On certain inequalities for the prime counting function - Part III

József Sándor
Department of Mathematics, Babeş-Bolyai University
Cluj-Napoca, Romania
e-mail: jsandor@math.ubbcluj.ro

Received: 5 May 2023
Accepted: 30 June 2023
Revised: 21 June 2023
Online First: 3 July 2023

Abstract

As a continuation of [10] and [11], we offer some new inequalities for the prime counting function $\pi(x)$. Particularly, a multiplicative analogue of the Hardy-Littlewood conjecture is provided. Improvements of the converse of Landau's inequality are given. Some results on $\pi\left(p_{n}^{2}\right)$ are offered, p_{n} denoting the n-th prime number. Results on $\pi(\pi(x))$ are also considered.

Keywords: Prime counting function, Inequalities, Hardy-Littlewood conjecture, Landau's inequality, Prime numbers.
2020 Mathematics Subject Classification: 11A25, 11A41.

1 Introduction

Let $\pi(x)$ denote the number of primes $\leq x$, where $x \geq 1$ is a positive integer. In Parts I and II [10, 11] we have proved some inequalities of a new type for $\pi(x)$.

For example, in [10] we established the following counterpart of the Hardy-Littlewood conjecture:

$$
\begin{equation*}
\pi(x+y) \geq \frac{2}{3} \cdot[\pi(x)+\pi(y)] \quad(x, y \geq 2) \tag{1}
\end{equation*}
$$

	Copyright © 2023 by the Author. This is an Open Access paper distributed under the (c) © terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Another inequality from [10] is the following (see relation (15))

$$
\begin{equation*}
(x+y) \pi(x+y) \leq 2[x \pi(x)+y \pi(y)] . \tag{2}
\end{equation*}
$$

In [11] we proved that

$$
\begin{equation*}
\sqrt{\pi(x+y)}<\sqrt{\pi(x)}+\sqrt{\pi(y)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{3 \pi(x+y)} \geq \sqrt{\pi(x)}+\sqrt{\pi(y)} \tag{4}
\end{equation*}
$$

where $x, y \geq 2$, and that

$$
\begin{equation*}
\sqrt{2 \pi(x+y)} \geq \sqrt{\pi(x)}+\sqrt{\pi(y)} \tag{5}
\end{equation*}
$$

for infinitely many (x, y), and

$$
\begin{equation*}
\sqrt{2 \pi(x+y)} \leq \sqrt{\pi(x)}+\sqrt{\pi(y)} \tag{6}
\end{equation*}
$$

for infinitely many (x, y).
Among the inequalities from [11] we mention also:

$$
\begin{equation*}
(x+y) \sqrt{\pi(x+y)} \leq x \sqrt{2 \pi(x)}+y \sqrt{2 \pi(y)} \tag{7}
\end{equation*}
$$

for all $x, y \geq 2$; and

$$
\begin{equation*}
\sqrt{x+y} \cdot \pi(x+y) \leq \sqrt{2 x} \cdot \pi(x)+\sqrt{2 y} \cdot \pi(y) \tag{8}
\end{equation*}
$$

for any $2 \leq y \leq x$ with the exception of $(x, y)=(4,3) ;(10,9)$.
In this paper, will improve relation (1). This will give also improvements of Landau's converse inequality, considered in [10] and [2]. We will consider also the iteration function $\pi(\pi(x))$, as well as the sequence $\pi\left(p_{n}^{2}\right)$, where p_{n} denotes the $n^{\text {th }}$ prime number.

