Solution to a pair of linear, two-variable, Diophantine equations with coprime coefficients from balancing and Lucas-balancing numbers

R. K. Davala
VIT-AP University, Amaravati, Andhra Pradesh, India
e-mail: davalaravikumar@gmail.com

Received: 10 March 2023
Revised: 28 June 2023
Accepted: 13 July 2023
Online First: 15 July 2023

Abstract

Let B_{n} and C_{n} be the n-th balancing and Lucas-balancing numbers, respectively. We consider the Diophantine equations $a x+b y=\frac{1}{2}(a-1)(b-1)$ and $1+a x+b y=\frac{1}{2}(a-1)(b-1)$ for $(a, b) \in\left\{\left(B_{n}, B_{n+1}\right),\left(B_{2 n-1}, B_{2 n+1}\right),\left(B_{n}, C_{n}\right),\left(C_{n}, C_{n+1}\right)\right\}$ and present the non-negative integer solutions of the Diophantine equations in each case.

Keywords: Balancing numbers, Lucas-balancing numbers, Diophantine equation.
2020 Mathematics Subject Classification: 11B39, 11B37.

1 Introduction

As defined by Behera and Panda [1], a natural number B is a balancing number if

$$
1+2+\cdots+(B-1)=(B+1)+(B+2)+\cdots+(B+R)
$$

for some natural number R, which is the balancer corresponding to B. The n-th balancing number is denoted by B_{n} and $C_{n}=\sqrt{8 B_{n}^{2}+1}$ is called the n-th Lucas-balancing number [11, p. 25]. Customarily, 1 is accepted as the first balancing number, i.e., $B_{1}=1$. The balancing and Lucas-balancing numbers satisfy the recurrence relations $B_{1}=1, B_{2}=6, B_{n+1}=6 B_{n}-B_{n-1}$

	Copyright © 2023 by the Author. This is an Open Access paper distributed under the (c) © terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https: //creativecommons.org/licenses $/ \mathrm{by} / 4.0 /$

and $C_{1}=3, C_{2}=17, C_{n+1}=6 C_{n}-C_{n-1}$ for $n \geq 2$. On other hand, b is called a cobalancing number with cobalancer r [11] if

$$
1+2+\cdots+b=(b+1)+(b+2)+\cdots+(b+r)
$$

The n-th cobalancing number is denoted by b_{n} and cobalancing numbers satisfy the nonhomogeneous recurrence $b_{1}=0, b_{2}=2, b_{n+1}=6 b_{n}-b_{n-1}+2$ for $n \geq 2$. The Binet forms are

$$
B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}, \quad C_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}, \quad b_{n}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{4 \sqrt{2}}-\frac{1}{2} .
$$

where $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$.
Cyclotomy is the process of dividing a circle into equal parts, which is precisely the effect obtained by plotting the n-th roots of the unity in the complex plane. For $n \geq 1$, the n-th cyclotomic polynomial is defined as $\Phi_{n}(X)=\prod_{m=1,(m, n)=1}^{n}\left(X-e^{\frac{2 m \pi i}{n}}\right)$, where $e^{\frac{2 m \pi i}{n}}$ is the primitive n-th roots of the unity. When $n=p q$ for some distict primes p and q, while computing the middle term of $\Phi_{n}(X)$, Beiter [2] sketched a proof that $\frac{1}{2}(p-1)(q-1)$ can be uniquely written as $\alpha q+\beta p+\delta$, where $0 \leq \alpha \leq p-1, \beta \geq 0$, and $\delta \in\{0,1\}$.

Generalizing the result of Beiter [2], in a recent study by Chu [3] proved that, for any positive and relatively prime integers a and b, exactly one of the two equations $a x+b y=\frac{1}{2}(a-1)(b-1)$ and $1+a x+b y=\frac{1}{2}(a-1)(b-1)$ has a unique non-negative integer solution. In the same paper, he considered the above Diophantine equations for a and b chosen from the Fibonacci sequence.

