Narayana sequence

and the Brocard-Ramanujan equation

Mustafa Ismail ${ }^{1}$, Salah Eddine Rihane ${ }^{2}$ and M. Anwar ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Ain Shams, Egypt
e-mail: mostafaesmail_p@sci.asu.edu.eg
${ }^{2}$ Department of Mathematics, Institute of Science and Technology, University Center of Mila, Algeria
e-mail: salahrihane@hotmail.fr
${ }^{3}$ Department of Mathematics, Faculty of Science, University of Ain Shams, Egypt
e-mails: mohmmed.anwar@hotmail.com, mohamedanwar@sci.asu.edu.eg

Received: 20 July 2022
Revised: 25 April 2023
Accepted: 27 June 2023
Online First: 6 July 2023

Abstract

Let $\left\{a_{n}\right\}_{n \geq 0}$ be the Narayana sequence defined by the recurrence $a_{n}=a_{n-1}+a_{n-3}$ for all $n \geq 3$ with intital values $a_{0}=0$ and $a_{1}=a_{2}=1$. In this paper, we fully characterize the 3 -adic valuation of $a_{n}+1$ and $a_{n}-1$ and then we find all positive integer solutions (u, m) to the Brocard-Ramanujan equation $m!+1=u^{2}$ where u is a Narayana number.

Keywords: Narayana sequence, Factorials, p-adic valuation.
2020 Mathematics Subject Classification: 11B39, 11D72.

1 Introduction

Diophantine equations involving factorial numbers have been studied by many mathematicians in the last few years. By Bertrand's postulate, we can prove that n ! is a perfect power only when $n=1$. However, one of the most famous among such equations was posed by Brocard [4] in 1876

| | Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
 (c) (i)
 terms and conditions of the Creative Commons Attribution 4.0 International License
 (CC BY 4.0). https: //creativecommons.org/licenses/by/4.0/ |
| :--- | :--- | :--- |

and independently by Ramanujan [12] in 1913. This Diophantine equation

$$
\begin{equation*}
m!+1=u^{2} \tag{1}
\end{equation*}
$$

is now known as Brocard-Ramanujan equation.
The three known solutions $m=4,5,7$ are easy to check, meanwhile, no other solutions exist with $m \leq 10^{9}$ as it has been proved by Berndt and Galaway in [2]. Although Overholt [11] showed that the equation (1) has only many solutions under a weak version of the ABC conjecture, the Brocard-Ramanujan equation is still an open problem. Grossman and Luca [6] showed that if k is fixed, and F_{n} is the n-th Fibonacci number, then there are only finitely many positive integers n such that

$$
F_{n}=m_{1}!+m_{2}!+\cdots+m_{k}!
$$

holds for some positive integers $m_{1}, m_{2}, \ldots, m_{k}$. Moreover, all the solutions for the case $k \leq 2$ were determined. In 1999, Luca [7] proved that the n-th Fibonacci number F_{n} is a product of factorials only when $n=1,2,3,6$ and 12. Furthermore, Luca and Stanica [8] showed that the largest product of distinct Fibonacci numbers which is a product of factorials is

$$
F_{1} F_{2} F_{3} F_{4} F_{5} F_{6} F_{8} F_{10} F_{12}=11!.
$$

In 2012 and 2016, Marques [5,9] proved that $(u, m)=(4,5)$ is the only solution of Eq. (1) where u is a Fibonacci number and there is no solution of Eq. (1) when u is a Tribonacci number. Let $\left\{a_{n}\right\}_{n>0}$ be the Narayana sequence defined by the recurrence $a_{n}=a_{n-1}+a_{n-3}$ for all $n \geq 3$ with initial values $a_{0}=0$ and $a_{1}=a_{2}=1$. The first terms of this sequence are

$$
0,1,1,1,2,3,4,6,9,28,41,60,88,129,189,277 .
$$

Some properties of the Narayana sequence and its generalizations can be found in [1,3]. We are following the same technique used in [5] by Vinicius Facó and Diego Marques. More precisely, we prove the following theorem.

Theorem 1.1. There are no positive integer solutions (m, u) with $u=a_{n}$ for the BrocardRamanujan equation (1), where a_{n} is the n-th member of the Narayana sequence.

2 Auxiliary results

Before proceeding further, some lemmas will be needed. The next lemma provides a formula for the Narayana numbers.

Lemma 2.1. For all positive integers m, n, we have

$$
a_{m+n}=a_{m-1} a_{n+2}+a_{m-3} a_{n+1}+a_{m-2} a_{n}
$$

Proof. We prove this result using induction on n. At $n=0$, we have $a_{m-1} a_{2}+a_{m-3} a_{1}+a_{m-2} a_{0}=$ a_{m}. So the relation is true at $n=0$. Now, assume that the relation is true for all $j \leq n$. In particular,

$$
a_{m+k}=a_{m-1} a_{k+2}+a_{m-3} a_{k+1}+a_{m-2} a_{k}
$$

and we want to prove this relation at $n=k+1$.

$$
\begin{aligned}
a_{m+k+1} & =a_{m+k}+a_{m+k-2} \\
& =a_{m-1} a_{k+2}+a_{m-3} a_{k+1}+a_{m-2} a_{k}+a_{m-1} a_{k}+a_{m-3} a_{k-1}+a_{m-2} a_{k-2} \\
& =a_{m-1} a_{k+3}+a_{m-3} a_{k+2}+a_{m-2} a_{k+1}
\end{aligned}
$$

So, the relation is true for every positive integer n.
The following lemma gives the upper and lower bound for the Narayana numbers.
Lemma 2.2. For all integers $n \geq 1$, we have $\alpha^{n-3} \leq a_{n} \leq \alpha^{n-1}$, where α is the real root of the characteristic polynomial $f(x)=x^{3}-x^{2}-1$ given by

$$
\alpha=\frac{1}{3}\left(1+\sqrt[3]{\frac{29-3 \sqrt{93}}{2}}+\sqrt[3]{\frac{29+3 \sqrt{93}}{2}}\right)
$$

Proof. Using induction on n.
The p-adic order $v_{p}(k)$ of k is the exponent of the highest power of a prime p, which divides k. The next lemma gives the upper and lower bound of p-adic of factorials.

