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Abstract: Let {an}n>0 be the Narayana sequence defined by the recurrence a,, = a,_1 + a,_3
for all n > 3 with intital values ap = 0 and a; = ay = 1. In this paper, we fully characterize the
3-adic valuation of a,, + 1 and a,, — 1 and then we find all positive integer solutions (u,m) to the
Brocard-Ramanujan equation m! + 1 = u? where u is a Narayana number.
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1 Introduction

Diophantine equations involving factorial numbers have been studied by many mathematicians
in the last few years. By Bertrand’s postulate, we can prove that n! is a perfect power only when
n=1. However, one of the most famous among such equations was posed by Brocard [4] in 1876
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and independently by Ramanujan [12] in 1913. This Diophantine equation
m! 4+ 1 =u? (1)

i1s now known as Brocard—Ramanujan equation.

The three known solutions m = 4,5,7 are easy to check, meanwhile, no other solutions
exist with m < 10? as it has been proved by Berndt and Galaway in [2]. Although Overholt [11]
showed that the equation (1) has only many solutions under a weak version of the ABC conjecture,
the Brocard—Ramanujan equation is still an open problem. Grossman and Luca [6] showed that if
k is fixed, and F, is the n-th Fibonacci number, then there are only finitely many positive integers
n such that

E,=mi'+my! + -+ my!

holds for some positive integers my, mo, ..., my. Moreover, all the solutions for the case k£ < 2
were determined. In 1999, Luca [7] proved that the n-th Fibonacci number F}, is a product of
factorials only when n = 1,2,3,6 and 12. Furthermore, Luca and Stanica [8] showed that the
largest product of distinct Fibonacci numbers which is a product of factorials is

F1F2F3F4F5F6F8F10F12 =11!.

In 2012 and 2016, Marques [5,9] proved that (u, m) = (4, 5) is the only solution of Eq. (1) where
u is a Fibonacci number and there is no solution of Eq. (1) when w is a Tribonacci number. Let
{an}n>0 be the Narayana sequence defined by the recurrence a,, = a,,—1 + a,_3 foralln > 3
with initial values ao = 0 and a; = ay = 1. The first terms of this sequence are

0,1,1,1,2,3,4,6,9,28, 41, 60, 88, 129, 189, 277.

Some properties of the Narayana sequence and its generalizations can be found in [1,3]. We are
following the same technique used in [5] by Vinicius Facé and Diego Marques. More precisely,
we prove the following theorem.

Theorem 1.1. There are no positive integer solutions (m,u) with w = a, for the Brocard—
Ramanujan equation (1), where a,, is the n-th member of the Narayana sequence.

2 Auxiliary results
Before proceeding further, some lemmas will be needed. The next lemma provides a formula for
the Narayana numbers.
Lemma 2.1. For all positive integers m,n, we have
Amtn = Am—10n+2 T Qp—30p4+1 + Qm—20ny.

Proof. We prove this result using induction on n. Atn = 0, we have a,,_1as+a,, 301+, 209 =
Gm. So the relation is true at n = 0. Now, assume that the relation is true for all j < n. In
particular,

Atk = Am—1Ak4+2 + Qp—30k 41 + Ap—2Q

and we want to prove this relation at n = k + 1.

463



Omik+1l = Omik + Gmak—2
= Om-10kt2 T Qp—30k41 + Qm20k + Q10 + Q301 + Q202

= Qm—10k+3 + Qp—30k+2 + Qp—20k4+1.
So, the relation is true for every positive integer n. ]
The following lemma gives the upper and lower bound for the Narayana numbers.

Lemma 2.2. For all integers n > 1, we have o™ 3 < a,, < o™ %, where o is the real root of the

characteristic polynomial f(x) = x> — 22 — 1 given by

5129 — 393 5/29 + 393
2 + 2

1
1+

=

Proof. Using induction on n. ]

The p-adic order v, (k) of k is the exponent of the highest power of a prime p, which divides
k. The next lemma gives the upper and lower bound of p-adic of factorials.