The main results of this paper gives the unique non-negative integer solutions of the Diophantine equations $a x+b y=\frac{1}{2}(a-1)(b-1)$ and $1+a x+b y=\frac{1}{2}(a-1)(b-1)$ for each $(a, b) \in\left\{\left(B_{n}, B_{n+1}\right),\left(B_{2 n-1}, B_{2 n+1}\right),\left(\frac{B_{2 n}}{6}, \frac{B_{2 n+2}}{6}\right),\left(B_{n}, C_{n}\right),\left(C_{n}, C_{n+1}\right)\right\}$.

The sums of balancing and Lucas-balancing numbers has been extensively studied by many authors (e.g., see $[4-9,12,13]$). For any non-negative integers m and n, the following known identities will be helpful and used in the main results without further reference.

1. $B_{m \pm 1}=3 B_{m} \pm C_{m}$
[10, Theorem 2.5]
2. $C_{m \pm 1}=3 C_{m} \pm 8 B_{m}$
[10, Theorem 2.5]
3. $B_{m+n} B_{m-n}=B_{m}^{2}-B_{n}^{2}$
[10, Theorem 2.1]
4. $\sum_{i=0}^{n} C_{2 i}=C_{n} B_{n+1}$
[8, Theorem 2.1]
5. $\sum_{i=1}^{n} C_{4 i}=\frac{1}{12}\left(B_{4 n+2}-6\right)$
[12, Theorem 4.1]
6. $\sum_{i=0}^{2 n}(-1)^{i} C_{2 i}=\frac{1}{6}\left(C_{4 n+1}+3\right)$
[8, Theorem 2.1]
7. $\left(B_{m}, B_{n}\right)=B_{(m, n)}$
[10, Theorem 2.13].
Note: Throughout the paper, consider the numerical value of $\sum_{i=1}^{0} t_{i}$ as zero and greatest common divisor of a and b is denoted by (a, b).

2 Non-negative integer solutions of a few Diophantine equations

For a given pair of consecutive balancing numbers, we have $\left(B_{n}, B_{n+1}\right)=1$. So we investigate the non-negative integer solutions to the following Diophantine equations:

$$
\begin{gather*}
B_{n} x+B_{n+1} y=\frac{\left(B_{n}-1\right)\left(B_{n+1}-1\right)}{2} \tag{1}\\
1+B_{n} x+B_{n+1} y=\frac{\left(B_{n}-1\right)\left(B_{n+1}-1\right)}{2} . \tag{2}
\end{gather*}
$$

The following table provides two cases:

\boldsymbol{n}	$\boldsymbol{B}_{\boldsymbol{n}}$	$\boldsymbol{B}_{\boldsymbol{n + \boldsymbol { 1 }}}$	in which equation	\boldsymbol{x}	\boldsymbol{y}
1	1	6	(1)	0	0
2	6	35	(2)	14	0
3	35	204	(1)	17	14
4	204	1189	(2)	492	17
5	1189	6930	(1)	594	492
6	6930	40391	(2)	16730	594

Firstly, we observe Equation (1) and Equation (2) are used alternatively, and secondly there is a pattern in the values of x and y. This pattern in the table is summarized in the following theorem.

Theorem 2.1. For $n \geq 1$, the following equalities are correct

$$
\begin{align*}
B_{2 n-1}\left(\frac{B_{2 n-1}-1}{2}\right)+B_{2 n} b_{2 n-1} & =\frac{\left(B_{2 n-1}-1\right)\left(B_{2 n}-1\right)}{2} \tag{3}\\
1+B_{2 n} b_{2 n+1}+B_{2 n+1}\left(\frac{B_{2 n-1}-1}{2}\right) & =\frac{\left(B_{2 n}-1\right)\left(B_{2 n+1}-1\right)}{2} . \tag{4}
\end{align*}
$$

Proof. Firstly, we prove the equality $2 b_{2 n+1}=B_{2 n+1}-B_{2 n}-1$ using the Corollary 3.4 .2 by Ray [11], which states $b_{n+1}-b_{n}=2 B_{n}$.