Lemma 2.3. For any integer $m \geq 1$ and prime p, we have

$$
\frac{m}{p-1}-\left\lfloor\frac{\log m}{\log p}\right\rfloor-1 \leq v_{p}(m!) \leq \frac{m-1}{p-1} .
$$

Proof. This formula can be found in [10].

Lemma 2.4.

1. If $i \equiv 16,21 \bmod 24$, then $a_{i} \equiv 0 \bmod 9$;
2. If $i \equiv 7 \bmod 24$, then $a_{i} \equiv 0 \bmod 3$.

Proof. Case (1): $i \equiv 16,21 \bmod 24$.

- Subcase (1): $i \equiv 16 \bmod 24$. We prove that $a_{i} \equiv 0 \bmod 9$ using induction. At $k=16$, we have $a_{16} \equiv 0 \bmod 9$. Now, assume that $a_{24 k+16} \equiv 0 \bmod 9$ and we want to prove that $a_{24(k+1)+16} \equiv 0 \bmod 9$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{24(k+1)+16} & =a_{23} a_{24 k+18}+a_{21} a_{24 k+17}+a_{22} a_{24 k+16} \\
& \equiv a_{24 k+16} \bmod 9 \\
& \equiv 0 \bmod 9
\end{aligned}
$$

Subcase (2) and Case (2) can be done in the same way.
Proposition 2.5. For all integers s and $n \geq 2$, we have

$$
\begin{align*}
a_{8 s 3^{n}} & \equiv 3^{n+3} \cdot 2 s+3^{n+2} \cdot 2 s \bmod 3^{n+4} ; \\
a_{8 s 3^{n}+1} & \equiv 3^{n+2} \cdot 5 s+3^{n+1} \cdot s+1 \bmod 3^{n+4} \tag{2}\\
a_{8 s 3^{n}+2} & \equiv 3^{n+3} \cdot 2 s+3^{n+2} \cdot 5 s+1 \bmod 3^{n+4} .
\end{align*}
$$

Proof. We prove this proposition using induction on n. At $n=2$ we want to prove the following:

$$
\begin{align*}
a_{72 s} & \equiv 3^{4} \cdot 8 s \bmod 3^{6} ; \\
a_{72 s+1} & \equiv 3^{3} \cdot 16 s+1 \bmod 3^{6} ; \tag{3}\\
a_{72 s+2} & \equiv 3^{4} \cdot 11 s+1 \bmod 3^{6} .
\end{align*}
$$

We can prove this by using induction on s. At $s=1$, we have

$$
\begin{aligned}
& 374009739309=a_{72} \equiv 648 \bmod 3^{6} ; \\
& 548137914373=a_{73} \equiv 433 \bmod 3^{6} ; \\
& 803335158406=a_{74} \equiv 163 \bmod 3^{6},
\end{aligned}
$$

which proves the initial step. Now, assume that the congruences are true at $s-1$ and we want to prove them at s. Using the inductive hypothesis on $s-1$, the definition of the Narayana numbers and Lemma 2.1, one can deduce the following:

$$
\begin{aligned}
a_{72 s}= & a_{72+72(s-1)}=a_{71} a_{72(s-1)+2}+a_{69} a_{72(s-1)+1}+a_{70} a_{72(s-1)} \\
\equiv & 459\left(3^{5} \cdot 2(s-1)+3^{4} \cdot 5(s-1)+1\right)+189\left(3^{4} \cdot 5(s-1)+3^{3} \cdot(s-1)+1\right) \\
& +514\left(3^{5} \cdot 2(s-1)+3^{4} \cdot 2(s-1)\right) \bmod 729 \\
\equiv & 3^{4} \cdot 8 s \bmod 729 .
\end{aligned}
$$

In the same manner, one can deduce the following:

$$
\begin{aligned}
a_{72 s+1} & \equiv 3^{3} \cdot 16 s+1 \bmod 729 \\
a_{72 s+2} & \equiv 3^{4} \cdot 11 s+1 \bmod 729
\end{aligned}
$$

