Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2023, Volume 29, Number 3, 495–502 DOI: 10.7546/nntdm.2023.29.3.495-502

Solution to a pair of linear, two-variable, Diophantine equations with coprime coefficients from balancing and Lucas-balancing numbers

R. K. Davala

VIT-AP University, Amaravati, Andhra Pradesh, India e-mail: davalaravikumar@gmail.com

Received: 10 March 2023 Accepted: 13 July 2023 **Revised:** 28 June 2023 **Online First:** 15 July 2023

Abstract: Let B_n and C_n be the *n*-th balancing and Lucas-balancing numbers, respectively. We consider the Diophantine equations $ax+by = \frac{1}{2}(a-1)(b-1)$ and $1+ax+by = \frac{1}{2}(a-1)(b-1)$ for $(a,b) \in \{(B_n, B_{n+1}), (B_{2n-1}, B_{2n+1}), (B_n, C_n), (C_n, C_{n+1})\}$ and present the non-negative integer solutions of the Diophantine equations in each case.

Keywords: Balancing numbers, Lucas-balancing numbers, Diophantine equation. **2020 Mathematics Subject Classification:** 11B39, 11B37.

1 Introduction

As defined by Behera and Panda [1], a natural number B is a balancing number if

$$1 + 2 + \dots + (B - 1) = (B + 1) + (B + 2) + \dots + (B + R)$$

for some natural number R, which is the balancer corresponding to B. The *n*-th balancing number is denoted by B_n and $C_n = \sqrt{8B_n^2 + 1}$ is called the *n*-th Lucas-balancing number [11, p. 25]. Customarily, 1 is accepted as the first balancing number, i.e., $B_1 = 1$. The balancing and Lucas-balancing numbers satisfy the recurrence relations $B_1 = 1, B_2 = 6, B_{n+1} = 6B_n - B_{n-1}$

Copyright © 2023 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

and $C_1 = 3, C_2 = 17, C_{n+1} = 6C_n - C_{n-1}$ for $n \ge 2$. On other hand, b is called a cobalancing number with cobalancer r [11] if

$$1 + 2 + \dots + b = (b + 1) + (b + 2) + \dots + (b + r).$$

The *n*-th cobalancing number is denoted by b_n and cobalancing numbers satisfy the nonhomogeneous recurrence $b_1 = 0, b_2 = 2, b_{n+1} = 6b_n - b_{n-1} + 2$ for $n \ge 2$. The Binet forms are

$$B_n = \frac{\alpha^{2n} - \beta^{2n}}{4\sqrt{2}}, \qquad C_n = \frac{\alpha^{2n} + \beta^{2n}}{2}, \qquad b_n = \frac{\alpha^{2n-1} - \beta^{2n-1}}{4\sqrt{2}} - \frac{1}{2}.$$

where $\alpha = 1 + \sqrt{2}$ and $\beta = 1 - \sqrt{2}$.

Cyclotomy is the process of dividing a circle into equal parts, which is precisely the effect obtained by plotting the *n*-th roots of the unity in the complex plane. For $n \ge 1$, the *n*-th cyclotomic polynomial is defined as $\Phi_n(X) = \prod_{m=1, (m,n)=1}^n \left(X - e^{\frac{2m\pi i}{n}}\right)$, where $e^{\frac{2m\pi i}{n}}$ is the primitive *n*-th roots of the unity. When n = pq for some distict primes *p* and *q*, while computing the middle term of $\Phi_n(X)$, Beiter [2] sketched a proof that $\frac{1}{2}(p-1)(q-1)$ can be uniquely written as $\alpha q + \beta p + \delta$, where $0 \le \alpha \le p - 1$, $\beta \ge 0$, and $\delta \in \{0, 1\}$.

Generalizing the result of Beiter [2], in a recent study by Chu [3] proved that, for any positive and relatively prime integers a and b, exactly one of the two equations $ax + by = \frac{1}{2}(a-1)(b-1)$ and $1 + ax + by = \frac{1}{2}(a-1)(b-1)$ has a unique non-negative integer solution. In the same paper, he considered the above Diophantine equations for a and b chosen from the Fibonacci sequence.

