Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2023, Volume 29, Number 3, 454–461 DOI: 10.7546/nntdm.2023.29.3.454-461

On certain inequalities for the prime counting function – Part III

József Sándor

Department of Mathematics, Babeş-Bolyai University Cluj-Napoca, Romania e-mail: jsandor@math.ubbcluj.ro

Received: 5 May 2023 Accepted: 30 June 2023 Revised: 21 June 2023 Online First: 3 July 2023

Abstract: As a continuation of [10] and [11], we offer some new inequalities for the prime counting function $\pi(x)$. Particularly, a multiplicative analogue of the Hardy–Littlewood conjecture is provided. Improvements of the converse of Landau's inequality are given. Some results on $\pi(p_n^2)$ are offered, p_n denoting the *n*-th prime number. Results on $\pi(\pi(x))$ are also considered. **Keywords:** Prime counting function, Inequalities, Hardy–Littlewood conjecture, Landau's inequality, Prime numbers.

2020 Mathematics Subject Classification: 11A25, 11A41.

1 Introduction

Let $\pi(x)$ denote the number of primes $\leq x$, where $x \geq 1$ is a positive integer. In Parts I and II [10, 11] we have proved some inequalities of a new type for $\pi(x)$.

For example, in [10] we established the following counterpart of the Hardy–Littlewood conjecture:

$$\pi(x+y) \ge \frac{2}{3} \cdot [\pi(x) + \pi(y)] \quad (x, y \ge 2)$$
(1)

Copyright © 2023 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Another inequality from [10] is the following (see relation (15))

$$(x+y)\pi(x+y) \le 2[x\pi(x) + y\pi(y)].$$
(2)

In [11] we proved that

$$\sqrt{\pi(x+y)} < \sqrt{\pi(x)} + \sqrt{\pi(y)} \tag{3}$$

and

$$\sqrt{3\pi(x+y)} \ge \sqrt{\pi(x)} + \sqrt{\pi(y)} \tag{4}$$

where $x, y \ge 2$, and that

$$\sqrt{2\pi(x+y)} \ge \sqrt{\pi(x)} + \sqrt{\pi(y)} \tag{5}$$

for infinitely many (x, y), and

$$\sqrt{2\pi(x+y)} \le \sqrt{\pi(x)} + \sqrt{\pi(y)} \tag{6}$$

for infinitely many (x, y).

Among the inequalities from [11] we mention also:

$$(x+y)\sqrt{\pi(x+y)} \le x\sqrt{2\pi(x)} + y\sqrt{2\pi(y)} \tag{7}$$

for all $x, y \ge 2$; and

$$\sqrt{x+y} \cdot \pi(x+y) \le \sqrt{2x} \cdot \pi(x) + \sqrt{2y} \cdot \pi(y) \tag{8}$$

for any $2 \le y \le x$ with the exception of (x, y) = (4, 3); (10, 9).

In this paper, will improve relation (1). This will give also improvements of Landau's converse inequality, considered in [10] and [2]. We will consider also the iteration function $\pi(\pi(x))$, as well as the sequence $\pi(p_n^2)$, where p_n denotes the n^{th} prime number.

2 Main results

The following auxiliary results will be used:

Lemma 1. For $x, y \ge 67$ one has

$$\frac{x}{\log x - \frac{1}{2}} < \pi(x) < \frac{x}{\log x - 1.12}.$$
(9)

For references to this results, see [10, 11].

Lemma 2. For $x \ge 5393$ one has

$$\pi(x) \ge \frac{x}{\log x - 1}.\tag{10}$$

The author [9] proved this inequality in 2006, based on earlier results by P. Dusart [3] and L. Panaitopol [5]. The first result contains the following improvement of (1):

Theorem 1. One has, for any $2 \le y \le x$ the inequality

$$\pi(x+y) \ge \frac{3}{4} \cdot [\pi(x) + \pi(y)], \tag{11}$$

with the exceptions of (x, y) = (7, 3); (5, 5); (7, 5); (23, 13); (19, 17).

