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1 Introduction

Let π(x) denote the number of primes ≤ x, where x ≥ 1 is a positive integer. In Parts I and II
[10, 11] we have proved some inequalities of a new type for π(x).

For example, in [10] we established the following counterpart of the Hardy–Littlewood
conjecture:

π(x+ y) ≥ 2

3
· [π(x) + π(y)] (x, y ≥ 2) (1)
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Another inequality from [10] is the following (see relation (15))

(x+ y)π(x+ y) ≤ 2[xπ(x) + yπ(y)]. (2)

In [11] we proved that √
π(x+ y) <

√
π(x) +

√
π(y) (3)

and √
3π(x+ y) ≥

√
π(x) +

√
π(y) (4)

where x, y ≥ 2, and that √
2π(x+ y) ≥

√
π(x) +

√
π(y) (5)

for infinitely many (x, y), and √
2π(x+ y) ≤

√
π(x) +

√
π(y) (6)

for infinitely many (x, y).

Among the inequalities from [11] we mention also:

(x+ y)
√
π(x+ y) ≤ x

√
2π(x) + y

√
2π(y) (7)

for all x, y ≥ 2; and
√
x+ y · π(x+ y) ≤

√
2x · π(x) +

√
2y · π(y) (8)

for any 2 ≤ y ≤ x with the exception of (x, y) = (4, 3); (10, 9).

In this paper, will improve relation (1). This will give also improvements of Landau’s converse
inequality, considered in [10] and [2]. We will consider also the iteration function π(π(x)), as
well as the sequence π(p2n), where pn denotes the nth prime number.

2 Main results

The following auxiliary results will be used:

Lemma 1. For x, y ≥ 67 one has

x

log x− 1
2

< π(x) <
x

log x− 1.12
. (9)

For references to this results, see [10, 11].

Lemma 2. For x ≥ 5393 one has
π(x) ≥ x

log x− 1
. (10)

The author [9] proved this inequality in 2006, based on earlier results by P. Dusart [3] and
L. Panaitopol [5]. The first result contains the following improvement of (1):
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Theorem 1. One has, for any 2 ≤ y ≤ x the inequality

π(x+ y) ≥ 3

4
· [π(x) + π(y)], (11)

with the exceptions of (x, y) = (7, 3); (5, 5); (7, 5); (23, 13); (19, 17).

There is equality in (11) for (x, y) = (3, 3); (13, 3); (11, 5); (23, 5); (7, 7); (8, 7); (9, 7); (19, 7);

(20, 7); (21, 7); (8, 8); (19, 8); (20, 8); (19, 9); (17, 11); (13, 13); (14, 13); (15, 13); (14, 14);

(23, 17); (19, 19); (20, 19); (21, 19); (20, 20).

Corollary 1. For any x ̸= 5, x ≥ 2 one has

π(2x) ≥ 3

2
π(x), (12)

with equality only for x = 3, 7, 8, 13, 14, 19, 20.

Proof. Let
f(x) =

x

log x− 1.12
.

A simple computation (which we omit here) gives the second derivative of this function:

x · (log x− 1.12)2 · f ′′
(x) = − log x+ 3.12 < 0

if log x > 3.12, i.e., x > e3.12 = 22.64 . . . . Thus the function f is concave, which gives

f(x) + f(y) ≤ 2f

(
x+ y

2

)
for any x, y ≥ 23. (13)

Now, using the right side of (9), and by (13) we get

π(x) + π(y) < f(x) + f(y) ≤ x+ y

log
(
x+y
2

)
− 1.12

. (14)

On the other hand, by the left side of (9) we get

4

3
π(x+ y) >

4

3
· (x+ y)

log(x+ y)− 1
2

.

Now we have to considered the inequality

(x+ y)

log (x+y)
2

− 1.12
<

4

3
· (x+ y)

log(x+ y)− 1
2

(15)

which can be written , after elementary computations as

log(x+ y) > 5.75 . . . ; i.e., x+ y > e5.75... ≈ 317.34 . . .

Therefore, inequality (11) is true for x, y ≥ 67 and x + y ≥ 318. A computer verification shows
that (11) is true also (with strict inequality) for 67 ≤ y ≤ x and x + y ≤ 317. Therefore (11) is
valid with strict inequality for any x, y ≥ 67.
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Let now consider x ≥ y and y ≤ 66. Then π(y) ≤ 18 and 3

4
· [π(x)+ π(y)] ≤ 3

4
· [π(x)+ 18].

Since π(x) ≤ π(x+ y), it will be sufficient to consider the inequality 3

4
· [π(x) + 18] ≤ π(x), or

π(x) ≥ 54. This is true if x ≥ 257.

Now, for
2 ≤ y ≤ x ≤ 256, y ≤ 66 (16)

a computer verification shows the exceptions listed in Theorem 1, as well the equality cases.