2 Main results

The following auxiliary results will be used:
Lemma 1. For $x, y \geq 67$ one has

$$
\begin{equation*}
\frac{x}{\log x-\frac{1}{2}}<\pi(x)<\frac{x}{\log x-1.12} . \tag{9}
\end{equation*}
$$

For references to this results, see $[10,11]$.
Lemma 2. For $x \geq 5393$ one has

$$
\begin{equation*}
\pi(x) \geq \frac{x}{\log x-1} . \tag{10}
\end{equation*}
$$

The author [9] proved this inequality in 2006, based on earlier results by P. Dusart [3] and L. Panaitopol [5]. The first result contains the following improvement of (1):

Theorem 1. One has, for any $2 \leq y \leq x$ the inequality

$$
\begin{equation*}
\pi(x+y) \geq \frac{3}{4} \cdot[\pi(x)+\pi(y)] \tag{11}
\end{equation*}
$$

with the exceptions of $(x, y)=(7,3) ;(5,5) ;(7,5) ;(23,13) ;(19,17)$.
There is equality in (11) for $(x, y)=(3,3) ;(13,3) ;(11,5) ;(23,5) ;(7,7) ;(8,7) ;(9,7) ;(19,7)$; $(20,7) ;(21,7) ;(8,8) ;(19,8) ;(20,8) ;(19,9) ;(17,11) ;(13,13) ;(14,13) ;(15,13) ;(14,14) ;$ $(23,17) ;(19,19) ;(20,19) ;(21,19) ;(20,20)$.

Corollary 1. For any $x \neq 5, x \geq 2$ one has

$$
\begin{equation*}
\pi(2 x) \geq \frac{3}{2} \pi(x) \tag{12}
\end{equation*}
$$

with equality only for $x=3,7,8,13,14,19,20$.

Proof. Let

$$
f(x)=\frac{x}{\log x-1.12} .
$$

A simple computation (which we omit here) gives the second derivative of this function:

$$
x \cdot(\log x-1.12)^{2} \cdot f^{\prime \prime}(x)=-\log x+3.12<0
$$

if $\log x>3.12$, i.e., $x>e^{3.12}=22.64 \ldots$ Thus the function f is concave, which gives

$$
\begin{equation*}
f(x)+f(y) \leq 2 f\left(\frac{x+y}{2}\right) \text { for any } x, y \geq 23 \tag{13}
\end{equation*}
$$

Now, using the right side of (9), and by (13) we get

$$
\begin{equation*}
\pi(x)+\pi(y)<f(x)+f(y) \leq \frac{x+y}{\log \left(\frac{x+y}{2}\right)-1.12} . \tag{14}
\end{equation*}
$$

On the other hand, by the left side of (9) we get

$$
\frac{4}{3} \pi(x+y)>\frac{4}{3} \cdot \frac{(x+y)}{\log (x+y)-\frac{1}{2}} .
$$

Now we have to considered the inequality

$$
\begin{equation*}
\frac{(x+y)}{\log \frac{(x+y)}{2}-1.12}<\frac{4}{3} \cdot \frac{(x+y)}{\log (x+y)-\frac{1}{2}} \tag{15}
\end{equation*}
$$

which can be written, after elementary computations as

$$
\log (x+y)>5.75 \ldots \text {; i.e., } x+y>e^{5.75 \ldots} \approx 317.34 \ldots
$$

Therefore, inequality (11) is true for $x, y \geq 67$ and $x+y \geq 318$. A computer verification shows that (11) is true also (with strict inequality) for $67 \leq y \leq x$ and $x+y \leq 317$. Therefore (11) is valid with strict inequality for any $x, y \geq 67$.

Let now consider $x \geq y$ and $y \leq 66$. Then $\pi(y) \leq 18$ and $\frac{3}{4} \cdot[\pi(x)+\pi(y)] \leq \frac{3}{4} \cdot[\pi(x)+18]$. Since $\pi(x) \leq \pi(x+y)$, it will be sufficient to consider the inequality $\frac{3}{4} \cdot[\pi(x)+18] \leq \pi(x)$, or $\pi(x) \geq 54$. This is true if $x \geq 257$.