There is equality in (11) for (x, y) = (3, 3); (13, 3); (11, 5); (23, 5); (7, 7); (8, 7); (9, 7); (19, 7); (20, 7); (21, 7); (8, 8); (19, 8); (20, 8); (19, 9); (17, 11); (13, 13); (14, 13); (15, 13); (14, 14); (23, 17); (19, 19); (20, 19); (21, 19); (20, 20).

Corollary 1. For any $x \neq 5$, $x \ge 2$ one has

$$\pi(2x) \ge \frac{3}{2}\pi(x),\tag{12}$$

with equality only for x = 3, 7, 8, 13, 14, 19, 20.

Proof. Let

$$f(x) = \frac{x}{\log x - 1.12}$$

A simple computation (which we omit here) gives the second derivative of this function:

$$x \cdot (\log x - 1.12)^2 \cdot f''(x) = -\log x + 3.12 < 0$$

if $\log x > 3.12$, i.e., $x > e^{3.12} = 22.64 \dots$ Thus the function f is concave, which gives

$$f(x) + f(y) \le 2f\left(\frac{x+y}{2}\right)$$
 for any $x, y \ge 23.$ (13)

Now, using the right side of (9), and by (13) we get

$$\pi(x) + \pi(y) < f(x) + f(y) \le \frac{x+y}{\log\left(\frac{x+y}{2}\right) - 1.12}.$$
(14)

On the other hand, by the left side of (9) we get

$$\frac{4}{3}\pi(x+y) > \frac{4}{3} \cdot \frac{(x+y)}{\log(x+y) - \frac{1}{2}}.$$

Now we have to considered the inequality

$$\frac{(x+y)}{\log\frac{(x+y)}{2} - 1.12} < \frac{4}{3} \cdot \frac{(x+y)}{\log(x+y) - \frac{1}{2}}$$
(15)

which can be written, after elementary computations as

$$\log(x+y) > 5.75...; i.e., x+y > e^{5.75...} \approx 317.34...$$

Therefore, inequality (11) is true for $x, y \ge 67$ and $x + y \ge 318$. A computer verification shows that (11) is true also (with strict inequality) for $67 \le y \le x$ and $x + y \le 317$. Therefore (11) is valid with strict inequality for any $x, y \ge 67$.

Let now consider $x \ge y$ and $y \le 66$. Then $\pi(y) \le 18$ and $\frac{3}{4} \cdot [\pi(x) + \pi(y)] \le \frac{3}{4} \cdot [\pi(x) + 18]$. Since $\pi(x) \le \pi(x+y)$, it will be sufficient to consider the inequality $\frac{3}{4} \cdot [\pi(x) + 18] \le \pi(x)$, or $\pi(x) \ge 54$. This is true if $x \ge 257$.

Now, for

$$2 \le y \le x \le 256, \ y \le 66$$
 (16)

a computer verification shows the exceptions listed in Theorem 1, as well the equality cases. \Box **Remark 1.** By letting $x = p_n$, the *n*-th prime number, we get that for $n \neq 3$ one has

$$\pi(2p_n) \ge \frac{3}{2} \cdot n. \tag{17}$$

Particularly, as $\frac{3}{2} > \sqrt{2}$ *, we get that for* $n \neq 3$

$$\pi(2p_n) > \sqrt{2} \cdot n,\tag{18}$$

which was an open problem stated in [4].

The following result gives multiplicative analogues of the Hardy-Littlewood conjecture.

Theorem 2. For any $x, y \ge 3$ one has

$$\pi(x+y) \le \pi(x) \cdot \pi(y),\tag{19}$$

with equality only for (x, y) = (4, 3) for $y \le x$.

One has

$$\pi(x+y) \le \frac{2}{3}\pi(x) \cdot \pi(y) \tag{20}$$

with the exceptions of (x, y) = (3, 3); (4, 3); (4, 4); when $y \le x$. There is equality in (20) only for $(x, y) = (5, 3); (6, 3) \ (y \le x).$

Proof. In [2] the following inequality is proved (see Theorem 6, left side):

$$\frac{1}{2} \le \frac{\pi(x)^{x/(x+y)} \cdot \pi(y)^{y/(x+y)}}{\pi(x+y)}.$$
(21)

Now, (21) can be written as

$$\pi(x+y) \le 2 \cdot \pi(x)^{x/(x+y)} \cdot \pi(y)^{y/(x+y)}.$$
(22)

In order to prove (19), it is sufficient to show that

$$\pi(x)^y \cdot \pi(y)^x \ge 2^{x+y}.$$
(23)

Clearly, (23) is true, if $\pi(x) \ge 2$, $\pi(y) \ge 2$; i.e., when $x, y \ge 3$. As $\pi(x) = 2$ only for $x \in \{3, 4\}$, simple considerations show the cases of equality in (19).

