i1 — B§n) > 0, (12)
P33 = 631(B§7n — B3 ,_1B3n41) + €32(Bs 2B — B§,n+1)

+ 633(B§,n+1 + B3B3 i1 — B3 nBsnio — BspiaBs 1) > 0. (13)

Dividing both sides of (5), (6) and (7) by e;; > 0, we have

€13 2
_(B3,n + B3,nB3,n71 - B3,n+1B3,n71 - B3,n+1B3,n72> Z

€11
e
(= Banp1Bans + B3,) + (— B3 1 + BanBan-a), (14)
11
€13 2 €12
6_(_B3,n+2B3,n—1 — B3 12832 + B3, B3 pi1 + Bg,n) < €_<B37nB3,n+1 — B3 49B3,-1)
11 11
+ (=Bs-1Bsn + B3 pn—2Bsn41), (15)
and
e
G_B(B?%,n—i—l + B3 B3 ni1 — B3 nBs o — BsnpoBspno1) >
11
e
6—12(—337%2837” + B3,11) + (=B3, + Bsn_1Bs ni1).
11
Let

A = (Bgn + B3B3 1 — B3 pni1Bsn—1 — B3 ni1B3n-2),
Ay = (=Bspi2B3n—1 — B3 noBs 2 + B3 Bsny1 + Bg,n)a
Az = (Bg,nﬂ + B3B3 i1 — B3 pnBsnya — BsnyoBsn_1).

By considering 3% = 27 cases for A; >=< 0, Ay >=< 0 and A3 >=< 0, we discuss some of

27 cases.
Case 1. A; > 0, Ay >0, A3 > 0. Then by using (14), we have

8>, (16)
€11

where
e1n, —B3ny1Bspn_1 + B3, —B??,n_l + B3, B3,
u=—" =)+ ).

€11 Ay ) ( Ay
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From (15), we get

€13 <,
€11
where
o €12 BS,nBS,n—I—l - BS,n+2B3,n—1 _B3,n—1B3,n + BS,n—2B3,n+1
€11 2 2
From (16) we have
€13
- Z ’LU,
€11
where
B @(—Bs,nJrzBs,n + B§,n+1) n (—Bin + BS,nleS,nJrl)
€11 As Az .

By using (4), from (16) and (17), we have

_BS,n+2 _BS,n—H _BS,n }

iy M ) .
€12 B3 pi1+ B3y, Bsp+ Bspo1 Bspo1+ B3,

Hence, using (4), from (16) and (18), we have

@ < max{ —B3,n+2 —B3,n+1 —B3,n }
_ ) ) .

€12 Bspi1+ B3y, Bsy+ Bsp1 Bspo1+ B3, o

Thus,
min { —Banio —B3n1 —Bs _en
) ) —_
Bs i1+ B3y, Bsyp+ Bsp 1 Bspo1+ B3, o €12
—DBs 12 —Bs 11 —Bs
< max { s U - }.

Bs i1 + BS,n’ Bs,, + B3,n—1’ Bs 1+ B3,

Similarly, we have

min{B&nH + B3, Bsn+ Bsp1 Bsno1+ B3,n—2} < 12
) ) —_
B3,n+1 B3,n B3,n—1 €13
< Bspi1+ B3, Bsp+ DBsp1 Bspo1+ B3, o
— max { B 9 B 9 B }7
3,n+1 3,n 3,n—1
and
. -B s —B 1 —B €11
IIllIl{ 3,n+ 3,n+ 3,n < 21

7 ) i
B3 i1 Bs ., B3n1 €13
_BS,nJrZ _BS,nJrl _BB,TL
) ) *
B3,n+1 B3,n BS,n—l

< max {

Case 2. Ay =0, Ay >0, A3 > 0. Since A; = 0, from (14) we have

€11 . —B3, 2 —Bs, 1 —Bs,
“11 Z l'IllIl{ n-+ n-+ n }

b b *
€12 B3 pi1+ B3y, B3y + Bspo1 Bspo1+ B3,

Using (4) and A; = 0, from (15) and (16), we obtain

€11 —Bs 40 —Bs3 11 —Bjs,
~11 Smax{ n—+ n—+ n }

) ) *
€12 Bspi1+ B3, Bsy+ Bsp 1 Bspo1+ B3, o
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(17)

(18)

(19)

(20)

21)

(22)

(23)

(24)



From (23) and (24), we have

. —B3,n+2 —B3,n+1 —B3,n €11
min { , , < —
Bspi1+ B3y, Bsyp+ Bsp1 Bspo1+ B3, o €12
—Bs —Bs —Bs,
< max { 3,n+2 3,n+1 3, . 25)

Bs i1+ Bs,n7 Bs,, + B3,n71’ Bs 1+ B3,
Case 3. A; < 0, Ay <0, A3 < 0. Then by using (14), we have
€13