Now, for

$$
\begin{equation*}
2 \leq y \leq x \leq 256, \quad y \leq 66 \tag{16}
\end{equation*}
$$

a computer verification shows the exceptions listed in Theorem 1, as well the equality cases.
Remark 1. By letting $x=p_{n}$, the n-th prime number, we get that for $n \neq 3$ one has

$$
\begin{equation*}
\pi\left(2 p_{n}\right) \geq \frac{3}{2} \cdot n \tag{17}
\end{equation*}
$$

Particularly, as $\frac{3}{2}>\sqrt{2}$, we get that for $n \neq 3$

$$
\begin{equation*}
\pi\left(2 p_{n}\right)>\sqrt{2} \cdot n \tag{18}
\end{equation*}
$$

which was an open problem stated in [4].
The following result gives multiplicative analogues of the Hardy-Littlewood conjecture.
Theorem 2. For any $x, y \geq 3$ one has

$$
\begin{equation*}
\pi(x+y) \leq \pi(x) \cdot \pi(y) \tag{19}
\end{equation*}
$$

with equality only for $(x, y)=(4,3)$ for $y \leq x$.
One has

$$
\begin{equation*}
\pi(x+y) \leq \frac{2}{3} \pi(x) \cdot \pi(y) \tag{20}
\end{equation*}
$$

with the exceptions of $(x, y)=(3,3) ;(4,3) ;(4,4)$; when $y \leq x$. There is equality in (20) only for $(x, y)=(5,3) ;(6,3)(y \leq x)$.
Proof. In [2] the following inequality is proved (see Theorem 6, left side):

$$
\begin{equation*}
\frac{1}{2} \leq \frac{\pi(x)^{x /(x+y)} \cdot \pi(y)^{y /(x+y)}}{\pi(x+y)} \tag{21}
\end{equation*}
$$

Now, (21) can be written as

$$
\begin{equation*}
\pi(x+y) \leq 2 \cdot \pi(x)^{x /(x+y)} \cdot \pi(y)^{y /(x+y)} \tag{22}
\end{equation*}
$$

In order to prove (19), it is sufficient to show that

$$
\begin{equation*}
\pi(x)^{y} \cdot \pi(y)^{x} \geq 2^{x+y} \tag{23}
\end{equation*}
$$

Clearly, (23) is true, if $\pi(x) \geq 2, \pi(y) \geq 2$; i.e., when $x, y \geq 3$. As $\pi(x)=2$ only for $x \in\{3,4\}$, simple considerations show the cases of equality in (19).

Now, inequality (20) is true, if we can show that

$$
\begin{equation*}
\pi(x)^{y} \cdot \pi(y)^{x} \geq 3^{x+y} \tag{24}
\end{equation*}
$$

This is valid, if $\pi(x) \geq 3$ and $\pi(y) \geq 3$; i.e., when $x, y \geq 7$. As we supposed $x, y \geq 3$; the cases of exceptions can be verified, and also the cases of equality can be verified, and also the cases of equality can be easily shown.

Remark 2. As $x+y \leq x y$, or equivalently $(x-1)(y-1) \geq 1$, valid for $x \geq 2, y \geq 2$; we can write $\pi(x+y) \leq \pi(x y)$. In [6] L. Panaitopol proved that

$$
\begin{equation*}
\pi(x) \cdot \pi(y) \leq \pi(x y) \tag{25}
\end{equation*}
$$

with the exceptions of $(x, y)=(7,5)$ and $(7,7)$ for $2 \leq y \leq x$. Thus, by (25) and (19) we have:

$$
\begin{equation*}
\pi(x+y) \leq \pi(x) \cdot \pi(y) \leq \pi(x y) \tag{26}
\end{equation*}
$$

with the above mentioned exceptions.
Theorem 3. If $2 \leq y \leq x$, then

$$
\begin{align*}
& \pi(x+y) \leq \frac{x}{y} \cdot \pi(x)+\pi(y) \tag{27}\\
& \pi(x+y) \leq 2 \sqrt{\pi(y) \cdot \pi(x)^{x / y}} \leq \pi(y)+\pi(x)^{x / y} \tag{27’}
\end{align*}
$$