Now, inequality (20) is true, if we can show that

$$\pi(x)^y \cdot \pi(y)^x \ge 3^{x+y}.$$
(24)

This is valid, if $\pi(x) \ge 3$ and $\pi(y) \ge 3$; i.e., when $x, y \ge 7$. As we supposed $x, y \ge 3$; the cases of exceptions can be verified, and also the cases of equality can be verified, and also the cases of equality can be easily shown.

Remark 2. As $x + y \le xy$, or equivalently $(x - 1)(y - 1) \ge 1$, valid for $x \ge 2, y \ge 2$; we can write $\pi(x + y) \le \pi(xy)$. In [6] L. Panaitopol proved that

$$\pi(x) \cdot \pi(y) \le \pi(xy) \tag{25}$$

with the exceptions of (x, y) = (7, 5) and (7, 7) for $2 \le y \le x$. Thus, by (25) and (19) we have:

$$\pi(x+y) \le \pi(x) \cdot \pi(y) \le \pi(xy) \tag{26}$$

with the above mentioned exceptions.

Theorem 3. If $2 \le y \le x$, then

$$\pi(x+y) \le \frac{x}{y} \cdot \pi(x) + \pi(y); \tag{27}$$

$$\pi(x+y) \le 2\sqrt{\pi(y) \cdot \pi(x)^{x/y}} \le \pi(y) + \pi(x)^{x/y}.$$
(27')

Proof. By relation (2) we get

$$\pi(x+y) \le \frac{2x}{x+y} \cdot \pi(x) + \frac{2y}{x+y} \cdot \pi(y) \le \frac{x}{y}\pi(x) + \pi(y),$$

as for $y \le x$ one has $\frac{2y}{x+y} \le 1$ and $\frac{2x}{x+y} \le \frac{x}{y}$. Inequality (27) follows.

By inequality (21) one has, for $2 \le y \le x$, by $\frac{x}{x+y} \le \frac{1}{2} \cdot \frac{x}{y}$ and $\frac{y}{x+y} \le \frac{1}{2}$ that $\pi(x+y) \le 2\pi(x)^{x/2y} \cdot \pi(y)^{1/2}$, so the first inequility of (27') follows.

The second one is the consequence of $2\sqrt{ab} \le a + b$ for $a = \pi(y), b = \pi(x)^{x/y}$.

Remark 3. (27) and (27') are extensions of Landau's inequality

$$\pi(2x) \le 2\pi(x),\tag{28}$$

as for y = x *from* (27) *and* (27') *we get* (28).

In [1] is proved a refinement of (28):

$$2\pi(x) - \pi(2x) \ge 2\omega(x),\tag{29}$$

for $x \ge 71$, where $\omega(x)$ denotes the number of distinct prime factors of x. As $\omega(x) \ge 1$, clearly (29) is an improvement of (28). Now, as inequality (12) of Corollary 1 can be rewritten as $2\pi(x) - \pi(2x) \le \pi(2x) - \pi(x)$, by (29) we get

$$\pi(2x) - \pi(x) \ge 2\pi(x) - \pi(2x) \ge 2\omega(x), \ x \ge 71.$$
(30)

Particularly, (30) shows the following nice improvement of Bertrand's postulate (which states that between x and 2x there exists at least a prime (see [7]):

Proposition 1. For $x \ge 71$, between x and 2x there are at least $2\omega(x)$ primes.

It is known that (see [12]) for any $k, x \ge 3$,

$$\pi(kx) < k\pi(x). \tag{31}$$

This easily implies that

$$\pi(3x) \le 3\pi(x), \ x \ge 2 \tag{32}$$

with equality only for x = 2.