— < u, (26)
€11

where 5 . e . b

U — @( 3n+1P3n-1 3,n) + ( 3,n—1 3,n 3,n—2)'
€11 Al Al

From (15), we get
€13
o 2V 27)
€11

where

€12, B3 nBs pni1 — B3nioBs 1 —B3,—1B3, + B3y—2Bs i1
v=—( )+ ( )-

€11 Ay Ap

From (16), we have
€13

— <w, (28)
€11
where
B 2(_33,n+283,n + B§,n+1) n (—Bin + BS,nleS,nJrl)
€11 As Az .
By using (4), from (26) and (27), we have
—Bs —Bs —Bs
€11 < max{ 3,n+2 ’ 3,n+1 : 3, } (29)
€12 Bspi1+ B3, Bsp,+ DBsp 1 Bspu1+ Bsno
Hence, using (4), from (26) and (28), we have
—B5., —B5., —B5.,
s min{ 2 Satl ] (30)
e12 Bspi1+ B3y, Bsp+ Bspo1 Bspo1+ B3,
Thus,
_B n _B n _B n
min { 3,n+2 ’ 3,n+1 ’ 3, }Sg
Bs i1+ B3y, Bsyp+ Bsp 1 Bsp 1+ B3, o €12
< max { 3,n+2 3,n+1 3, ). 31)

Bsni1+ Bsyn Bsn+ Bspno1 Bsp-1+ Bsno
Similarly, we have

Bspi1+ B3y, Bsp,+ Bs,_1 Bsp,_1+ B3,n—2} < €12
Bs i1 ’ Bs, ’ Bs 1 Te13
3n+1 + Bspn B3y, + Bsp1 B3, + B3,n—2}

b

) )
BS,n—H B3,n B3,n—1

min {

B
< max {

and
_B3,n+2 —Bs,n+1 —Bs,n < €11
) ) _—
B3,n+1 B3,n B3,n—1 €13

min {

< _B3,n+2 _B3,n+1 _B3,n
< max { 5 - "B .
3,n+1 3,n 3n—1

Similarly, we can prove the rest of the cases.
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Therefore, for i = 1,2, 3, we have

_B3,n+2 _B3,n+1 _B3,n } < €i1

? b —
Bspi1+ B3, Bsy+ Bspo1 Bspo1+ B3, €i2

min {

_BS,n—I—Q _BS,n—H _BS,n }

< max , , .
o {B3,n+1 + B3, Bsyp+ Bsp1 Bsp1+ B3,

min{Bg’nH + B3n Bsn+ Bsn1 Bianoit Bs,an} < G2
) b —
Bs,n+1 BS,n BS,nfl €i3
< maX{B3,n+1 + B3,n B3,n + B3,n—1 BS,n—l + B3,n—2}
g b 7 Y
B3,n+1 B3,n BS,n—l
and
min { —B3 0 —B3ni _B3,n} < €il
7 Y —_
B3,n+1 B3,n B3,n71 €i3
—B3 40 —B3n,i1 —DBs
< max { Uy Uas =

s .
3,n+1 B3,n B3,n—1

Now, for any value of m, the generalized relations among the code matrix elements are

_Bm n+k €i1
min : ck=0,1,....m—1} < —
{Bm,nJrkfl + Bm,n+k72 +--+ Bm,nJrkferl } €i2
_Bm n+k
< max : ck=0,1,...,m— 1},
{Bm,n+k—1 + Bm,n+k—2 + -+ Bm,n+k—m+1 }
_Bm n+k €i1
min : ck=0,1,.... m—1} < —
{Bm,nJrkfl + Bm,nJrka + -+ Bm,nJrkfm } €i3
_an+k
< max : ck=0,1,...,m— 1},
{Bm,n+k—1 + Bm,n—i—k—? + -+ Bm,n+k—m }
- B .
min { month Ck=0,1,...,m—1} < -4
Bm,n—l—k—l + Bm,n+k—2 €i(m—1)
_Bm n+k
< max : ck=0,1,...,m—1},
{Bm,n+k—l + Bm,n+k—2 }
-B ,
min { ="k 01, m 1) < 2
Bm,n—l—k—l €im
_an
Smax{—’M:k:O,l,...,m—l},
m,n+k—1
an - an — an —m i
min { ntk—1 1T Dmnyk—2 + + Dmnik +1:k:0,1,...,m—1}§€—2
Bm,n+k71 + Bm,n+k72 + -+ Bm,n+kfm €i3
an — an - an —m
< max { mtk—1 1t Dmntk—2 + -+ Dmntk H:k:O,l,---,m—l},
Bm,n—f—k—l + Bm,n+k—2 + -+ Bm,n—i—k—m
an - an — an —m i
min { 2methd F Prnik2 £ T Bnhomtl g g 1) < 92
Bm,nJrkfl + Bm,n+k72 +-+ Bm,nJrkfmfl €i4