Thus the congruences (3) hold for $s \geq 1$ and $n=2$. Given $s \geq 1$ and $n \geq 2$, assume the congruences (2) are true for $n-1$ and we want to prove them at n. Using the inductive hypothesis and the definition of the Narayana numbers, one can deduce the following:

$$
\begin{aligned}
a_{3^{n-1.8 s}} & =3^{n+2} \cdot 2 s+3^{n+1} \cdot 2 s+c_{0} \cdot 3^{n+3} \\
a_{3^{n-1.8 s+1}} & =3^{n+1} \cdot 5 s+3^{n} \cdot s+1+3^{n+3} \cdot c_{1} ; \\
a_{3^{n-1.8 s+2}} & =3^{n+2} \cdot 2 s+3^{n+1} \cdot 5 s+1+3^{n+3} \cdot c_{2} ; \\
a_{3^{n-1.8 s-2}} & =-3^{n+2} \cdot s+3^{n} \cdot s+1+\left(c_{1}-c_{0}\right) 3^{n+3} ; \\
a_{3^{n-1.8 s-1}} & =3^{n+2} \cdot 2 s-3^{n} \cdot s+3^{n+3}\left(c_{2}-c_{1}\right) .
\end{aligned}
$$

where c_{0}, c_{1}, c_{2} are integers. Using Lemma 2.1 and the previous relations, we have

$$
\begin{aligned}
a_{2\left(3^{n-1.8 s)}\right.} & =a_{\left(3^{n-1.8 s+1)+\left(3^{n-1} \cdot 8 s-1\right)}\right.} \\
& =a_{3^{n-1.8 s}} a_{3^{n-1.8 s+1}}+a_{3^{n-1.8 s-2}} a_{3^{n-1.8 s}}+a_{3^{n-1.8 s-1}} a_{3^{n-1.8 s-1}} \\
& \equiv\left(3^{n+2} \cdot 4 s+3^{n+3} \cdot 2 c_{0}+3^{n+1} \cdot 4 s\right) \bmod 3^{n+4}
\end{aligned}
$$

In the same manner, one can deduce the following:

$$
\begin{aligned}
a_{2\left(3^{n-1.8 s)+1}\right.} & \equiv 1+3^{n+1} \cdot 10 s+3^{n} \cdot 2 s+3^{n+3} \cdot 2 c_{1} \bmod 3^{n+4} \\
a_{2\left(3^{n-1.8 s)+2}\right.} & \equiv 1+3^{n+2} \cdot 4 s+3^{n+1} \cdot 10 s+3^{n+3} \cdot 2 c_{2} \bmod 3^{n+4}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
a_{3^{n .8 s}}= & a_{3^{n-1.8 s+2\left(3^{n-1.8 s)}\right.}} \\
= & a_{3^{n-1.8 s-1}} a_{2\left(3^{n-1.8 s)+2}\right.}+\left(a_{3^{n-1} \cdot 8 s}-a_{3^{n-1.8 s-1}}\right) a_{2\left(3^{n-1.8 s)+1}\right.}+a_{3^{n-1.8 s-2}} a_{2\left(3^{n-1.8 s)}\right.} \\
\equiv & \left(3^{n+2} \cdot 2 s-3^{n} \cdot s+\left(c_{2}-c_{1}\right) 3^{n+3}\right)\left(1+3^{n+2} \cdot 4 s+3^{n+1} \cdot 10 s+3^{n+3} \cdot 2 c_{2}\right) \\
& +\left(3^{n+2} \cdot 2 s+3^{n+1} \cdot 2 s+c_{0} \cdot 3^{n+3}-3^{n+2} \cdot 2 s+3^{n} \cdot s+\left(c_{1}-c_{2}\right) 3^{n+3}\right) \\
& \left(1+3^{n+1} \cdot 10 s+3^{n} \cdot 2 s+2 c_{1} \cdot 3^{n+3}\right)+\left(-3^{n+2} \cdot s+3^{n} \cdot s+1+\left(c_{1}-c_{0}\right) 3^{n+3}\right) \\
& \left(3^{n+2} \cdot 4 s+2 c_{0} \cdot 3^{n+3}+3^{n+1} \cdot 4 s\right) \bmod 3^{n+4} \\
\equiv & 3^{n+3} \cdot 2 s+3^{n+2} \cdot 2 s \bmod 3^{n+4} .
\end{aligned}
$$

In the same manner, one can deduce the following:

$$
\begin{aligned}
a_{3^{n} \cdot 8 s+1} & \equiv 3^{n+2} \cdot 5 s+3^{n+1} \cdot s+1 \bmod 3^{n+4} \\
a_{3^{n} \cdot 8 s+2} & \equiv 3^{n+2} \cdot 5 s+3^{n+3} \cdot 2 s+1 \bmod 3^{n+4}
\end{aligned}
$$

Corollary 2.6. For all integers $s \geq 1$ and $n \geq 1$, we have

$$
\begin{align*}
a_{8 s 3^{n}} & \equiv 3^{n+2} \cdot 2 s \bmod 3^{n+3} ; \\
a_{8 s 3^{n}+1} & \equiv 3^{n+2} \cdot 2 s+3^{n+1} \cdot s+1 \bmod 3^{n+3} ; \tag{4}\\
a_{8 s 3^{n}+2} & \equiv 3^{n+2} \cdot 2 s+1 \bmod 3^{n+3} .
\end{align*}
$$

Proof. The proof is a straightforward consequence of Proposition 2.5.
Now we fully characterize the 3 -adic valuation of $a_{i}+1$ and $a_{i}-1$.
Theorem 2.7. For all positive integers i, and $a_{i} \neq 1$, we have

$$
v_{3}\left(a_{i}-1\right)= \begin{cases}0, & i \equiv 0,4,5,7 \bmod 8 ; \\ v_{3}(i-1)+1, & i \equiv 1 \bmod 8 ; \\ v_{3}(i+2)+1, & i \equiv 6 \bmod 8 ; \\ v_{3}(i-2)+2, & i \equiv 2 \bmod 24 ; \\ 2, & i \equiv 10 \bmod 24 ; \\ v_{3}(i+6)(i+30)+2, & i \equiv 18 \bmod 24 ; \\ v_{3}(i-3)+2, & i \equiv 3 \bmod 24 ; \\ v_{3}(i+13)+2, & i \equiv 11 \bmod 24 ; \\ v_{3}(i+5)+2, & i \equiv 19 \bmod 24\end{cases}
$$

Proof. Case (1): $i \equiv 0,4,5,7 \bmod 8$.