The main results of this paper gives the unique non-negative integer solutions of the Diophantine equations $ax + by = \frac{1}{2}(a-1)(b-1)$ and $1 + ax + by = \frac{1}{2}(a-1)(b-1)$ for each $(a,b) \in \{(B_n, B_{n+1}), (B_{2n-1}, B_{2n+1}), (\frac{B_{2n}}{6}, \frac{B_{2n+2}}{6}), (B_n, C_n), (C_n, C_{n+1})\}.$

The sums of balancing and Lucas-balancing numbers has been extensively studied by many authors (e.g., see [4–9, 12, 13]). For any non-negative integers m and n, the following known identities will be helpful and used in the main results without further reference.

- 1. $B_{m\pm 1} = 3B_m \pm C_m$ [10, Theorem 2.5]
- 2. $C_{m\pm 1} = 3C_m \pm 8B_m$ [10, Theorem 2.5]
- 3. $B_{m+n}B_{m-n} = B_m^2 B_n^2$ [10, Theorem 2.1]
- 4. $\sum_{i=0}^{n} C_{2i} = C_n B_{n+1}$ [8, Theorem 2.1]
- 5. $\sum_{i=1}^{n} C_{4i} = \frac{1}{12} (B_{4n+2} 6)$ [12, Theorem 4.1]
- 6. $\sum_{i=0}^{2n} (-1)^i C_{2i} = \frac{1}{6} (C_{4n+1} + 3)$ [8, Theorem 2.1]
- 7. $(B_m, B_n) = B_{(m,n)}$ [10, Theorem 2.13].

Note: Throughout the paper, consider the numerical value of $\sum_{i=1}^{0} t_i$ as zero and greatest common divisor of a and b is denoted by (a, b).

2 Non-negative integer solutions of a few Diophantine equations

For a given pair of consecutive balancing numbers, we have $(B_n, B_{n+1}) = 1$. So we investigate the non-negative integer solutions to the following Diophantine equations:

$$B_n x + B_{n+1} y = \frac{(B_n - 1)(B_{n+1} - 1)}{2} \tag{1}$$

$$1 + B_n x + B_{n+1} y = \frac{(B_n - 1)(B_{n+1} - 1)}{2}.$$
(2)

The following table provides two cases:

n	B_n	B_{n+1}	in which equation	$egin{array}{c} x \end{array}$	\boldsymbol{y}
1	1	6	(1)	0	0
2	6	35	(2)	14	0
3	35	204	(1)	17	14
4	204	1189	(2)	492	17
5	1189	6930	(1)	594	492
6	6930	40391	(2)	16730	594

Firstly, we observe Equation (1) and Equation (2) are used alternatively, and secondly there is a pattern in the values of x and y. This pattern in the table is summarized in the following theorem.

Theorem 2.1. For $n \ge 1$, the following equalities are correct

$$B_{2n-1}\left(\frac{B_{2n-1}-1}{2}\right) + B_{2n}b_{2n-1} = \frac{(B_{2n-1}-1)(B_{2n}-1)}{2}$$
(3)

$$1 + B_{2n}b_{2n+1} + B_{2n+1}\left(\frac{B_{2n-1}-1}{2}\right) = \frac{(B_{2n}-1)(B_{2n+1}-1)}{2}.$$
(4)

Proof. Firstly, we prove the equality $2b_{2n+1} = B_{2n+1} - B_{2n} - 1$ using the Corollary 3.4.2 by Ray [11], which states $b_{n+1} - b_n = 2B_n$.

Consider

$$2B_{2n-1} - 2B_{2n-2} - 2 = (b_{2n} - b_{2n-1}) - (b_{2n-1} - b_{2n-2}) - 2$$

= $b_{2n} - 2b_{2n-1} + b_{2n-2} - 2$
= $(b_{2n} + b_{2n-2} - 2) - 2b_{2n-1}$
= $6b_{2n-1} - 2b_{2n-1}$
= $4b_{2n-1}$.

The proof of (3) follows by considering

$$B_{2n-1}(B_{2n-1}-1) + 2B_{2n}b_{2n-1} = B_{2n-1}^2 - B_{2n-1} + B_{2n}[B_{2n-1} - B_{2n-2} - 1]$$