Bm,n+k—1 + Bm,n+k—2 + -+ Bm,n+k—m+1
Bm,n+k—1 + Bm,n+k—2 + - Bm,n+k—m—l

< max {
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ck=0,1,....,m—

1},

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)



an — an — an —m 7
min { k=1 F Bmnth-2 + ¥ Smnth +1:k‘:0,1,...,m—1}§62
Bm,n—l—k—l €im
an - an - an —m
< max { ko1 + Dmntk2 " ¥ Bmnth L k=0,1,...,m—1}, (41)
Bm,n+k71
an - an — an —m %
min { nth=1 + Dmntk2+ " F Smnth :k:O,l?...,m—l}ge—3
Bm,n—l—k—l + Bm,n+k—2 + -+ Bm,n—i—k—m—l €i4
an — an — an —m
< max { k=t F Dminth=2 F*° F Tmnth k=0,1,...,m—1}, (42)
Bm,n+k71 + Bm,n+k72 + -+ Bm,n+k7mfl
an - an — an —m %
min { nth=1 + Dmatk2F ' F Fmnth :kzO,l,...,m—1}§€—3
Bm,n—l—k—l + Bm,n+k—2 + -+ Bm,n+k—m—2 €i5
an — an — an —m
< max { k=1 F Dmintk=2 F*° F Tmnth ck=0,1,...,m—1}, (43)
Bm,n+k—1 + Bm,n+k—2 + -+ Bm,n+k—m—2
an — an — an —m 7
min { k=t F Bmintk-2 0 ¥ Dtk :/{::0,1,...,m—1}§63
Bm,n+k—1 €im
an - an — an —-m
< max { k=1 t Omatk2F ¥ Smnth k=0,1,...,m—1}, (44)
Bm,nJrkfl
B pti— B ptk— Ci(m—
min {2mnth L k2 g gy, gy < G
Bm,n+k71 €im
an - an -
< max { k=1 + ’+k2:k:0,1,...,m—1}. (45)

Bm,n—l—k—l

Therefore, it is clear that the determinant of the initial message P,, is connected to the
determinant of the code message F. So, we obtain the determinant of the matrix P,,. The det(P,,)
is treated as a controller of entries of the code matrix £ received from the communication channel.
After receiving the code matrix £ and computing the determinant of P,,, we will compute the
determinant of F. Then, we will compare them. If det(E) = =+ det(FP,,), this means that the
matrix £ has passed through the communication channel without error. Otherwise, according to
the order of the matrix F, we have m x m “single”, “double”, ..., “m?-fold” errors. Thus,

m? m? m? 2
. =2" —1.
(1)+(2)+ +(m2)
For example, let m =

“double”,
matrix F received from the communication channel. It is clear that there are nine different cases

3. According to the matrix /~ of order 3 x 3, we have “single”,
..., “nine-fold” errors. The first assumption is that there exists only one error in the

for it as follows

a ey €3 er b ez e € ¢
(1) |es es e (2) |ea es e (3) |ea es5 es] s
[e7 es e je7 eg € jer es e
-61 €2 €3 _61 €2 €3 -61 €2 63-
(4) | d e5 eg (5) les e eg (6) les es [,
|67 €8 €9 |67 €8 €9 €7 €8 €9
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€1 €2 €3 €1 €2 €3 €1 €2 €

(7) |es €5 es|, (8) |es €5 es], (9) |es es el
g es €9 er h eg er es 1
where a, b, . . ., i are the possible “destroyed” entries.

From det(E) = (—1)"" x det(P,,), we have

(1) a(eseg — eges) — ea(eseg — eger) + es(eges — eser) = (—1)"™ x det P,

(2) e1(eseq — eges) — b(egeg — eger) + es(eges — eser) = (—1)"™ x det P,

(9) ei1(esi — eges) — ea(eal — eger) + es(eses — ezer) = (—1)"™ x det Py,.

In a similar way, we will obtain a double error for the matrix £. For example, we consider a
bivariate case for the matrix £ as follows

a b e3
€4 €5 €6,

€7 €8 €9

9
that possible cases are <2> = 36. Similarly, we obtain “triple”, “four-fold”, ..., “nine-fold”

errors, for which the total number of cases is

() )-e

Therefore, there are 2° — 1 = 511 errors. By using det £ = (—1)3"det P3 and the relations
(32)—(34), we can correct up to “single”, “double”, ..., “eight” errors except “nine” errors. Thus,
we get that the correcting ability of the method is equal to ;—(1) = 0.9980 ~ 99.8%.

In general, for sufficiently large values of m, by the above method we obtain that the correcting
ability of the generalized balancing matrix coding is equal to

2

2m =2
~ 1= 100%.
2m? 1 %

5 Conclusion

Coding theory is one of the most important and direct applications of the generalized balancing
matrix. We obtain the following results.

1. For m = 3, the correcting ability of errors is equal to 99.80%.

2. The correcting ability of this method increases with the increasing of m. Then for enough
large values of m, the correcting ability is approximately equal to 100%.

3. The generalized balancing matrix coding/decoding is calculated very quickly by computer.
Also, the correcting ability and detection ability of this coding method is very high in
comparison to a classical algebraic coding-decoding method.
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