Remark 1. By letting x = pn, the n-th prime number, we get that for n ̸= 3 one has

π(2pn) ≥
3

2
· n. (17)

Particularly, as 3
2
>

√
2, we get that for n ̸= 3

π(2pn) >
√
2 · n, (18)

which was an open problem stated in [4].

The following result gives multiplicative analogues of the Hardy–Littlewood conjecture.

Theorem 2. For any x, y ≥ 3 one has

π(x+ y) ≤ π(x) · π(y), (19)

with equality only for (x, y) = (4, 3) for y ≤ x.

One has
π(x+ y) ≤ 2

3
π(x) · π(y) (20)

with the exceptions of (x, y) = (3, 3); (4, 3); (4, 4); when y ≤ x. There is equality in (20) only for
(x, y) = (5, 3); (6, 3) (y ≤ x).

Proof. In [2] the following inequality is proved (see Theorem 6, left side):

1

2
≤ π(x)x/(x+y) · π(y)y/(x+y)

π(x+ y)
. (21)

Now, (21) can be written as

π(x+ y) ≤ 2 · π(x)x/(x+y) · π(y)y/(x+y). (22)

In order to prove (19), it is sufficient to show that

π(x)y · π(y)x ≥ 2x+y. (23)

Clearly, (23) is true, if π(x) ≥ 2, π(y) ≥ 2; i.e., when x, y ≥ 3. As π(x) = 2 only for x ∈ {3, 4},
simple considerations show the cases of equality in (19).

Now, inequality (20) is true, if we can show that

π(x)y · π(y)x ≥ 3x+y. (24)

This is valid, if π(x) ≥ 3 and π(y) ≥ 3; i.e., when x, y ≥ 7. As we supposed x, y ≥ 3; the cases
of exceptions can be verified, and also the cases of equality can be verified, and also the cases of
equality can be easily shown.
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Remark 2. As x + y ≤ xy, or equivalently (x − 1)(y − 1) ≥ 1, valid for x ≥ 2, y ≥ 2; we can
write π(x+ y) ≤ π(xy). In [6] L. Panaitopol proved that

π(x) · π(y) ≤ π(xy) (25)

with the exceptions of (x, y) = (7, 5) and (7, 7) for 2 ≤ y ≤ x. Thus, by (25) and (19) we have:

π(x+ y) ≤ π(x) · π(y) ≤ π(xy) (26)

with the above mentioned exceptions.

Theorem 3. If 2 ≤ y ≤ x, then

π(x+ y) ≤ x

y
· π(x) + π(y); (27)

π(x+ y) ≤ 2
√
π(y) · π(x)x/y ≤ π(y) + π(x)x/y. (27’)

Proof. By relation (2) we get

π(x+ y) ≤ 2x

x+ y
· π(x) + 2y

x+ y
· π(y) ≤ x

y
π(x) + π(y),

as for y ≤ x one has 2y

x+ y
≤ 1 and 2x

x+ y
≤ x

y
. Inequality (27) follows.

By inequality (21) one has, for 2 ≤ y ≤ x, by x

x+ y
≤ 1

2
· x

y
and y

x+ y
≤ 1

2
that π(x + y) ≤

2π(x)x/2y · π(y)1/2, so the first inequlity of (27’) follows.
The second one is the consequence of 2

√
ab ≤ a+ b for a = π(y), b = π(x)x/y.

Remark 3. (27) and (27’) are extensions of Landau’s inequality

π(2x) ≤ 2π(x), (28)

as for y = x from (27) and (27’) we get (28).
In [1] is proved a refinement of (28):

2π(x)− π(2x) ≥ 2ω(x), (29)

for x ≥ 71, where ω(x) denotes the number of distinct prime factors of x. As ω(x) ≥ 1, clearly
(29) is an improvement of (28). Now, as inequality (12) of Corollary 1 can be rewritten as
2π(x)− π(2x) ≤ π(2x)− π(x), by (29) we get

π(2x)− π(x) ≥ 2π(x)− π(2x) ≥ 2ω(x), x ≥ 71. (30)

Particularly, (30) shows the following nice improvement of Bertrand’s postulate (which states that
between x and 2x there exists at least a prime (see [7]):

Proposition 1. For x ≥ 71, between x and 2x there are at least 2ω(x) primes.
It is known that (see [12]) for any k, x ≥ 3,

π(kx) < kπ(x). (31)
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This easily implies that
π(3x) ≤ 3π(x), x ≥ 2 (32)

with equality only for x = 2.

Now, concerning the iteration of π(x), from (31) we get π(π(kx)) ≤ π(kπ(x)) ≤ kπ(x). For
the particular cases of k = 2 and k = 3 one has a more precise result:

Theorem 4. For any x ≥ 3 one has

5

4
≤ π(π(2x))

π(π(x))
≤ 2, (33)

in the left side with the exception of x = 5. There is equality in the right side of (33) for
x ∈ {3, 4, 9, 10}; while in the left side for x ∈ {17, 18, 19, 20}

3

2
≤ π(π(3x))

π(π(x))
≤ 3, (34)

with equalities in the right side of (34) for x = 4, while in the left side for x ∈ {17, 18, 19}.