Consider

$$
\begin{aligned}
2 B_{2 n-1}-2 B_{2 n-2}-2 & =\left(b_{2 n}-b_{2 n-1}\right)-\left(b_{2 n-1}-b_{2 n-2}\right)-2 \\
& =b_{2 n}-2 b_{2 n-1}+b_{2 n-2}-2 \\
& =\left(b_{2 n}+b_{2 n-2}-2\right)-2 b_{2 n-1} \\
& =6 b_{2 n-1}-2 b_{2 n-1} \\
& =4 b_{2 n-1} .
\end{aligned}
$$

The proof of (3) follows by considering

$$
\begin{aligned}
B_{2 n-1}\left(B_{2 n-1}-1\right)+2 B_{2 n} b_{2 n-1} & =B_{2 n-1}^{2}-B_{2 n-1}+B_{2 n}\left[B_{2 n-1}-B_{2 n-2}-1\right] \\
& =\left[B_{2 n-1}^{2}-B_{2 n} B_{2 n-2}\right]+B_{2 n-1}\left(B_{2 n}-1\right)-B_{2 n} \\
& =1+B_{2 n-1} B_{2 n}-B_{2 n-1}-B_{2 n} \\
& =\left(B_{2 n-1}-1\right)\left(B_{2 n}-1\right)
\end{aligned}
$$

and the proof of (4) follows by considering

$$
\begin{aligned}
2 B_{2 n} b_{2 n+1}+B_{2 n+1}\left(B_{2 n-1}-1\right) & =2 B_{2 n} b_{2 n+1}+B_{2 n+1} B_{2 n-1}-B_{2 n+1} \\
& =2 B_{2 n} b_{2 n+1}+B_{2 n}^{2}-B_{1}^{2}-B_{2 n+1} \\
& =B_{2 n}\left(2 b_{2 n+1}+B_{2 n}\right)-1-B_{2 n+1} \\
& =B_{2 n}\left(B_{2 n+1}-1\right)-1-B_{2 n+1} \\
& =\left(B_{2 n}-1\right)\left(B_{2 n+1}-1\right)-2 .
\end{aligned}
$$

Given a pair of consecutive odd indexed balancing numbers, we have $\left(B_{2 n-1}, B_{2 n+1}\right)=1$. So we investigate the non-negative integer solutions to the following Diophantine equations:

$$
\begin{gather*}
B_{2 n-1} x+B_{2 n+1} y=\frac{\left(B_{2 n-1}-1\right)\left(B_{2 n+1}-1\right)}{2} \tag{5}\\
1+B_{2 n-1} x+B_{2 n+1} y=\frac{\left(B_{2 n-1}-1\right)\left(B_{2 n+1}-1\right)}{2} . \tag{6}
\end{gather*}
$$

The following table provides two cases:

\boldsymbol{n}	$\boldsymbol{B}_{\mathbf{2 n - 1}}$	$\boldsymbol{B}_{\mathbf{2 n + 1}}$	in which equation	\boldsymbol{x}	\boldsymbol{y}
1	1	35	(5)	0	0
2	35	1189	(6)	577	0
3	1189	40391	(5)	577	577
4	40391	1372105	(6)	666434	577
5	1372105	46611179	(5)	666434	666434
6	46611179	1583407981	(6)	769064835	666434

The patterns in the table are summarized by the following theorem.
Theorem 2.2. For $n \geq 1$, the following equalities hold

1. $B_{4 n-3}\left(\sum_{i=1}^{n-1} C_{4 i}\right)+B_{4 n-1}\left(\sum_{i=1}^{n-1} C_{4 i}\right)=\frac{\left(B_{4 n-3}-1\right)\left(B_{4 n-1}-1\right)}{2}$
2. $1+B_{4 n-1}\left(\sum_{i=1}^{n} C_{4 i}\right)+B_{4 n+1}\left(\sum_{i=1}^{n-1} C_{4 i}\right)=\frac{\left(B_{4 n-1}-1\right)\left(B_{4 n+1}-1\right)}{2}$.