Now, concerning the iteration of $\pi(x)$ *, from* (31) *we get* $\pi(\pi(kx)) \leq \pi(k\pi(x)) \leq k\pi(x)$ *. For the particular cases of* k = 2 *and* k = 3 *one has a more precise result:*

Theorem 4. For any $x \ge 3$ one has

$$\frac{5}{4} \le \frac{\pi(\pi(2x))}{\pi(\pi(x))} \le 2,$$
(33)

in the left side with the exception of x = 5. There is equality in the right side of (33) for $x \in \{3, 4, 9, 10\}$; while in the left side for $x \in \{17, 18, 19, 20\}$

$$\frac{3}{2} \le \frac{\pi(\pi(3x))}{\pi(\pi(x))} \le 3,\tag{34}$$

with equalities in the right side of (34) for x = 4, while in the left side for $x \in \{17, 18, 19\}$.

Proof. The right sides of (33) and (34) are consequences of (28) and (32), by remarking, that in (28) there is strict inequality for x > 10. Thus the equality in the right side of (33) should be considered only for $\pi(x) \le 10$, and an easy verification gives the cases of equalities. A similar argument shows that in the right side of (34) there is equality only for $\pi(x) = 2$, and the result follows.

Now, for the left side of (33) we first prove that

$$\frac{\pi(2x)}{\pi(x)} > \frac{9}{5} \text{ for } x \ge 4628.$$
(35)

Indeed, using Lemma 2 for $2x \ge 5393$ (i.e., $x \ge 2697$) and the right side of Lemma 1, we can write

$$\frac{\pi(2x)}{\pi(x)} > \frac{2x}{\log 2x - 1} \cdot \frac{\log x - 1.12}{x} \ge \frac{9}{5}$$

iff $10(\ln x - 1.12) > 9(\log 2x - 1)$, i.e., $\log x > 8.438...$, which is true for $x \ge e^{8.44} = 4628...$ Now, we will show that

$$\frac{9}{5} > \frac{5}{4} \cdot \left(\frac{\log \pi(2x) - 1}{\log \pi(x) - 1.12}\right),\tag{36}$$

or equivalently $36 \log \pi(x) - 40.32 > 25 \log \pi(2x) - 25$, or $36 \log \pi(x) - 25 \log \pi(2x) > 15.32$. Now, by (28) one has $\log \pi(2x) < \log 2 + \log \pi(x)$, so $25 \log \pi(2x) < 25 \log 2 + 25 \log \pi(x)$, and therefore $36 \log \pi(x) - 25 \log \pi(2x) > 11 \log \pi(x) - 25 \log 2$ and $11 \log \pi(x) - 25 \log 2 > 15.32$ for $11 \log \pi(x) > 15.32 + 25 \log 2 \approx 15.32 + 17.25 = 32.57$; i.e., $\log \pi(x) > 2.96 \dots$. This is valid for $x \ge 73$.

Now, having in mind the validity of (35) for $x \ge 4628$, a computer verification for $3 \le x \le 4627$ shows that the left side is true excepting x = 5, and with equalities only for x = 3, 4, 9, 10.

The proof of left side of (34) could be done in a similar manner, but here we can obtain a more direct argument.

Namely, remark that by (25) one has

$$\pi(3x) \ge 2\pi(x). \tag{37}$$

Relation (37) implies $\pi(\pi(3x)) \ge \pi(2\pi(x))$. Now, by Corollary 1 one has $\pi(2\pi(x)) \ge \frac{3}{2}\pi(x)$, thus the left side of (34) follows. The cases of equality can be done with elementary verifications.

Relation (17) offered a relation for $\pi(2p_n)$. Now we will consider the sequence $(\pi(p_n^2))$. It is an old and famous conjecture that between p_n^2 and p_{n+1}^2 there are at least 4 distinct primes, due to Brocard (see e.g. [7]), i.e.,

$$\pi(p_{n+1}^2) - \pi(p_n^2) \ge 4.$$
(38)

In our opinion, even with 1 in place of (4) we have a difficult open problem. We have the following res

Theorem 5.

$$\pi(p_{n+2}^2) \le 2\pi(p_n^2) < \pi(p_n^2) + \pi(p_{n+1}^2), \ n \ge 4.$$
(39)

Proof. First we prove the following auxiliary result.