Proof. The right sides of (33) and (34) are consequences of (28) and (32), by remarking, that in
(28) there is strict inequality for x > 10. Thus the equality in the right side of (33) should be
considered only for π(x) ≤ 10, and an easy verification gives the cases of equalities. A similar
argument shows that in the right side of (34) there is equality only for π(x) = 2, and the result
follows.

Now, for the left side of (33) we first prove that

π(2x)

π(x)
>

9

5
for x ≥ 4628. (35)

Indeed, using Lemma 2 for 2x ≥ 5393 (i.e., x ≥ 2697) and the right side of Lemma 1, we can
write

π(2x)

π(x)
>

2x

log 2x− 1
· log x− 1.12

x
≥ 9

5

iff 10(lnx−1.12) > 9(log 2x−1), i.e., log x > 8.438 . . . ,which is true for x ≥ e8.44 = 4628. . . .

Now, we will show that
9

5
>

5

4
·
(

log π(2x)− 1

log π(x)− 1.12

)
, (36)

or equivalently 36 log π(x)− 40.32 > 25 log π(2x)− 25, or 36 log π(x)− 25 log π(2x) > 15.32.

Now, by (28) one has log π(2x) < log 2+ log π(x), so 25 log π(2x) < 25 log 2+ 25 log π(x), and
therefore 36 log π(x)− 25 log π(2x) > 11 log π(x)− 25 log 2 and 11 log π(x)− 25 log 2 > 15.32

for 11 log π(x) > 15.32 + 25 log 2 ≈ 15.32 + 17.25 = 32.57; i.e., log π(x) > 2.96 . . . . This is
valid for x ≥ 73.

Now, having in mind the validity of (35) for x≥4628, a computer verification for 3≤x≤4627

shows that the left side is true excepting x = 5, and with equalitiess only for x = 3, 4, 9, 10.

The proof of left side of (34) could be done in a similar manner, but here we can obtain a more
direct argument.
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Namely, remark that by (25) one has

π(3x) ≥ 2π(x). (37)

Relation (37) implies π(π(3x)) ≥ π(2π(x)).Now, by Corollary 1 one has π(2π(x)) ≥ 3

2
π(x),

thus the left side of (34) follows. The cases of equality can be done with elementary verifications.
Relation (17) offered a relation for π(2pn). Now we will consider the sequence (π(p2n)). It is

an old and famous conjecture that between p2n and p2n+1 there are at least 4 distinct primes, due to
Brocard (see e.g. [7]), i.e.,

π(p2n+1)− π(p2n) ≥ 4. (38)

In our opinion, even with 1 in place of (4) we have a difficult open problem. We have the
following res

Theorem 5.
π(p2n+2) ≤ 2π(p2n) < π(p2n) + π(p2n+1), n ≥ 4. (39)

Proof. First we prove the following auxiliary result.

Lemma 3.
p2n+2 < 2p2n for n ≥ 9. (40)

Indeed, R. E. Dressler et al. (see [12]) proved that p2n+1 ≤ 2p2n for n > 4. A similar argument
can be applied for the proof of (40). This is based on the Rosser–Schoenfeld inequalities
pn < n(log n + log log n − 1

2
) for n ≥ 20 and pn > n(log n + log log n − 3

2
) for n ≥ 2.

Then, to prove pn+2 <
√
2 · pn, we have to prove an inequality

(n+ 2)

[
log(n+ 2) + log log(n+ 2)− 1

2

]
<

√
2 · n

(
log n+ log log n− 3

2

)
.

By considering the function

f(x) =
√
2x log x− (x+ 2) log(x+ 2) +

√
2x log log x− (x+ 2) log log(x+ 2)

− 1.63 · x+ 1 > 0,

and using the derivative of f(x), and remarking that
√
2 log x > log(x+2)+1.22 for x ≥ 25, we

can easily deduce (we omit the details) that f(x) > 0 for x ≥ 24. Thus (40) is true for n ≥ 24. For
x ≤ 23 a direct verification can be done, and we get that 1 ≤ n ≤ 8, excepting n = 7, inequality
(40) is not true.

Now, for the proof of (39) remark that by Landau’s inequality (28) and by (40) we can write

π(p2n+2) ≤ π(2p2n) ≤ 2π(p2n) = π(p2n) + π(p2n) ≤ π(p2n) + π(p2n+1)

as π(p2n) ≤ π(p2n+1) for n ≥ 9. For 1 ≤ n ≤ 8 a direct verification shows that (39) is true for any
n ≥ 4.

Remark 4. The weaker inequality of (39) was an Open Problem [4].
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