Proof. By relation (2) we get

$$
\pi(x+y) \leq \frac{2 x}{x+y} \cdot \pi(x)+\frac{2 y}{x+y} \cdot \pi(y) \leq \frac{x}{y} \pi(x)+\pi(y)
$$

as for $y \leq x$ one has $\frac{2 y}{x+y} \leq 1$ and $\frac{2 x}{x+y} \leq \frac{x}{y}$. Inequality (27) follows.
By inequality (21) one has, for $2 \leq y \leq x$, by $\frac{x}{x+y} \leq \frac{1}{2} \cdot \frac{x}{y}$ and $\frac{y}{x+y} \leq \frac{1}{2}$ that $\pi(x+y) \leq$ $2 \pi(x)^{x / 2 y} \cdot \pi(y)^{1 / 2}$, so the first inequlity of (27') follows.

The second one is the consequence of $2 \sqrt{a b} \leq a+b$ for $a=\pi(y), b=\pi(x)^{x / y}$.
Remark 3. (27) and (27') are extensions of Landau's inequality

$$
\begin{equation*}
\pi(2 x) \leq 2 \pi(x) \tag{28}
\end{equation*}
$$

as for $y=x$ from (27) and (27') we get (28).
In [1] is proved a refinement of (28):

$$
\begin{equation*}
2 \pi(x)-\pi(2 x) \geq 2 \omega(x) \tag{29}
\end{equation*}
$$

for $x \geq 71$, where $\omega(x)$ denotes the number of distinct prime factors of x. As $\omega(x) \geq 1$, clearly (29) is an improvement of (28). Now, as inequality (12) of Corollary 1 can be rewritten as $2 \pi(x)-\pi(2 x) \leq \pi(2 x)-\pi(x)$, by (29) we get

$$
\begin{equation*}
\pi(2 x)-\pi(x) \geq 2 \pi(x)-\pi(2 x) \geq 2 \omega(x), x \geq 71 \tag{30}
\end{equation*}
$$

Particularly, (30) shows the following nice improvement of Bertrand's postulate (which states that between x and $2 x$ there exists at least a prime (see [7]):

Proposition 1. For $x \geq 71$, between x and $2 x$ there are at least $2 \omega(x)$ primes.
It is known that (see [12]) for any $k, x \geq 3$,

$$
\begin{equation*}
\pi(k x)<k \pi(x) \tag{31}
\end{equation*}
$$

This easily implies that

$$
\begin{equation*}
\pi(3 x) \leq 3 \pi(x), \quad x \geq 2 \tag{32}
\end{equation*}
$$

with equality only for $x=2$.
Now, concerning the iteration of $\pi(x)$, from (31) we get $\pi(\pi(k x)) \leq \pi(k \pi(x)) \leq k \pi(x)$. For the particular cases of $k=2$ and $k=3$ one has a more precise result:

Theorem 4. For any $x \geq 3$ one has

$$
\begin{equation*}
\frac{5}{4} \leq \frac{\pi(\pi(2 x))}{\pi(\pi(x))} \leq 2 \tag{33}
\end{equation*}
$$

in the left side with the exception of $x=5$. There is equality in the right side of (33) for $x \in\{3,4,9,10\} ;$ while in the left side for $x \in\{17,18,19,20\}$

$$
\begin{equation*}
\frac{3}{2} \leq \frac{\pi(\pi(3 x))}{\pi(\pi(x))} \leq 3 \tag{34}
\end{equation*}
$$

with equalities in the right side of (34) for $x=4$, while in the left side for $x \in\{17,18,19\}$.
Proof. The right sides of (33) and (34) are consequences of (28) and (32), by remarking, that in (28) there is strict inequality for $x>10$. Thus the equality in the right side of (33) should be considered only for $\pi(x) \leq 10$, and an easy verification gives the cases of equalities. A similar argument shows that in the right side of (34) there is equality only for $\pi(x)=2$, and the result follows.