Proof. Noting that $\sum_{i=1}^{n} C_{4 i}=\frac{1}{12}\left(B_{4 n+2}-6\right)$, we prove the first identity

$$
\begin{aligned}
B_{4 n-3}\left(\frac{B_{4 n-2}-6}{12}\right)+B_{4 n-1}\left(\frac{B_{4 n-2}-6}{12}\right) & =\frac{1}{12}\left(B_{4 n-3}+B_{4 n-1}\right) B_{4 n-2}-\frac{1}{2}\left(B_{4 n-3}+B_{4 n-1}\right) \\
& =\frac{1}{12}\left(6 B_{4 n-2}^{2}\right)-\frac{1}{2}\left(B_{4 n-3}+B_{4 n-1}\right) \\
& =\frac{1}{2}\left(B_{4 n-2}^{2}-B_{4 n-3}-B_{4 n-1}\right) \\
& =\frac{1}{2}\left(1+B_{4 n-1} B_{4 n-3}-B_{4 n-3}-B_{4 n-1}\right) \\
& =\frac{1}{2}\left(B_{4 n-1}-1\right)\left(B_{4 n-3}-1\right) .
\end{aligned}
$$

The proof of second identity follows by considering

$$
\begin{aligned}
& B_{4 n-1}\left(\frac{B_{4 n+2}-6}{12}\right)+B_{4 n+1}\left(\frac{B_{4 n-2}-6}{12}\right) \\
& =\frac{1}{12}\left[B_{4 n-1} B_{4 n+2}+B_{4 n+1} B_{4 n-2}\right]-\frac{1}{2} B_{4 n-1}-\frac{1}{2} B_{4 n+1} \\
& =\frac{1}{12}\left[B_{4 n-1}\left(3 B_{4 n+1}+C_{4 n+1}\right)+B_{4 n+1}\left(3 B_{4 n-1}-C_{4 n-1}\right)\right]-\frac{1}{2} B_{4 n-1}-\frac{1}{2} B_{4 n+1} \\
& =\frac{1}{12}\left[6 B_{4 n-1} B_{4 n+1}+\left(B_{4 n-1} C_{4 n+1}-B_{4 n+1} C_{4 n-1}\right)\right]-\frac{1}{2} B_{4 n-1}-\frac{1}{2} B_{4 n+1} \\
& =\frac{1}{12}\left[6 B_{4 n-1} B_{4 n+1}-6\right]-\frac{1}{2} B_{4 n-1}-\frac{1}{2} B_{4 n+1} \\
& =-\frac{1}{2}+\frac{1}{2} B_{4 n-1} B_{4 n+1}-\frac{1}{2} B_{4 n-1}-\frac{1}{2} B_{4 n+1} \\
& =\frac{\left(B_{4 n-1}-1\right)\left(B_{4 n+1}-1\right)}{2}-1 .
\end{aligned}
$$

Given a pair of consecutive even indexed balancing numbers, we have $\left(B_{2 n}, B_{2 n+2}\right)=6$. So we investigate the non-negative integer solutions to the following Diophantine equations:

$$
\begin{array}{r}
\frac{B_{2 n}}{6} x+\frac{B_{2 n+2}}{6} y=\frac{\left(\frac{B_{2 n}}{6}-1\right)\left(\frac{B_{2 n+2}}{6}-1\right)}{2} \\
1+\frac{B_{2 n}}{6} x+\frac{B_{2 n+2}}{6} y=\frac{\left(\frac{B_{2 n}}{6}-1\right)\left(\frac{B_{2 n+2}}{6}-1\right)}{2} . \tag{8}
\end{array}
$$

The following table provides two cases:

\boldsymbol{n}	$\frac{\mathbf{1}}{\mathbf{6}} \boldsymbol{B}_{\mathbf{2 n}}$	$\frac{\mathbf{1}}{\mathbf{6}} \boldsymbol{B}_{\mathbf{2 n + \mathbf { 2 }}}$	in which equation	\boldsymbol{x}	\boldsymbol{y}
1	1	34	(7)	0	0
2	34	1155	(8)	560	0
3	1155	39236	(7)	577	560
4	39236	1332869	(8)	646816	577

The patterns in the table are summarized by the following theorem. The proof follows in a similar manner, so we omit the proof.