Lemma 3.

$$p_{n+2}^2 < 2p_n^2 \text{ for } n \ge 9.$$
 (40)

Indeed, R. E. Dressler et al. (see [12]) proved that $p_{n+1}^2 \leq 2p_n^2$ for n > 4. A similar argument can be applied for the proof of (40). This is based on the Rosser–Schoenfeld inequalities $p_n < n(\log n + \log \log n - \frac{1}{2})$ for $n \geq 20$ and $p_n > n(\log n + \log \log n - \frac{3}{2})$ for $n \geq 2$. Then, to prove $p_{n+2} < \sqrt{2} \cdot p_n$, we have to prove an inequality

$$(n+2)\left[\log(n+2) + \log\log(n+2) - \frac{1}{2}\right] < \sqrt{2} \cdot n\left(\log n + \log\log n - \frac{3}{2}\right).$$

By considering the function

$$f(x) = \sqrt{2}x \log x - (x+2)\log(x+2) + \sqrt{2}x \log\log x - (x+2)\log\log(x+2) - 1.63 \cdot x + 1 > 0,$$

and using the derivative of f(x), and remarking that $\sqrt{2} \log x > \log(x+2) + 1.22$ for $x \ge 25$, we can easily deduce (we omit the details) that f(x) > 0 for $x \ge 24$. Thus (40) is true for $n \ge 24$. For $x \le 23$ a direct verification can be done, and we get that $1 \le n \le 8$, excepting n = 7, inequality (40) is not true.

Now, for the proof of (39) remark that by Landau's inequality (28) and by (40) we can write

$$\pi(p_{n+2}^2) \le \pi(2p_n^2) \le 2\pi(p_n^2) = \pi(p_n^2) + \pi(p_n^2) \le \pi(p_n^2) + \pi(p_{n+1}^2)$$

as $\pi(p_n^2) \le \pi(p_{n+1}^2)$ for $n \ge 9$. For $1 \le n \le 8$ a direct verification shows that (39) is true for any $n \ge 4$.

Remark 4. The weaker inequality of (39) was an Open Problem [4].

References

- [1] Alzer, H., & Kwong, M. K. (2022). On Landau's inequality for the prime counting function. *Journal of Integer Sequences*, 25, Article 22.7.3.
- [2] Alzer, H., Kwong, M. K., & Sándor, J. (2022). Inequalities involving $\pi(x)$. *Rendiconti del Seminario Matematico della Università di Padova*, 147(1), 237–251.
- [3] Dusart, P. (1999). Inégalités explicit pour ψ(x), θ(x), π(x) et les nombres premiers. Comptes rendus mathématiques de l'Académie des sciences. La Société Royale du Canada, 21(2), 53–59.
- [4] Miliakos, G. (2022). Open Questions OQ 5762 and OQ 5760. Octogon Mathematical Magazine, 30(2), 1510.
- [5] Panaitopol, L. (1998). On the inequality $\pi(x) > \frac{x}{\log x 1}$. Analele Universității din București, Seria Matematica. XLVII(2), 187–192.
- [6] Panaitopol, L. (1998). On the inequality $p_a p_b > p_{ab}$. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 41(89), No. 2, 135–139.
- [7] Ribenboim, P. (1996). The New Book of Prime Number Records. Springer.
- [8] Rosser, J. B., & Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. *Illinois Journal of Mathematics*, 6, 64–94.
- [9] Sándor, J. (2006). On some inequalities of Dusart and Panaitopol on the function $\pi(x)$. Octogon Mathematical Magazine, 14 (2), 592–594.
- [10] Sándor, J. (2021). On certain inequalities for the prime counting function. Notes on Number Theory and Discrete Mathematics, 27(4), 149–153.
- [11] Sándor, J. (2022). On certain inequalities for the prime counting function Part II. *Notes on Number Theory and Discrete Mathematics*, 28(1), 124–128.
- [12] Sándor, J., Mitrinović, D. S., & Cristici, B. (2005). Handbook of Number Theory I, Springer.