Now, for the left side of (33) we first prove that

$$
\begin{equation*}
\frac{\pi(2 x)}{\pi(x)}>\frac{9}{5} \text { for } x \geq 4628 \tag{35}
\end{equation*}
$$

Indeed, using Lemma 2 for $2 x \geq 5393$ (i.e., $x \geq 2697$) and the right side of Lemma 1 , we can write

$$
\frac{\pi(2 x)}{\pi(x)}>\frac{2 x}{\log 2 x-1} \cdot \frac{\log x-1.12}{x} \geq \frac{9}{5}
$$

iff $10(\ln x-1.12)>9(\log 2 x-1)$, i.e., $\log x>8.438 \ldots$, which is true for $x \geq e^{8.44}=4628 \ldots$.
Now, we will show that

$$
\begin{equation*}
\frac{9}{5}>\frac{5}{4} \cdot\left(\frac{\log \pi(2 x)-1}{\log \pi(x)-1.12}\right), \tag{36}
\end{equation*}
$$

or equivalently $36 \log \pi(x)-40.32>25 \log \pi(2 x)-25$, or $36 \log \pi(x)-25 \log \pi(2 x)>15.32$. Now, by (28) one has $\log \pi(2 x)<\log 2+\log \pi(x)$, so $25 \log \pi(2 x)<25 \log 2+25 \log \pi(x)$, and therefore $36 \log \pi(x)-25 \log \pi(2 x)>11 \log \pi(x)-25 \log 2$ and $11 \log \pi(x)-25 \log 2>15.32$ for $11 \log \pi(x)>15.32+25 \log 2 \approx 15.32+17.25=32.57$; i.e., $\log \pi(x)>2.96 \ldots$. This is valid for $x \geq 73$.

Now, having in mind the validity of (35) for $x \geq 4628$, a computer verification for $3 \leq x \leq 4627$ shows that the left side is true excepting $x=5$, and with equalitiess only for $x=3,4,9,10$.

The proof of left side of (34) could be done in a similar manner, but here we can obtain a more direct argument.

Namely, remark that by (25) one has

$$
\begin{equation*}
\pi(3 x) \geq 2 \pi(x) \tag{37}
\end{equation*}
$$

Relation (37) implies $\pi(\pi(3 x)) \geq \pi(2 \pi(x))$. Now, by Corollary 1 one has $\pi(2 \pi(x)) \geq \frac{3}{2} \pi(x)$, thus the left side of (34) follows. The cases of equality can be done with elementary verifications.

Relation (17) offered a relation for $\pi\left(2 p_{n}\right)$. Now we will consider the sequence $\left(\pi\left(p_{n}^{2}\right)\right)$. It is an old and famous conjecture that between p_{n}^{2} and p_{n+1}^{2} there are at least 4 distinct primes, due to Brocard (see e.g. [7]), i.e.,

$$
\begin{equation*}
\pi\left(p_{n+1}^{2}\right)-\pi\left(p_{n}^{2}\right) \geq 4 \tag{38}
\end{equation*}
$$

In our opinion, even with 1 in place of (4) we have a difficult open problem. We have the following res

Theorem 5.

$$
\begin{equation*}
\pi\left(p_{n+2}^{2}\right) \leq 2 \pi\left(p_{n}^{2}\right)<\pi\left(p_{n}^{2}\right)+\pi\left(p_{n+1}^{2}\right), \quad n \geq 4 \tag{39}
\end{equation*}
$$

Proof. First we prove the following auxiliary result.
Lemma 3.

$$
\begin{equation*}
p_{n+2}^{2}<2 p_{n}^{2} \text { for } n \geq 9 \tag{40}
\end{equation*}
$$