= $[B_{2n-1}^2 - B_{2n}B_{2n-2}] + B_{2n-1}(B_{2n} - 1) - B_{2n}$
= $1 + B_{2n-1}B_{2n} - B_{2n-1} - B_{2n}$
= $(B_{2n-1} - 1)(B_{2n} - 1)$

and the proof of (4) follows by considering

$$2B_{2n}b_{2n+1} + B_{2n+1}(B_{2n-1}-1) = 2B_{2n}b_{2n+1} + B_{2n+1}B_{2n-1} - B_{2n+1}$$

$$= 2B_{2n}b_{2n+1} + B_{2n}^2 - B_1^2 - B_{2n+1}$$

$$= B_{2n}(2b_{2n+1} + B_{2n}) - 1 - B_{2n+1}$$

$$= B_{2n}(B_{2n+1}-1) - 1 - B_{2n+1}$$

$$= (B_{2n}-1)(B_{2n+1}-1) - 2.$$

Given a pair of consecutive odd indexed balancing numbers, we have $(B_{2n-1}, B_{2n+1}) = 1$. So we investigate the non-negative integer solutions to the following Diophantine equations:

$$B_{2n-1}x + B_{2n+1}y = \frac{(B_{2n-1} - 1)(B_{2n+1} - 1)}{2}$$
(5)

$$1 + B_{2n-1}x + B_{2n+1}y = \frac{(B_{2n-1} - 1)(B_{2n+1} - 1)}{2}.$$
 (6)

\boldsymbol{n}	B_{2n-1}	B_{2n+1}	in which equation	\boldsymbol{x}	y
1	1	35	(5)	0	0
2	35	1189	(6)	577	0
3	1189	40391	(5)	577	577
4	40391	1372105	(6)	666434	577
5	1372105	46611179	(5)	666434	666434
6	46611179	1583407981	(6)	769064835	666434

The following table provides two cases:

The patterns in the table are summarized by the following theorem.

Theorem 2.2. For $n \ge 1$, the following equalities hold

1.
$$B_{4n-3}\left(\sum_{i=1}^{n-1} C_{4i}\right) + B_{4n-1}\left(\sum_{i=1}^{n-1} C_{4i}\right) = \frac{(B_{4n-3}-1)(B_{4n-1}-1)}{2}$$

2. $1 + B_{4n-1}\left(\sum_{i=1}^{n} C_{4i}\right) + B_{4n+1}\left(\sum_{i=1}^{n-1} C_{4i}\right) = \frac{(B_{4n-1}-1)(B_{4n+1}-1)}{2}$

Proof. Noting that $\sum_{i=1}^{n} C_{4i} = \frac{1}{12} (B_{4n+2} - 6)$, we prove the first identity

$$\begin{split} B_{4n-3}\bigg(\frac{B_{4n-2}-6}{12}\bigg) + B_{4n-1}\bigg(\frac{B_{4n-2}-6}{12}\bigg) &= \frac{1}{12}(B_{4n-3}+B_{4n-1})B_{4n-2} - \frac{1}{2}(B_{4n-3}+B_{4n-1})\\ &= \frac{1}{12}(6B_{4n-2}^2) - \frac{1}{2}(B_{4n-3}+B_{4n-1})\\ &= \frac{1}{2}(B_{4n-2}^2 - B_{4n-3} - B_{4n-1})\\ &= \frac{1}{2}(1+B_{4n-1}B_{4n-3} - B_{4n-3} - B_{4n-1})\\ &= \frac{1}{2}(B_{4n-1}-1)(B_{4n-3}-1). \end{split}$$

The proof of second identity follows by considering

$$B_{4n-1}\left(\frac{B_{4n+2}-6}{12}\right) + B_{4n+1}\left(\frac{B_{4n-2}-6}{12}\right)$$

$$= \frac{1}{12}[B_{4n-1}B_{4n+2} + B_{4n+1}B_{4n-2}] - \frac{1}{2}B_{4n-1} - \frac{1}{2}B_{4n+1}$$

$$= \frac{1}{12}[B_{4n-1}(3B_{4n+1} + C_{4n+1}) + B_{4n+1}(3B_{4n-1} - C_{4n-1})] - \frac{1}{2}B_{4n-1} - \frac{1}{2}B_{4n+1}$$

$$= \frac{1}{12}[6B_{4n-1}B_{4n+1} + (B_{4n-1}C_{4n+1} - B_{4n+1}C_{4n-1})] - \frac{1}{2}B_{4n-1} - \frac{1}{2}B_{4n+1}$$

$$= \frac{1}{12}[6B_{4n-1}B_{4n+1} - 6] - \frac{1}{2}B_{4n-1} - \frac{1}{2}B_{4n+1}$$

$$= -\frac{1}{2} + \frac{1}{2}B_{4n-1}B_{4n+1} - \frac{1}{2}B_{4n-1} - \frac{1}{2}B_{4n+1}$$