Lemma 2.3. For any integer m > 1 and prime p, we have

m logm —1§Up(m!)Sm_1-
p—1 log p p—1
Proof. This formula can be found in [10]. O]

Lemma 2.4.
1. If1 = 16,21 mod 24, then a; = 0 mod 9,
2. If1 =7 mod 24, then a; = 0 mod 3.
Proof. Case (1):7 = 16,21 mod 24.

e Subcase (1): ¢ = 16 mod 24. We prove that a; = 0 mod 9 using induction. At k = 16,
we have a1 = 0 mod 9. Now, assume that asyx 116 = 0 mod 9 and we want to prove that
a24(k+1)+16 = 0 mod 9. Using Lemma 2.1, we have

A24(k+1)+16 = (23024k+18 + A21A24k+17 T A22024k+16
= agqp+16 mod 9
= (O mod9.

Subcase (2) and Case (2) can be done in the same way. [l

Proposition 2.5. For all integers s and n > 2, we have

Ay = 3" 254+ 3"12 . 25 mod 3",
Agogn sy = 3" 55+ 3" s+ 1 mod 3" )
a = 3" .25+ 3""2. 55+ 1 mod 3"

853142
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Proof. We prove this proposition using induction on n. At n = 2 we want to prove the following:

a.,,. = 3*-8smod 3%
Arpory = 3%+ 165 + 1 mod 3°; 3)
Ay, = 3*- 115+ 1 mod 3°,

72542

We can prove this by using induction on s. At s = 1, we have

374009739309 = a., = 648 mod 3°;
548137914373 = a,, = 433 mod 3°;
803335158406 = a,, = 163 mod 3°,

which proves the initial step. Now, assume that the congruences are true at s — 1 and we want to
prove them at s. Using the inductive hypothesis on s — 1, the definition of the Narayana numbers
and Lemma 2.1, one can deduce the following:

Arys = CL72+72(571) = a71a72(571)+2 + a69a72(571)+1 + 6L70a72(571)
= 459 (3°-2(s—1)+3*-5(s—1)+1) +189(3*-5(s — 1)+ 3> - (s = 1) + 1)
+514 (3°-2(s — 1) + 3* - 2(s — 1)) mod 729

= 3%*.8s mod 729.
In the same manner, one can deduce the following:

a = 3%.16s 4+ 1 mod 729;

72s+1

a = 3%*.11s+ 1 mod 729.

72542

Thus the congruences (3) hold for s > 1 and n = 2. Given s > 1 and n > 2, assume the
congruences (2) are true for n — 1 and we want to prove them at n. Using the inductive hypothesis
and the definition of the Narayana numbers, one can deduce the following:

Uy, = 314296 4 37l 96 4 ¢ . 37,
a3n71'85+1 = 3n+1 -5s+3"-s+1+ 3n+3 Cer
s, = 3722543755 11437 oy
ntgsn = —3"2 s 43" s+ 14 (¢ — o) 3™
a, ., = 3725 -3" 5 +3" (e — ).

where ¢, c1, ¢, are integers. Using Lemma 2.1 and the previous relations, we have

az(sn—lss) - a(S"_l-85+1)+(3"_1<8s—1)

a a +a

a a a
3n—1l.8s 3n—1l.8s41 an—1l.8gs—2 3n—1l.8s + gn—1l.85—1 3n—1l.8s—1

= (3"% .45+ 3" . 2¢o + 3" - 45) mod 3",
In the same manner, one can deduce the following:

= 143" .10s 43" 25+ 3""3. 2¢; mod 3"+,
= 1+3""2 .45+ 3" . 10s + 33 . 2¢, mod 3",

a
2(37n—1.85)+1

a2(3n_1»8s)+2
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Consequently,

Agn.gy =

Ay -1

3n—1.854+2(3n—1.8s)
a3"_1-8571a2(3"_1-85)+2 + (asn—l'gs o asn—1-8571)a2(3n—1-ss)+1 + a3"_1<8572a2(3"_1~8s)
(3" 25 = 3" s+ (ca — 1) 3"") (1 +3"%2 - 4s + 3" - 105 + 3" - 205)
+ (3" 25 4 3" 25 49 - 3" = 372 25437 - s+ (1 — ) 3"TP)
(143" 105 +3" - 25 4+ 2¢1 - 3"°) + (=3""2 - s+ 3" - s + 1+ (c1 — o) 3"7)
(3""2 - 4s 4 2¢o - 3" + 3" - 4s) mod 3"

3"+3 .95 4+ 3"*2 . 25 mod 3714,

In the same manner, one can deduce the following:

Ogn.geyr = 32 .55 4+ 3" . s+ 1 mod 3n+4§

a = 3"2.55 4+ 3" .25+ 1 mod 3"+, ]

3M.8s5+2

Corollary 2.6. For all integers s > 1 andn > 1, we have

Ay n = 3"7% .25 mod 3"
Uggn iy = 3"*2.25 4+ 3" . 5+ 1 mod 3"3; 4)
Qgsanio = 372254+ 1 mod 3",
Proof. The proof is a straightforward consequence of Proposition 2.5. ]

Now we fully characterize the 3-adic valuation of a; + 1 and a; — 1.