Indeed, R. E. Dressler et al. (see [12]) proved that $p_{n+1}^{2} \leq 2 p_{n}^{2}$ for $n>4$. A similar argument can be applied for the proof of (40). This is based on the Rosser-Schoenfeld inequalities $p_{n}<n\left(\log n+\log \log n-\frac{1}{2}\right)$ for $n \geq 20$ and $p_{n}>n\left(\log n+\log \log n-\frac{3}{2}\right)$ for $n \geq 2$. Then, to prove $p_{n+2}<\sqrt{2} \cdot p_{n}$, we have to prove an inequality

$$
(n+2)\left[\log (n+2)+\log \log (n+2)-\frac{1}{2}\right]<\sqrt{2} \cdot n\left(\log n+\log \log n-\frac{3}{2}\right)
$$

By considering the function

$$
\begin{aligned}
f(x)= & \sqrt{2} x \log x-(x+2) \log (x+2)+\sqrt{2} x \log \log x-(x+2) \log \log (x+2) \\
& -1.63 \cdot x+1>0
\end{aligned}
$$

and using the derivative of $f(x)$, and remarking that $\sqrt{2} \log x>\log (x+2)+1.22$ for $x \geq 25$, we can easily deduce (we omit the details) that $f(x)>0$ for $x \geq 24$. Thus (40) is true for $n \geq 24$. For $x \leq 23$ a direct verification can be done, and we get that $1 \leq n \leq 8$, excepting $n=7$, inequality (40) is not true.

Now, for the proof of (39) remark that by Landau's inequality (28) and by (40) we can write

$$
\pi\left(p_{n+2}^{2}\right) \leq \pi\left(2 p_{n}^{2}\right) \leq 2 \pi\left(p_{n}^{2}\right)=\pi\left(p_{n}^{2}\right)+\pi\left(p_{n}^{2}\right) \leq \pi\left(p_{n}^{2}\right)+\pi\left(p_{n+1}^{2}\right)
$$

as $\pi\left(p_{n}^{2}\right) \leq \pi\left(p_{n+1}^{2}\right)$ for $n \geq 9$. For $1 \leq n \leq 8$ a direct verification shows that (39) is true for any $n \geq 4$.

Remark 4. The weaker inequality of (39) was an Open Problem [4].

References

[1] Alzer, H., \& Kwong, M. K. (2022). On Landau's inequality for the prime counting function. Journal of Integer Sequences, 25, Article 22.7.3.
[2] Alzer, H., Kwong, M. K., \& Sándor, J. (2022). Inequalities involving $\pi(x)$. Rendiconti del Seminario Matematico della Università di Padova, 147(1), 237-251.
[3] Dusart, P. (1999). Inégalités explicit pour $\psi(x), \theta(x), \pi(x)$ et les nombres premiers. Comptes rendus mathématiques de l'Académie des sciences. La Société Royale du Canada, 21(2), 53-59.
[4] Miliakos, G. (2022). Open Questions OQ 5762 and OQ 5760. Octogon Mathematical Magazine, 30(2), 1510.
[5] Panaitopol, L. (1998). On the inequality $\pi(x)>\frac{x}{\log x-1}$. Analele Universităţ̧ii din Bucureşti, Seria Matematica. XLVII(2), 187-192.
[6] Panaitopol, L. (1998). On the inequality $p_{a} p_{b}>p_{a b}$. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 41(89), No. 2, 135-139.
[7] Ribenboim, P. (1996). The New Book of Prime Number Records. Springer.
[8] Rosser, J. B., \& Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics, 6, 64-94.
[9] Sándor, J. (2006). On some inequalities of Dusart and Panaitopol on the function $\pi(x)$. Octogon Mathematical Magazine, 14 (2), 592-594.
[10] Sándor, J. (2021). On certain inequalities for the prime counting function. Notes on Number Theory and Discrete Mathematics, 27(4), 149-153.
[11] Sándor, J. (2022). On certain inequalities for the prime counting function - Part II. Notes on Number Theory and Discrete Mathematics, 28(1), 124-128.
[12] Sándor, J., Mitrinović, D. S., \& Cristici, B. (2005). Handbook of Number Theory I, Springer.