$$= \frac{(B_{4n-1}-1)(B_{4n+1}-1)}{2} - 1.$$

Given a pair of consecutive even indexed balancing numbers, we have $(B_{2n}, B_{2n+2}) = 6$. So we investigate the non-negative integer solutions to the following Diophantine equations:

$$\frac{B_{2n}}{6}x + \frac{B_{2n+2}}{6}y = \frac{\left(\frac{B_{2n}}{6} - 1\right)\left(\frac{B_{2n+2}}{6} - 1\right)}{2} \tag{7}$$

$$1 + \frac{B_{2n}}{6}x + \frac{B_{2n+2}}{6}y = \frac{\left(\frac{B_{2n}}{6} - 1\right)\left(\frac{B_{2n+2}}{6} - 1\right)}{2}.$$
(8)

The following table provides two cases:

\boldsymbol{n}	$rac{1}{6}B_{2n}$	$rac{1}{6}B_{2n+2}$	in which equation	\boldsymbol{x}	\boldsymbol{y}
1	1	34	(7)	0	0
2	34	1155	(8)	560	0
3	1155	39236	(7)	577	560
4	39236	1332869	(8)	646816	577

The patterns in the table are summarized by the following theorem. The proof follows in a similar manner, so we omit the proof.

Theorem 2.3. For $n \ge 1$, the following equalities are true

$$I. \ 1 + \frac{B_{4n}}{6} \left(\sum_{i=1}^{2n} (-1)^i C_{2i} \right) + \frac{B_{4n+2}}{6} \left(\sum_{i=1}^{n-1} C_{4i} \right) = \frac{1}{2} \left(\frac{B_{4n}}{6} - 1 \right) \left(\frac{B_{4n+2}}{6} - 1 \right)$$
$$2. \ \frac{B_{4n-2}}{6} \left(\sum_{i=1}^{n-1} C_{4i} \right) + \frac{B_{4n}}{6} \left(\sum_{i=1}^{2n-2} (-1)^i C_{2i} \right) = \frac{1}{2} \left(\frac{B_{4n-2}}{6} - 1 \right) \left(\frac{B_{4n}}{6} - 1 \right).$$

For a pair of balancing and Lucas-balancing numbers of the same index, we know that $(B_n, C_n) = 1$ [10, Lemma 2.9]. So we investigate the non-negative integer solutions to the following Diophantine equations:

$$B_n x + C_n y = \frac{(B_n - 1)(C_n - 1)}{2} \tag{9}$$

$$1 + B_n x + C_n y = \frac{(B_n - 1)(C_n - 1)}{2}.$$
(10)

The following table provides a single case only.

\boldsymbol{n}	B_n	C_n	in which equation	\boldsymbol{x}	$m{y}$
1	1	3	(9)	0	0
2	6	17	(9)	1	2
3	35	99	(9)	8	14
4	204	577	(9)	49	84

The table results in the following two theorems.

Theorem 2.4. For $n \ge 1$, $B_n(B_{n-1} + b_{n-1}) + C_n b_n = \frac{(B_n - 1)(C_n - 1)}{2}$.

Proof. Since

$$2B_n (B_{n-1} + b_{n-1}) + 2C_n b_n = 2B_n B_{n-1} + B_n (B_{n-1} - B_{n-2} - 1) + C_n (B_n - B_{n-1} - 1)$$

$$= B_{n-1} (3B_n - C_n) - B_n B_{n-2} + B_n C_n - B_n - C_n$$

$$= B_{n-1}^2 - B_n B_{n-2} + B_n C_n - B_n - C_n$$

$$= 1 + B_n C_n - B_n - C_n$$

$$= (B_n - 1)(C_n - 1),$$

the theorem follows.

Since the Diophantine equation $B_n x + C_n y = \frac{1}{2}(B_n - 1)(C_n - 1)$ has non-negative integer solution, we have the following theorem due to Chu's theorem [3, Theorem 1.1].

Theorem 2.5. For $n \ge 1$, the Diophantine equation $1 + B_n x + C_n y = \frac{(B_n - 1)(C_n - 1)}{2}$ has no solution in non-negative integers.