- Subcase (1): $i \equiv 0 \bmod 8$, then $i=8 k$ for some integer k. We prove that $v_{3}\left(a_{i}-1\right)=0$ using induction. At $k=0$, we have $a_{0}-1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)}-1 & =a_{8 k+8}-1=a_{7} a_{8 k+2}+a_{5} a_{8 k+1}+a_{6} a_{8 k}-1 \\
& \equiv a_{8 k}-1 \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k}-1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)}-1 \not \equiv 0 \bmod 3$.

- Subcase (2): $i \equiv 4 \bmod 8$, then $i=8 k+4$ for some integer k. We prove that $v_{3}\left(a_{i}-1\right)=0$ using induction. At $k=0$, we have $a_{4}-1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+4}-1 & =a_{(8 k+4)+8}-1=a_{7} a_{8 k+6}+a_{5} a_{8 k+5}+a_{6} a_{8 k+4}-1 \\
& \equiv a_{8 k+4}-1 \quad \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k+4}-1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+4}-1 \not \equiv 0 \bmod 3$.

- Subcase (3): $i \equiv 5 \bmod 8$, then $i=8 k+5$ for some integer k. We prove that $v_{3}\left(a_{i}-1\right)=0$ using induction. At $k=0$, we have $a_{5}-1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+5}-1 & =a_{(8 k+5)+8}-1=a_{7} a_{8 k+7}+a_{5} a_{8 k+6}+a_{6} a_{8 k+5}-1 \\
& \equiv a_{8 k+4}-1 \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k+5}-1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+5}-1 \not \equiv 0 \bmod 3$.

- Subcase (4): $i \equiv 7 \bmod 8$, then $i=8 k+7$ for some integer k. We prove that $v_{3}\left(a_{i}-1\right)=0$ using induction. At $k=0$, we have $a_{7}-1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+7}-1 & =a_{(8 k+7)+8}-1=a_{7} a_{8 k+9}+a_{5} a_{8 k+8}+a_{6} a_{8 k+7}-1 \\
& \equiv a_{8 k+7}-1 \quad \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k+7}-1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+7}-1 \not \equiv 0 \bmod 3$.
Case (2): $i \equiv 1 \bmod 8$. In this case, we have $i-1=3^{n} \cdot 8 s$, where $n \geq 1$ and $3 \Lambda s$. Using Corollary 2.6, we have

$$
\begin{aligned}
a_{i}-1 & =a_{3^{n} \cdot 8 s+1}-1 \\
& \equiv 1+3^{n+1} \cdot s+3^{n+2} \cdot 2 s-1 \bmod 3^{n+3} \\
& \equiv 3^{n+1} \cdot s \bmod 3^{n+3} .
\end{aligned}
$$

Therefore, $v_{3}\left(a_{i}-1\right)=n+1=v_{3}(i-1)+1$.
Case (3): $i \equiv 6 \bmod 8$. In this case, we have $i+2=3^{n} \cdot 8 s$, where $n \geq 1$ and $3 \Lambda s$. Using Corollary 2.6, we have

$$
\begin{aligned}
a_{i}-1 & =a_{3^{n \cdot 8 s-2}}-1 \\
& \equiv 1+3^{n+1} \cdot s+3^{n+2} \cdot 2 s-1 \bmod 3^{n+3} \\
& \equiv 3^{n+1} \cdot s \bmod 3^{n+3}
\end{aligned}
$$

Therefore, $v_{3}\left(a_{i}-1\right)=n+1=v_{3}(i+2)+1$.
Case (4): $i \equiv 2 \bmod 24$. In this case, we have $i-2=3^{n} \cdot 8 s$, where $n \geq 1$ and $3 \backslash s$. Using Corollary 2.6, we have

$$
\begin{aligned}
a_{i}-1 & =a_{3^{n \cdot 8 s+2}}-1 \\
& \equiv 1+3^{n+2} \cdot 2 s-1 \bmod 3^{n+3} \\
& \equiv 3^{n+2} \cdot 2 s \bmod 3^{n+3} .
\end{aligned}
$$

Therefore, $v_{3}\left(a_{i}-1\right)=n+2=v_{3}(i-2)+2$.