Theorem 2.7. For all positive integers i, and a; # 1, we have

(

0, 1 =0,4,5,7mod §;

vg(i — 1) + 1, ¢ =1mod §;

v3(i +2) + 1, ¢ =6 mod §;

(i — 2) + 2, i = 2 mod 24;
v3(a; — 1) =< 2, i = 10 mod 24,

v3(1 +6)(i + 30)+2, :=18 mod 24;

vg(i — 3) + i =3 mod 24;

Ug(l+13)+2 i = 11 mod 24,

| vs(i+5)+2, i =19 mod 24.

Proof. Case (1):42=0,4,5,7 mod 8.

* Subcase (1): @ = 0 mod 8, then i = 8k for some integer k. We prove that v3(a; — 1) = 0

using induction. At k£ = 0, we have ag — 1 # 0 mod 3. Using Lemma 2.1, we have

-1 = gpys — 1= Qg o+ A5y ) T+ Aglyy — 1

= a, —1 mod 3.

a8(k+1)

Therefore, ag, — 1 # 0 mod 3 if and only if ag(41) — 1 #Z 0 mod 3.
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* Subcase (2): i = 4 mod 8, then i = 8k +4 for some integer k. We prove that v3(a; —1) =0
using induction. At k = 0, we have ay — 1 #Z 0 mod 3. Using Lemma 2.1, we have

Aghr1yra — I = A isprayrs 1= Ar gy o+ A5y o+ Qs — 1

= a —1 mod 3.

8k+4

Therefore, agy44 — 1 # 0 mod 3 if and only if ag(41)+4 — 1 #Z 0 mod 3.

* Subcase (3): i = 5 mod 8, then i = 8k + 5 for some integer k. We prove that v3(a; —1) = 0

using induction. At £ = 0, we have a5 — 1 # 0 mod 3 . Using Lemma 2.1, we have
=1 = g5 — 1= 004, Fa04, + a0, —1

= a — 1 mod 3.

8k+4

aS(k+1)+5

Therefore, ag,45 — 1 # 0 mod 3 if and only if ag(x41)4+5 — 1 Z 0 mod 3.

* Subcase (4): i = 7 mod 8, then i = 8k + 7 for some integer k. We prove that vs(a;—1) =0

using induction. At k£ = 0, we have a; — 1 % 0 mod 3. Using Lemma 2.1, we have
-1 = Qspsryrs 1= Ur Qg g T A5l o T Aslygy 7 — 1

= a —1 mod 3.

8k+7

a8(k+1)+7

Therefore, ag47 — 1 # 0 mod 3 if and only if ag(x41)+7 — 1 #Z 0 mod 3.

Case (2): i« = 1 mod 8. In this case, we have i — 1 = 3" - 8s, where n > 1 and 3 / s. Using
Corollary 2.6, we have

a, — I = Agn gsp1 — 1

= 1+3"" - s+3""? 25— 1 mod 3"*°
= 3. s mod 3",
Therefore, v3(a; — 1) =n+1=wv3(i — 1) + 1.

Case (3): i« = 6 mod 8. In this case, we have i + 2 = 3" - 8s, where n > 1 and 3 / s. Using
Corollary 2.6, we have

a,—1 = a4, ,—1
= 1+3"".54+3""2.25— 1 mod 3"
= 3. s mod 3",
Therefore, v3(a; — 1) =n+ 1 =wv3(i + 2) + 1.
Case (4): i = 2 mod 24. In this case, we have i — 2 = 3" - 8s, where n > 1 and 3 / s. Using
Corollary 2.6, we have

a;, — I = a’3”~8s+2 -1

= 1+4+3"2.25—1mod 3"

= 3""2.25 mod 3""3.