Theorem 2.3. For $n \geq 1$, the following equalities are true

1. $1+\frac{B_{4 n}}{6}\left(\sum_{i=1}^{2 n}(-1)^{i} C_{2 i}\right)+\frac{B_{4 n+2}}{6}\left(\sum_{i=1}^{n-1} C_{4 i}\right)=\frac{1}{2}\left(\frac{B_{4 n}}{6}-1\right)\left(\frac{B_{4 n+2}}{6}-1\right)$
2. $\frac{B_{4 n-2}}{6}\left(\sum_{i=1}^{n-1} C_{4 i}\right)+\frac{B_{4 n}}{6}\left(\sum_{i=1}^{2 n-2}(-1)^{i} C_{2 i}\right)=\frac{1}{2}\left(\frac{B_{4 n-2}}{6}-1\right)\left(\frac{B_{4 n}}{6}-1\right)$.

For a pair of balancing and Lucas-balancing numbers of the same index, we know that $\left(B_{n}, C_{n}\right)=1$ [10, Lemma 2.9]. So we investigate the non-negative integer solutions to the following Diophantine equations:

$$
\begin{equation*}
B_{n} x+C_{n} y=\frac{\left(B_{n}-1\right)\left(C_{n}-1\right)}{2} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
1+B_{n} x+C_{n} y=\frac{\left(B_{n}-1\right)\left(C_{n}-1\right)}{2} \tag{10}
\end{equation*}
$$

The following table provides a single case only.

\boldsymbol{n}	$\boldsymbol{B}_{\boldsymbol{n}}$	$\boldsymbol{C}_{\boldsymbol{n}}$	in which equation	\boldsymbol{x}	\boldsymbol{y}
1	1	3	(9)	0	0
2	6	17	(9)	1	2
3	35	99	(9)	8	14
4	204	577	(9)	49	84

The table results in the following two theorems.
Theorem 2.4. For $n \geq 1, B_{n}\left(B_{n-1}+b_{n-1}\right)+C_{n} b_{n}=\frac{\left(B_{n}-1\right)\left(C_{n}-1\right)}{2}$.
Proof. Since

$$
\begin{aligned}
2 B_{n}\left(B_{n-1}+b_{n-1}\right)+2 C_{n} b_{n} & =2 B_{n} B_{n-1}+B_{n}\left(B_{n-1}-B_{n-2}-1\right)+C_{n}\left(B_{n}-B_{n-1}-1\right) \\
& =B_{n-1}\left(3 B_{n}-C_{n}\right)-B_{n} B_{n-2}+B_{n} C_{n}-B_{n}-C_{n} \\
& =B_{n-1}^{2}-B_{n} B_{n-2}+B_{n} C_{n}-B_{n}-C_{n} \\
& =1+B_{n} C_{n}-B_{n}-C_{n} \\
& =\left(B_{n}-1\right)\left(C_{n}-1\right),
\end{aligned}
$$

the theorem follows.
Since the Diophantine equation $B_{n} x+C_{n} y=\frac{1}{2}\left(B_{n}-1\right)\left(C_{n}-1\right)$ has non-negative integer solution, we have the following theorem due to Chu's theorem [3, Theorem 1.1].
Theorem 2.5. For $n \geq 1$, the Diophantine equation $1+B_{n} x+C_{n} y=\frac{\left(B_{n}-1\right)\left(C_{n}-1\right)}{2}$ has no solution in non-negative integers.

Since $\left(C_{n}, C_{n+1}\right)=1$, we can also investigate the non-negative integer solutions of the following Diophantine equations:

$$
\begin{gather*}
C_{n} x+C_{n+1} y=\frac{\left(C_{n}-1\right)\left(C_{n+1}-1\right)}{2} \tag{11}\\
1+C_{n} x+C_{n+1} y=\frac{\left(C_{n}-1\right)\left(C_{n+1}-1\right)}{2} . \tag{12}
\end{gather*}
$$

The following table provides two cases:

\boldsymbol{n}	$\boldsymbol{C}_{\boldsymbol{n}}$	$\boldsymbol{C}_{\boldsymbol{n}+\boldsymbol{1}}$	in which equation	\boldsymbol{x}	\boldsymbol{y}
1	3	17	(12)	5	0
2	17	99	(11)	17	5
3	99	577	(12)	186	17
4	577	3363	(11)	594	186

The pattern in the table is summarized in the following theorem. The proof follows in a similar manner, so we omit the proof.