Case (5): $i \equiv 10 \bmod 24$, then $i=24 k+10$ for some integer k. We are going to prove that $v_{3}\left(a_{i}-1\right)=2$ using induction. At $k=0$, we have $v_{3}\left(a_{10}-1\right)=2$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{24(k+1)+10}-1 & =a_{(24 k+10)+24}-1=a_{23} a_{24 k+12}+a_{21} a_{24 k+11}+a_{22} a_{24 k+10}-1 \\
& \equiv\left(a_{24 k+10}-1\right) \bmod 9 .
\end{aligned}
$$

Therefore, $a_{24 k+10}-1 \equiv 0 \bmod 9$ if and only if $a_{24(k+1)+10}-1 \equiv 0 \bmod 9$. But, using Lemma 2.4

$$
\begin{aligned}
a_{24(k+1)+10}-1 & \equiv 9\left(a_{24 k+12}+a_{24 k+12}+a_{24 k+11}+a_{24 k+10}\right)+a_{24 k+10}-1 \bmod 27 \\
& \equiv 9\left(3 a_{24 k+11}+3 a_{24 k+9}+a_{24 k+7}\right)+a_{24 k+10}-1 \bmod 27 \\
& \equiv a_{24 k+10}-1 \bmod 27
\end{aligned}
$$

Therefore, $a_{24 k+10}-1 \not \equiv 0 \bmod 27$ if and only if $a_{24(k+1)+10}-1 \not \equiv 0 \bmod 27$. Therefore, $v_{3}\left(a_{i}-1\right)=2$.
Case (6): $i \equiv 18 \bmod 24$, then $i=24 k+18$ for some integer k. We want to prove that:

$$
\begin{aligned}
v_{3}\left(a_{24 k+18}-1\right) & =v_{3}((24 k+24)(24 k+48))+2 \\
& =v_{3}\left(24^{2}(k+1)(k+2)\right)+2 \\
& =v_{3}((k+1)(k+2))+4
\end{aligned}
$$

- Subcase (1): $k \equiv 0 \bmod 3$. We are going to prove that $v_{3}\left(a_{24 k+18}-1\right)=4$ using induction. At $k=0$, we have $a_{18}-1 \equiv 0 \bmod 81$ and $a_{18}-1 \not \equiv 0 \bmod 243$. We want to prove that $a_{72(k+1)+18}-1 \equiv 0 \bmod 81$ and $a_{72(k+1)+18}-1 \not \equiv 0 \bmod 243$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{72(k+1)+18}-1 & =a_{(72 k+18)+72}-1=a_{71} a_{72 k+20}+a_{69} a_{72 k+19}+a_{70} a_{72 k+18}-1 \\
& \equiv 27\left(2 a_{72 k+20}+a_{72 k+19}+a_{72 k+18}\right)+a_{72 k+18}-1 \bmod 81 \\
& \equiv a_{72 k+18}-1 \bmod 81 . \\
a_{72(k+1)+18}-1 & =27\left(8 a_{72 k+20}+7 a_{72 k+19}+a_{72 k+18}\right)+a_{72 k+18}-1 \bmod 243 \\
& =27\left(9 a_{72 k+20}-a_{72 k+20}+7 a_{72 k+19}+a_{72 k+18}\right) \\
& =27\left(9 a_{72 k+20}+7 a_{72 k+16}+9 a_{72 k+18}-a_{72 k+21}\right)+a_{72 k+18}-1 \bmod 243 \\
& \equiv a_{72 k+18}-1 \bmod 243 .
\end{aligned}
$$

Therefore, $a_{72 k+18}-1 \equiv 0 \bmod 81$ if and only if $a_{72(k+1)+18}-1 \equiv 0 \bmod 81$ and $a_{72 k+18}-$ $1 \not \equiv 0 \bmod 243$ if and only if $a_{72(k+1)+18}-1 \not \equiv 0 \bmod 243$. Therefore, $v_{3}\left(a_{i}-1\right)=4$.

- Subcase (2): $k \equiv 1 \bmod 3$. In this case we have $i=3^{n} \cdot 8 s-30$ where $n \geq 2$ and $3 \nmid s$. Using Lemma 2.1 and Proposition 2.5, we have

$$
\begin{aligned}
a_{i}-1= & a_{3^{n} \cdot 8 s-30}-1=a_{3^{n} \cdot 8 s-27}-a_{3^{n} .8 s-28}-1 \\
= & a_{3^{n} \cdot 8 s-24}-2 a_{3^{n} \cdot 8 s-25}+a_{3^{n} \cdot 8 s-26}-1 \\
= & -3 a_{3^{n} \cdot 8 s-21}-2 a_{3^{n} \cdot 8 s-22}+3 a_{3^{n} \cdot 8 s-20}-1 \\
= & -8 a_{3^{n} \cdot 8 s-18}+4 a_{3^{n} \cdot 8 s-17}+a_{3^{n} \cdot 8 s-16}-1 \\
= & -12 a_{3^{n} \cdot 8 s-12}-26 a_{3^{n} \cdot 8 s-11}+21 a_{3^{n} \cdot 8 s-10}-1 \\
= & 73 a_{3^{n} \cdot 8 s-6}-63 a_{3^{n} \cdot 8 s-5}+9 a_{3^{n} \cdot 8 s-4}-1 \\
= & -64 a_{3^{n} .8 s-4}+136 a_{3^{n} \cdot 8 s-3}-63 a_{3^{n} \cdot 8 s-2}-1 \\
= & a_{3^{n} .8 s-2}-200 a_{3^{n} \cdot 8 s-1}+136 a_{3^{n} \cdot 8 s}-1 \\
= & 201 a_{3^{n} \cdot 8 s+1}-200 a_{3^{n} \cdot 8 s+2}+135 a_{3^{n} \cdot 8 s}-1 \\
\equiv & 201\left(3^{n+2} \cdot 5 s+3^{n+1} \cdot s+1\right)-200\left(3^{n+3} \cdot 2 s+3^{n+2} \cdot 5 s+1\right) \\
& +135\left(3^{n+3} 2 s+3^{n+2} \cdot 2 s\right)-1 \bmod 3^{n+4} \equiv-3^{n+3} \cdot 130 s \bmod 3^{n+4} .
\end{aligned}
$$