Therefore, v3(a; — 1) =n+ 2 = v3(i — 2) + 2.
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Case (5): ¢ = 10 mod 24, then + = 24k 4 10 for some integer k. We are going to prove that
v3(a; — 1) = 2 using induction. At k = 0, we have v3(a;9p — 1) = 2. Using Lemma 2.1, we have

A2a(k+1)+10 — 1 = Qaapr10)+24 — 1 = ao3a24p112 + a210248 411 + A22G248+10 — 1

= (a24k+10 — 1) mod 9.

Therefore, azar110 — 1 = 0 mod 9 if and only if a4(r41)+10 — 1 = 0 mod 9. But, using Lemma
2.4

A24(k+1)+10 — 1 = 9 (A2art12 + G2apr12 + G24p+11 + A24k410) + G24p+10 — 1 mod 27
= 9(3a2ak+11 + 3024519 + A2ak+7) + A245+10 — 1 mod 27

= Q24k+10 — 1 mod 27.

Therefore, aspr10 — 1 # 0 mod 27 if and only if agypr1)410 — 1 # 0 mod 27. Therefore,
’U3((li - 1) = 2.
Case (6): 1 = 18 mod 24, then ¢ = 24k + 18 for some integer k. We want to prove that:

Us(Qoapsrs — 1) = vg ((24k + 24)(24k + 48)) + 2
= vy (24%(k+ 1)(k+2)) + 2
= v3((k+1)(k+2))+4.

* Subcase (1): k£ = 0 mod 3. We are going to prove that v3(ass+1s — 1) = 4 using induction.
Atk =0, we have a1;5 — 1 = 0 mod 81 and a3 — 1 #Z 0 mod 243. We want to prove that
ara(kt1)+18 — 1 = 0 mod 81 and ary(k11)4+18 — 1 Z 0 mod 243. Using Lemma 2.1, we have

ara(k+1)+18 — L = a(ropr18)y+72 — 1 = anarogpro0 + ae9rar+19 + ar0a728 118 — 1

27(2a72k+20 + 72419 + A728118) + Q72K 418 — 1 Mod 81

A72k+18 — 1 mod 81.

ara(k1)+18 — 1 = 27 (8arop+20 + Tazak419 + Gr2k118) + Gr2k118 — 1 mod 243
= 27 (9ar2k420 — Gr2k420 + TA72k419 + Q728418)

= 27 (9ar2k+20 + 7726116 + Y72k 118 — Ar2K121) + Q728418 — 1 Mod 243

a72k+18 — 1 mod 243.

Therefore, azor 18 —1 = 0 mod 81 if and only if az(y41)+18 —1 = 0 mod 81 and arok4158 —
1 # 0 mod 243 if and only if azo(41)+18 — 1 #Z 0 mod 243. Therefore, v3(a; — 1) = 4.

* Subcase (2): k = 1 mod 3. In this case we have i = 3" - 8s — 30 where n > 2 and 3 [ s.
Using Lemma 2.1 and Proposition 2.5, we have
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a;—1 = asngs_30— 1= asngs_o7 — a3n.gs_28 — 1

= (3n.8s—24 — 20308525 + A3n.85 26 — 1

= —3azn.gs_21 — 2a3n.85_22 + 3a3n.8s-20 — 1

= —8agn.gs—18 + 4agn.gs_17 + azn.gs_16 — 1

= —12a3n.g,_12 — 26azn.gs_11 + 21azn.gs_10 — 1

= T3agn.gs—6 — 63asn.gs—5 + Yazn.gs_4 — 1

= —64asn.gs_4 + 136asn.g5_3 — 63agn.gs_o — 1

= agngs_9 — 200a3n.gs_1 + 136azn.g, — 1

= 20lagn.gs11 — 200agn.gs12 + 135asn.gs — 1

201 (3" 5s + 3" - s+ 1) — 200 (3" - 25 + 3" 5s + 1)

+ 135 (3725 4 3"*% - 25) — 1 mod 3"** = —3"** . 130s mod 3",

Therefore, v3(a; — 1) = n + 3 = v3(i + 30) + 3.

Case (7): i« = 3 mod 24. In this case we have i — 2 = 3" - 8s where n > 1 and 3 / s. Using
Corollary 2.6, we have

a, =1 = Ggn gs13 — 1
= Ogng, + Aan goyo 1
= 3""?.2541+43""%.25 — 1 mod 3""3

3"+2. 45 mod 3"*3.