Since $(C_n, C_{n+1}) = 1$, we can also investigate the non-negative integer solutions of the following Diophantine equations:

$$C_n x + C_{n+1} y = \frac{(C_n - 1)(C_{n+1} - 1)}{2}$$
(11)

$$1 + C_n x + C_{n+1} y = \frac{(C_n - 1)(C_{n+1} - 1)}{2}.$$
(12)

The following table provides two cases:

\boldsymbol{n}	C_n	C_{n+1}	in which equation	x	\boldsymbol{y}
1	3	17	(12)	5	0
2	17	99	(11)	17	5
3	99	577	(12)	186	17
4	577	3363	(11)	594	186

The pattern in the table is summarized in the following theorem. The proof follows in a similar manner, so we omit the proof.

Theorem 2.6. For $n \ge 1$, the following equalities are true

$$I. \ 1 + C_{2n-1}\left(B_{2n} - \sum_{i=0}^{n-1} C_{2i}\right) + C_{2n}\left(\sum_{i=1}^{n-1} C_{2i}\right) = \frac{(C_{2n-1} - 1)(C_{2n} - 1)}{2}$$
$$2. \ C_{2n}\left(\sum_{i=1}^{n} C_{2i}\right) + C_{2n+1}\left(B_{2n} - \sum_{i=0}^{n-1} C_{2i}\right) = \frac{(C_{2n} - 1)(C_{2n+1} - 1)}{2}.$$

3 Future work

For any non-negative integer n and k, one can easily verify the following:

•
$$(B_n, C_{nk}) = 1$$

- $(B_{4n-1}+2, B_{4n}+12) = 1$
- $(B_{4n}+2, B_{4n+1}+12) = 1$
- $(B_{4n} 2, B_{4n+1} 12) = 1$
- $(B_{4n+1} 2, B_{4n+2} 12) = 1$
- $(B_{4n+2} 2, B_{4n+3} 12) = 1$
- $(B_{4n+2}+2, B_{4n+3}+12) = 1.$

One can use the above results or can generate similar results by considering suitable integers a and b such that $(B_n - a, B_{n+k} - b) = 1$ and solve the Diophantine equations:

$$(B_n - a)x + (B_{n+k} - b)y = \frac{1}{2}(B_n - a - 1)(B_{n+k} - b - 1)$$

and

$$1 + (B_n - a)x + (B_{n+k} - b)y = \frac{1}{2}(B_n - a - 1)(B_{n+k} - b - 1).$$

Acknowledgements

It is a pleasure to thank the anonymous referees for their valuable comments and suggestions which improved the presentation of this paper to a great extent.

References

- [1] Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers. *The Fibonacci Quarterly*, 37(2), 98–105.
- [2] Beiter, M. (1964). The midterm coefficient of the cyclotomic polynomial $\Phi_{pq}(X)$. American Mathematical Monthly, 71, 769–770.

- [3] Chu, H. V. (2020). Representation of $\frac{1}{2}(F_n 1)(F_{n+1} 1)$ and $\frac{1}{2}(F_n 1)(F_{n+2} 1)$. The Fibonacci Quarterly, 58(4), 334–339.
- [4] Davala, R. K. (2015). On convolution and binomial sums of balancing and Lucas-balancing numbers. *International Journal of Mathematical Sciences and Engineering Applications*, 8(5), 77–83.
- [5] Davala, R. K. (2018). Algebraic and geometric aspects of some binary recurrence sequences. Ph.D. Thesis, National Institute of Technology, Rourkela, India.
- [6] Davala, R. K., & Panda, G. K. (2015). On sum and ratio formulas for balancing numbers. *The Journal of the Indian Mathematical Society*, 82(2), 23–32.
- [7] Davala, R. K., & Panda, G. K. (2016). On sum and ratio formulas for balancing-like sequences. *Notes on Number Theory and Discrete Mathematics*, 22(3), 45–53.
- [8] Davala, R. K., & Panda, G. K. (2019). On sum and ratio formulas for Lucas-balancing numbers. *Palestine Journal of Mathematics*, 8(2), 200–206.
- [9] Frontczak, R. (2018). Sums of balancing and Lucas-balancing numbers with binomial coefficients. *International Journal of Mathematical Analysis*, 12, 585–594.
- [10] Panda, G. K. (2009). Some fascinating properties of balancing numbers. Congressus Numerantium, 194, 265–271.
- [11] Ray, P. K. (2009). Balancing and cobalancing numbers. Ph.D. Thesis, National Institute of Technology, Rourkela, India.
- [12] Ray, P. K. (2015). Balancing and Lucas-balancing sums by matrix methods. *Mathematical Reports*, 17(2), 225–233.
- [13] Soykan, Y. (2021). A study on generalized balancing numbers. Asian Journal of Advanced Research and Reports, 15(5), 78–100.