Therefore, $v_{3}\left(a_{i}-1\right)=n+3=v_{3}(i+30)+3$.
Case (7): $i \equiv 3 \bmod 24$. In this case we have $i-2=3^{n} \cdot 8 s$ where $n \geq 1$ and $3 \Lambda s$. Using Corollary 2.6, we have

$$
\begin{aligned}
a_{i}-1 & =a_{3^{n} 8 s+3}-1 \\
& =a_{3^{n} 8 s}+a_{3^{n} 8 s+2}-1 \\
& \equiv 3^{n+2} \cdot 2 s+1+3^{n+2} \cdot 2 s-1 \bmod 3^{n+3} \\
& \equiv 3^{n+2} \cdot 4 s \bmod 3^{n+3} .
\end{aligned}
$$

Therefore, $v_{3}\left(a_{i}-1\right)=n+2=v_{3}(i-3)+2$.
Case (8): $i \equiv 11 \bmod 24$. In this case we have $i+13=3^{n} \cdot 8 s$ where $n \geq 1$ and $3 \not \backslash s$. Using Corollary 2.6 , we have

$$
\begin{aligned}
a_{i}-1 & =a_{3^{n} .8 s-13}-1 \\
& =a_{3^{n} \cdot 8 s-10}-a_{3^{n} \cdot 8 s-11}-1 \\
& =a_{3^{n} \cdot 8 s-10}-a_{3^{n} \cdot 8 s-8}-a_{3^{n} \cdot 8 s-9}-1 \\
& =a_{3^{n} \cdot 8 s-7}-2 a_{3^{n} .8 s-8}-a_{3^{n} .8 s-9}-1 \\
& =3 a_{3^{n .8 s-6}}-2 a_{3^{n} .8 s-5}-1 \\
& =5 a_{3^{n .8 s-3}}-a_{3^{n .8 s-4}}-2 a_{3^{n} .8 s-1}-1 \\
& =5 a_{3^{n .8 s}}-8 a_{3^{n} .8 s-1}+a_{3^{n} .8 s-2}-1 \\
& =4 a_{3^{n .8 s}}+9 a_{3^{n} .8 s+1}-8 a_{3^{n} \cdot 8 s+2}-1 \\
& \equiv 4\left(3^{n+2} \cdot 2 s\right)+9\left(3^{n+2} \cdot 2 s+3^{n+1} \cdot s+1\right)-8\left(3^{n+2} \cdot 2 s+1\right)-1 \bmod 3^{n+3} \\
& \equiv-4\left(3^{n+2} \cdot 2 s\right) \bmod 3^{n+3} .
\end{aligned}
$$

Therefore, $v_{3}\left(a_{i}-1\right)=n+2=v_{3}(i+13)+2$.
Case (9): $i \equiv 19 \bmod 24$. In this case we have $i+5=3^{n} \cdot 8 s$ where $n \geq 1$ and $3 \bigwedge s$. Using

Corollary 2.6, we have

$$
\begin{aligned}
a_{i}-1 & =a_{3^{n} \cdot 8 s-5}-1 \\
& =a_{3^{n} 8 s-2}-a_{3^{n} \cdot 8 s-3}-1 \\
& =-2 a_{3^{n .8 s}}+a_{3^{n .8 s+2}}-1 \\
& \equiv-3^{n+2} \cdot 2 s \bmod 3^{n+3} .
\end{aligned}
$$

Therefore, $v_{3}\left(a_{i}-1\right)=n+2=v_{3}(i+5)+2$.
Theorem 2.8. For all integers i, we have

$$
v_{3}\left(a_{i}+1\right)= \begin{cases}0, & i \equiv 0,1,2,3,5,6,7 \bmod 8 \\ 1, & i \equiv 4,12 \bmod 24 \\ v_{3}(i+4)+1, & i \equiv 20 \bmod 24\end{cases}
$$

Proof. $\underline{\text { Case (1): } i \equiv 0,1,2,3,5,6,7 \bmod 8 .}$

- Subcase (1): $i \equiv 0 \bmod 8$, then $i=8 k$ for some integer k. We are going to prove that $v_{3}\left(a_{i}+1\right)=0$ using induction. At $k=0$, we have $a_{8}+1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)}+1 & =a_{8 k+8}+1=a_{7} a_{8 k+2}+a_{5} a_{8 k+1}+a_{6} a_{8 k}+1 \\
& \equiv\left(a_{8 k}+1\right) \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k}+1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)}+1 \not \equiv 0 \bmod 3$. Therefore, $v_{3}\left(a_{i}+1\right)=$ 0 .

- Subcase (2): $i \equiv 1 \bmod 8$, then $i=8 k+1$ for some integer k. We prove that $v_{3}\left(a_{i}+1\right)=0$ using induction. At $k=0$, we have $a_{9}+1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+1}+1 & =a_{8 k+8+1}+1=a_{7} a_{8 k+3}+a_{5} a_{8 k+2}+a_{6} a_{8 k+1}+1 \\
& \equiv\left(a_{8 k+1}+1\right) \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k+1}+1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+1}+1 \not \equiv 0 \bmod 3$. Therefore, $v_{3}\left(a_{i}+1\right)=0$.