Therefore, v3(a; — 1) =n+2 = v3(i — 3) + 2.
Case (8): ¢ = 11 mod 24. In this case we have i + 13 = 3" - 8s where n > 1 and 3 [ s. Using
Corollary 2.6, we have

a, —1

(gn.gs_13 — 1

Agn.gs_10 — Agnge_11 — 1

Ogn.gs_10 — Agn.gs_g — Agngs_g — 1
Agn.ge_7 — 2a3"-8.s—8 — Ogng_g 1
3(13”»8576 o 2(13”»8575 -1

5a3”»85—3 T Ogngey — 20’3"-8571 -1
5a3”-8s - 8a3”-83—1 t yng, o — 1
4(13”»85 + 9a3"»85+1 o 8a3”-85+2 -1

4(3"% - 25) +9(3"% - 25+ 3" -5 1) =837 25 + 1) — L mod 37"
—4 (3" 25) mod 3",

Therefore, v3(a; — 1) =n+2 = v3(i + 13) + 2.
Case (9): i = 19 mod 24. In this case we have i + 5 = 3™ - 8s where n > 1 and 3 [ s. Using
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Corollary 2.6, we have

a; — 1 = Aan.go_s — 1

—1
= _2a3n~ss + Agngsia = 1
_3n+2

= Ognge_o — Agnge_g

.25 mod 3"+3,

Therefore, vs(a; — 1) =n+2 = v3(i +5) + 2. O
Theorem 2.8. For all integers i, we have

0, i=0,1,2,3,5,6,7 mod 8;
v3(a; +1) =< 1, i = 4,12 mod 24,
(i +4) +1, = 20mod 24.

Proof. Case (1):2=0,1,2,3,5,6,7 mod 8.

* Subcase (1): 7 = 0 mod 8, then ¢ = 8k for some integer k. We are going to prove that
v3(a; + 1) = 0 using induction. At k = 0, we have ag + 1 # 0 mod 3. Using Lemma 2.1,
we have

ag+1) +1 = agpys + 1 = araggyo + asagp1 + agasy + 1

= (agr + 1) mod 3.

Therefore, as, +1 # 0 mod 3 if and only if ag(x41)+1 # 0 mod 3. Therefore, v3(a; +1) =
0.

* Subcase (2): i = 1 mod 8, then i = 8k+1 for some integer k. We prove that v3(a;+1) = 0
using induction. At £ = 0, we have ag + 1 #Z 0 mod 3. Using Lemma 2.1, we have

Gsesnss +1 = asprsss + 1 = arasees + asasese + Geasest + 1
= (ang + 1) mod 3.

Therefore, agi1 + 1 # 0 mod 3 if and only if ag(z4+1)4+1 + 1 # 0mod 3. Therefore,
vs(a; +1) = 0.

* Subcase (3): i = 2 mod 8, then i = 8k + 2 for some integer k. We prove that v3(a;+1) = 0
using induction. At k = 0, we have as + 1 # 0 mod 3. Using Lemma 2.1, we have

agie+1)42 + 1 = agpysr2 + 1 = aragria + asagpys + agagp2 + 1
= (asp42 + 1) mod 3

Therefore, agi2 + 1 # 0 mod 3 if and only if ag(z+1)+2 + 1 # 0mod 3. Therefore,
vs(a; +1) = 0.
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* Subcase (4): i = 3 mod 8, then i = 8k + 3 for some integer k. We prove that v3(a; +1) =0
using induction. At k = 0, we have a3z + 1 # 0 mod 3. Using Lemma 2.1, we have

agk+1)+3 +1 = agpysysz + 1 = aragiys + asagpys + agagpsz + 1
= (agkys + 1) mod 3.

Therefore, agr43 + 1 # 0 mod 3 if and only if ag11)43 + 1 # 0mod 3. Therefore,
U3<ai + 1) = 0.

* Subcase (5): i = 5 mod 8, then i = 8k +5 for some integer k. We prove that v3(a;+1) =0
using induction. At k£ = 0, we have a5 + 1 # 0 mod 3. Using Lemma 2.1, we have

aghryes +1 = agpises + 1 = aragpyr + asaskie + asasps + 1
= (aspys + 1) mod 3.

Therefore, agr+5 + 1 # 0 mod 3 if and only if ag11)+5 + 1 # 0mod 3. Therefore,
’U3(CLZ' + 1) =0.