Theorem 2.6. For $n \geq 1$, the following equalities are true

1. $1+C_{2 n-1}\left(B_{2 n}-\sum_{i=0}^{n-1} C_{2 i}\right)+C_{2 n}\left(\sum_{i=1}^{n-1} C_{2 i}\right)=\frac{\left(C_{2 n-1}-1\right)\left(C_{2 n}-1\right)}{2}$
2. $C_{2 n}\left(\sum_{i=1}^{n} C_{2 i}\right)+C_{2 n+1}\left(B_{2 n}-\sum_{i=0}^{n-1} C_{2 i}\right)=\frac{\left(C_{2 n}-1\right)\left(C_{2 n+1}-1\right)}{2}$.

3 Future work

For any non-negative integer n and k, one can easily verify the following:

- $\left(B_{n}, C_{n k}\right)=1$
- $\left(B_{4 n-1}+2, B_{4 n}+12\right)=1$
- $\left(B_{4 n}+2, B_{4 n+1}+12\right)=1$
- $\left(B_{4 n}-2, B_{4 n+1}-12\right)=1$
- $\left(B_{4 n+1}-2, B_{4 n+2}-12\right)=1$
- $\left(B_{4 n+2}-2, B_{4 n+3}-12\right)=1$
- $\left(B_{4 n+2}+2, B_{4 n+3}+12\right)=1$.

One can use the above results or can generate similar results by considering suitable integers a and b such that $\left(B_{n}-a, B_{n+k}-b\right)=1$ and solve the Diophantine equations:

$$
\left(B_{n}-a\right) x+\left(B_{n+k}-b\right) y=\frac{1}{2}\left(B_{n}-a-1\right)\left(B_{n+k}-b-1\right)
$$

and

$$
1+\left(B_{n}-a\right) x+\left(B_{n+k}-b\right) y=\frac{1}{2}\left(B_{n}-a-1\right)\left(B_{n+k}-b-1\right)
$$

Acknowledgements

It is a pleasure to thank the anonymous referees for their valuable comments and suggestions which improved the presentation of this paper to a great extent.

References

[1] Behera, A., \& Panda, G. K. (1999). On the square roots of triangular numbers. The Fibonacci Quarterly, 37(2), 98-105.
[2] Beiter, M. (1964). The midterm coefficient of the cyclotomic polynomial $\Phi_{p q}(X)$. American Mathematical Monthly, 71, 769-770.
[3] Chu, H. V. (2020). Representation of $\frac{1}{2}\left(F_{n}-1\right)\left(F_{n+1}-1\right)$ and $\frac{1}{2}\left(F_{n}-1\right)\left(F_{n+2}-1\right)$. The Fibonacci Quarterly, 58(4), 334-339.
[4] Davala, R. K. (2015). On convolution and binomial sums of balancing and Lucas-balancing numbers. International Journal of Mathematical Sciences and Engineering Applications, 8(5), 77-83.
[5] Davala, R. K. (2018). Algebraic and geometric aspects of some binary recurrence sequences. Ph.D. Thesis, National Institute of Technology, Rourkela, India.
[6] Davala, R. K., \& Panda, G. K. (2015). On sum and ratio formulas for balancing numbers. The Journal of the Indian Mathematical Society, 82(2), 23-32.
[7] Davala, R. K., \& Panda, G. K. (2016). On sum and ratio formulas for balancing-like sequences. Notes on Number Theory and Discrete Mathematics, 22(3), 45-53.
[8] Davala, R. K., \& Panda, G. K. (2019). On sum and ratio formulas for Lucas-balancing numbers. Palestine Journal of Mathematics, 8(2), 200-206.
[9] Frontczak, R. (2018). Sums of balancing and Lucas-balancing numbers with binomial coefficients. International Journal of Mathematical Analysis, 12, 585-594.
[10] Panda, G. K. (2009). Some fascinating properties of balancing numbers. Congressus Numerantium, 194, 265-271.
[11] Ray, P. K. (2009). Balancing and cobalancing numbers. Ph.D. Thesis, National Institute of Technology, Rourkela, India.
[12] Ray, P. K. (2015). Balancing and Lucas-balancing sums by matrix methods. Mathematical Reports, 17(2), 225-233.
[13] Soykan, Y. (2021). A study on generalized balancing numbers. Asian Journal of Advanced Research and Reports, 15(5), 78-100.