- Subcase (3): $i \equiv 2 \bmod 8$, then $i=8 k+2$ for some integer k. We prove that $v_{3}\left(a_{i}+1\right)=0$ using induction. At $k=0$, we have $a_{2}+1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+2}+1 & =a_{8 k+8+2}+1=a_{7} a_{8 k+4}+a_{5} a_{8 k+3}+a_{6} a_{8 k+2}+1 \\
& \equiv\left(a_{8 k+2}+1\right) \bmod 3
\end{aligned}
$$

Therefore, $a_{8 k+2}+1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+2}+1 \not \equiv 0 \bmod 3$. Therefore, $v_{3}\left(a_{i}+1\right)=0$.

- Subcase (4): $i \equiv 3 \bmod 8$, then $i=8 k+3$ for some integer k. We prove that $v_{3}\left(a_{i}+1\right)=0$ using induction. At $k=0$, we have $a_{3}+1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+3}+1 & =a_{8 k+8+3}+1=a_{7} a_{8 k+5}+a_{5} a_{8 k+4}+a_{6} a_{8 k+3}+1 \\
& \equiv\left(a_{8 k+3}+1\right) \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k+3}+1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+3}+1 \not \equiv 0 \bmod 3$. Therefore, $v_{3}\left(a_{i}+1\right)=0$.

- Subcase (5): $i \equiv 5 \bmod 8$, then $i=8 k+5$ for some integer k. We prove that $v_{3}\left(a_{i}+1\right)=0$ using induction. At $k=0$, we have $a_{5}+1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+5}+1 & =a_{8 k+8+5}+1=a_{7} a_{8 k+7}+a_{5} a_{8 k+6}+a_{6} a_{8 k+5}+1 \\
& \equiv\left(a_{8 k+5}+1\right) \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k+5}+1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+5}+1 \not \equiv 0 \bmod 3$. Therefore, $v_{3}\left(a_{i}+1\right)=0$.

- Subcase (6): $i \equiv 6 \bmod 8$, then $i=8 k+6$ for some integer k. We prove that $v_{3}\left(a_{i}+1\right)=0$ using induction. At $k=0$, we have $a_{6}+1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+6}+1 & =a_{8 k+8+6}+1=a_{7} a_{8 k+8}+a_{5} a_{8 k+7}+a_{6} a_{8 k+6}+1 \\
& \equiv\left(a_{8 k+6}+1\right) \bmod 3 .
\end{aligned}
$$

Therefore, $a_{8 k+6}+1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+6}+1 \not \equiv 0 \bmod 3$. Therefore, $v_{3}\left(a_{i}+1\right)=0$.

- Subcase (7): $i \equiv 7 \bmod 8$, then $i=8 k+7$ for some integer k. We prove that $v_{3}\left(a_{i}+1\right)=0$ using induction. At $k=0$, we have $a_{7}+1 \not \equiv 0 \bmod 3$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{8(k+1)+7}+1 & =a_{8 k+8+7}+1=a_{7} a_{8 k+9}+a_{5} a_{8 k+8}+a_{6} a_{8 k+7}+1 \\
& \equiv\left(a_{8 k+7}+1\right) \bmod 3
\end{aligned}
$$

Therefore, $a_{8 k+7}+1 \not \equiv 0 \bmod 3$ if and only if $a_{8(k+1)+7}+1 \not \equiv 0 \bmod 3$. Therefore, $v_{3}\left(a_{i}+1\right)=0$.

Case (2): $i \equiv 4,12 \bmod 24$

- Subcase (1): $i \equiv 4 \bmod 24$, then $i=24 k+4$ for some integer k. We are going to prove that $v_{3}\left(a_{i}+1\right)=1$ using induction. At $k=0$, we have $a_{4}+1 \equiv 0 \bmod 3$ and $a_{4}+1 \not \equiv 0 \bmod 9$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{24(k+1)+4}+1 & =a_{24 k+24+4}+1=a_{23} a_{24 k+6}+a_{21} a_{24 k+5}+a_{22} a_{24 k+4}+1 \\
& \equiv\left(a_{24 k+4}+1\right) \bmod 9 .
\end{aligned}
$$

Therefore, $a_{24 k+4}-1 \equiv 0 \bmod 3$ if and only if $a_{24(k+1)+4}-1 \equiv 0 \bmod 3$, and $a_{24 k+4}-1 \not \equiv$ $0 \bmod 9$ if and only if $a_{24(k+1)+4}-1 \not \equiv 0 \bmod 9$. Therefore, $v_{3}\left(a_{i}+1\right)=1$.

- Subcase (2): $i \equiv 12 \bmod 24$, then $i=24 k+12$ for some integer k. We prove that $v_{3}\left(a_{i}+1\right)=1$ using induction. At $k=0$, we have $a_{12}+1 \equiv 0 \bmod 3$ and $\not \equiv 0 \bmod 9$. Using Lemma 2.1, we have

$$
\begin{aligned}
a_{24(k+1)+12}+1 & =a_{24 k+24+12}+1=a_{23} a_{24 k+14}+a_{21} a_{24 k+13}+a_{22} a_{24 k+12}+1 \\
& \equiv\left(a_{24 k+12}+1\right) \bmod 9 \equiv 0 \bmod 3 \not \equiv 0 \bmod 9
\end{aligned}
$$

Therefore, $a_{24 k+12}+1 \equiv 0 \bmod 3$ if and only if $a_{24(k+1)+12}+1 \equiv 0 \bmod 3$, and $a_{24 k+12}+$ $1 \not \equiv 0 \bmod 9$ if and only if $a_{24(k+1)+12}+1 \not \equiv 0 \bmod 9$. Therefore, $v_{3}\left(a_{i}+1\right)=1$.