* Subcase (6): i = 6 mod 8, then i = 8k + 6 for some integer k. We prove that v3(a;+1) =0
using induction. At £ = 0, we have ag + 1 # 0 mod 3. Using Lemma 2.1, we have

Gsirnes +1 = Gserses+ 1 = Qrasess + asdsier + Goasiss + 1
= (agk+6 + 1) mod 3.

Therefore, agi+ + 1 # 0 mod 3 if and only if agi1)46 + 1 # 0mod 3. Therefore,
v3(a; + 1) = 0.

* Subcase (7): i = 7 mod 8, then i = 8k + 7 for some integer k. We prove that v3(a;+1) = 0
using induction. At £ = 0, we have a; + 1 #Z 0 mod 3. Using Lemma 2.1, we have

Gsanr +1 = aserser + 1 = Graseso + asdsirs + Gsasier + 1
= (agkyr +1) mod 3

Therefore, agr7 + 1 # 0 mod 3 if and only if ag(y4+1)+7 + 1 # 0mod 3. Therefore,
U3<6Li + 1) = 0.

Case (2):7=4,12 mod 24

* Subcase (1): ¢ = 4 mod 24, then ¢ = 24k +4 for some integer k. We are going to prove that
v3(a;+1) = 1 using induction. Atk = 0, we have a;+1 = 0 mod 3 and ay+1 #Z 0 mod 9.
Using Lemma 2.1, we have

Aoa(k+1)44 + 1 = Goakg2414 + 1 = a230248 16 + 2102415 + A22024814 + 1
= (a4 +1) mod 9.

Therefore, asi14 —1 = 0 mod 3 if and only if agy(j+1)+4 —1 = 0 mod 3, and agypra—1 #
0 mod 9 if and only if agy(pt1y4+4 — 1 #Z 0 mod 9. Therefore, v3(a; + 1) = 1.
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e Subcase (2): ¢ = 12 mod 24, then ¢ = 24k + 12 for some integer k. We prove that
vs(a; + 1) = 1 using induction. At k& = 0, we have a;o + 1 = 0 mod 3 and #Z 0 mod 9.
Using Lemma 2.1, we have

2ak+1)+12 T 1 = Goapyoar12 + 1 = a23024k114 + A210248 113 + G22G245 112 + 1
= (a24k+12 + ].) mod 9=0 mod 3 7_é 0 mod 9.

Therefore, asp+12 +1 = 0 mod 3 if and only if azs(x41)+12 +1 = 0 mod 3, and agyp412 +
1 # 0 mod 9 if and only if aq(k41)112 + 1 # 0 mod 9. Therefore, vs(a; + 1) = 1.

Case (3): ¢ = 20 mod 24. In this case we have i = 3" - 8 — 4 where n > 1 and 3 /s . Using
Lemma 2.1 and Corollary 2.6. Then, we have

a;+1 = agggn_a+1=agsn_1— agsz3n_o+1
Ags3n+2 — 208s3n+1 + Agezn + 1

_3n+1 3n+3

- 25 mod

Therefore, v3(a; + 1) =n+1=wv3(i +4)+1=n+ 1. O

3 Proof of Theorem 1.1

Proof. If a, = 1, there is no solution for equation (1). Now suppose that a,, # 1 and using that
fact

% — H(:)gg?J — 1 <wg(ml);
together with Theorem 2.7 and Theorem 2.8, we get
m {bng .
2 log 3
<wz(m!) =wvs(a, — 1) +vs(a, + 1)
<wv3((n—1)(n+2)(n —2)(n+6)(n+30)(n — 3)(n+ 13)(n+ 15)(n + 4)) + 16.

Thus,

m logm
2 log 3
where w € {—1,2,—-2,6,30,—3,13,5,4}. Therefore,

J —1 < 9v3(n+w) + 16,

1(m logm

als(z-es 1) <n+w<n+30.

By applying the log function, we obtain

1/m logm 17 §n+30' )
9\ 2 log 3 log 3
On the other hand, .
(1.64)" 6 < a2 =ml+1<2 (%) :
So

n <44 (1.33)mlog (%) .
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Substituting in equation (5), we obtain

1 /m  tlogm 47 §34+1.3310g(5).
9\ 2 log 3 log 3

This inequality yields m < 221. Then n < 1386. Now, we use a simple routine written in SAGE

to get the solutions. The proof is completed. [
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