Case (3): $i \equiv 20 \bmod 24$. In this case we have $i=3^{n} \cdot 8 s-4$ where $n \geq 1$ and $3 \backslash s$. Using Lemma 2.1 and Corollary 2.6. Then, we have

$$
\begin{aligned}
a_{i}+1 & =a_{8 s 3^{n}-4}+1=a_{8 s 3^{n}-1}-a_{8 s 3^{n}-2}+1 \\
& =a_{8 s 3^{n}+2}-2 a_{8 s 3^{n}+1}+a_{8 s 3^{n}}+1 \\
& \equiv-3^{n+1} \cdot 2 s \bmod 3^{n+3} .
\end{aligned}
$$

Therefore, $v_{3}\left(a_{i}+1\right)=n+1=v_{3}(i+4)+1=n+1$.

3 Proof of Theorem 1.1

Proof. If $a_{n}=1$, there is no solution for equation (1). Now suppose that $a_{n} \neq 1$ and using that fact

$$
\frac{m}{2}-\left\lfloor\frac{\log m}{\log 3}\right\rfloor-1 \leq v_{3}(m!)
$$

together with Theorem 2.7 and Theorem 2.8, we get

$$
\begin{aligned}
& \frac{m}{2}-\left\lfloor\frac{\log m}{\log 3}\right\rfloor-1 \\
& \leq v_{3}(m!)=v_{3}\left(a_{n}-1\right)+v_{3}\left(a_{n}+1\right) \\
& \leq v_{3}((n-1)(n+2)(n-2)(n+6)(n+30)(n-3)(n+13)(n+15)(n+4))+16 .
\end{aligned}
$$

Thus,

$$
\frac{m}{2}-\left\lfloor\frac{\log m}{\log 3}\right\rfloor-1 \leq 9 v_{3}(n+w)+16
$$

where $w \in\{-1,2,-2,6,30,-3,13,5,4\}$. Therefore,

$$
3^{\left\lfloor\frac{1}{9}\left(\frac{m}{2}-\left\lfloor\frac{\log m}{\log 3}\right\rfloor-17\right)\right\rfloor} \leq n+w \leq n+30 .
$$

By applying the \log function, we obtain

$$
\begin{equation*}
\left\lfloor\frac{1}{9}\left(\frac{m}{2}-\left\lfloor\frac{\log m}{\log 3}\right\rfloor-17\right)\right\rfloor \leq \frac{n+30}{\log 3} . \tag{5}
\end{equation*}
$$

On the other hand,

$$
(1.64)^{2 n-6} \leq a_{n}^{2}=m!+1<2\left(\frac{m}{2}\right)^{m}
$$

So

$$
n<4+(1.33) m \log \left(\frac{m}{2}\right)
$$

Substituting in equation (5), we obtain

$$
\left\lfloor\frac{1}{9}\left(\frac{m}{2}-\left\lfloor\frac{\log m}{\log 3}\right\rfloor-17\right)\right\rfloor \leq \frac{34+1.33 \log \left(\frac{m}{2}\right)}{\log 3} .
$$

This inequality yields $m \leq 221$. Then $n \leq 1386$. Now, we use a simple routine written in SAGE to get the solutions. The proof is completed.

References

[1] Allouche, J. P., \& Johnson, T. (1996). Narayana's cows and delayed morphisms. Journées d'Informatique Musicale, île de Tatihou, France. Available online at: https://hal. science/hal-02986050
[2] Berndt, B. C., \& Galway, W. F. (2000). On the Brocard-Ramanujan Diophantine equation $n!+1=m^{2}$. The Ramanujan Journal, 4(2), 41-42.
[3] Bilgici, G. (2016). The generalized order- k Narayana's cows numbers. Mathematica Slovaca, 66(4), 795-802.
[4] Brocard, H. (1876). Question 166, Nouv. Corresp. Math., 2, 287.
[5] Facó, V., \& Marques, D. (2016). Tribonacci numbers and the Brocard-Ramanujan equation. Journal of Integer Sequences, 19(4), 4-16.
[6] Grossman, G., \& Luca, F. (2002). Sums of factorials in binary recurrence sequences. Journal of Number Theory, 93(2), 87-107.
[7] Luca, F. (1999). Products of factorials in binary recurrence sequences. The Rocky Mountain Journal of Mathematics, 29(4), 1387-1411.
[8] Luca, F., \& Stanica, P. (2006). $F_{1} F_{2} F_{3} F_{4} F_{5} F_{6} F_{8} F_{10} F_{12}=11$!. Portugaliae Mathematica, 63(3), 251-260.
[9] Marques, D. (2012). Fibonacci numbers at most one away from the product of factorials. Notes on Number Theory and Discrete Mathematics, 18(3), 13-19.
[10] Marques, D. (2012). The order of appearance of product of consecutive Fibonacci numbers. Fibonacci Quarterly, 50(2), 132-139.
[11] Overholt, M. (1993). The Diophantine equation $n!+1=m^{2}$. Bulletin of the London Mathematical Society, 25(2), 104.
[12] Ramanujan, S. (1962). Ramanujan's Collected Works. Chelsea, New York.
[13] Zhou, C. (1999). Constructing identities involving $K^{\text {th }}$-order F-L numbers by using the characteristic polynomial. Applications of Fibonacci Numbers, 369-379.

