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Abstract: Let H = H(V,E) be a non-trivial simple connected graph with edge and vertex set
E(H) and V (H), respectively. A subset D ⊂ V (H) with distinct vertices is said to be a vertex
resolving set in H if for each pair of distinct vertices p and q in H we have d(p, u) ̸= d(q, u) for
some vertex u ∈ H. A resolving set H with minimum possible vertices is said to be a metric basis
for H . The cardinality of metric basis is called the metric dimension of H, denoted by dimv(H).

In this paper, we prove that the metric dimension is constant and equal to 3 for certain closely
related families of convex polytopes.
Keywords: Resolving set, Metric dimension, Nonagonal circular ladder, Planar graph, Convex
polytopes.
2020 Mathematics Subject Classification: 05C12, 05C76, 05C90.

1 Introduction

The concept of metric dimension for a connected graph H = (V,E) is equivalent to the total
number of satellites needed for Global Positioning Systems (GPS) to work perfectly. The main
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objective is to choose a small set of ordered vertices D ⊆ V (H) that can identify each vertex
using just the shortest path distances to D. The exact solution to this problem is computationally
difficult, but it provides information that is important in a variety of situations. A small set
of landmarks or satellites in a discrete space can be effective for assisting robots in navigating
through physical space or tracing the transmission of disease between cities. Moreover, this
might be used for more abstract tasks like comparing network structures, locating a source of lies
and false news in a social network, numerically representing symbolic data, or categorizing the
chemical structure.

Slater [20] and Harary and Melter [7] separately introduced the concept of metric dimension
in the context of graphs, but the dimension of graphs had indeed been studied by Erdős et al. [6].
Both of the introductory articles [7, 20] concentrate on the metric dimension of trees and offer
equivalent exact formulas for these types of graphs. The metric dimension of numerous different
types of graphs, such as complete graphs, complete bipartite graphs, and cycle graphs, is briefly
discussed in [7], although the metric dimension of wheel graphs was wrongly reported as 2. They
also provide an algorithm for reconstructing a tree using the given distances between vertices and
resolving set elements. For generic graphs, this is not possible since not all edges are guaranteed
to be represented in a shortest path with a resolving set member as an endpoint.

The notions of metric dimension and resolving sets finds their application in various fields
including, robot navigation [12], image processing and pattern recognition [14], pharmaceutical
chemistry and connected joins in graphs [3], network discovery and verification [15], strategies
for the mastermind games [5], etc. For the metric dimension of several known graph families,
readers are referred to [2, 17–19]. For a given integer q and a graph G, the decision problem
associated with metric dimension is to demonstrate whether or not dimv(H) ≤ q. This decision
problem is computationally intractable, i.e., NP-complete [8, 11].

Next, a polytope is a flat-sided geometric object (faces). The term ”polytope” refers to an
extensive collection of items. Convex polytopes are those polytopes that are convex sets, and that
exist in the Euclidean space Rn (n-dimensional space). Convex polytopes have found application
in the field of optimization, where linear programming studies the minima and maxima of linear
functions; these minima and maxima occur on the boundary of a polytope with n-dimensions.
Further, in twistor theory (theoretical physics), a polytope known as amplituhedron is used to
calculate the scattering amplitudes of subatomic particles when they collide [1]. By considering
some planar families of convex polytopes, in this paper, we study the concept of metric dimension
for them. In last two decades, the concept of metric basis and dimension for several significant
families of convex polytopes have been discussed [9, 10, 17].

The rest of this manuscript is organized in the following manner. In Section 2, some basic
findings and results related to the resolving sets and metric dimension are discussed. In Sections
3–6, we investigate the minimum resolving sets for four closely related classes of convex polytopes,
and determine their metric dimension. Finally, the conclusion and future work of this paper is
presented.
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2 Preliminaries

This section is devoted to recollect some fundamental terminologies and findings about the metric
basis, as well as metric dimension of graphs.

Definition 2.1. (Adjacent vertices) Let u and v be two vertices in a simple connected graph H .
Then, u and v are said to be adjacent if they are joined by an edge in H .

Definition 2.2. (Degree of a vertex) Let u be a vertex in a simple connected graph H . Then,
degree of u, denoted by du, is the totality of edges incident on u in H .

Definition 2.3. (Independent set) Let S be a subset of vertices in H . Then, S is said to be an
independent set, if no two vertices in S are adjacent.

Definition 2.4. (Metric dimension) For completely distinct vertices p, w, q ∈ V (H), if
d(p, w) ̸= d(q, w), then the common vertex w in H is said to recognize (distinguish or resolve)
the distinct pair of vertices p and q in H . Let D ⊆ V (H) be a subset of k distinct ordered vertices.
If every pair of distinct vertices in a given simple connected graph D is distinguished by one (at
least) member of D, then D is said to be a resolving set (vertex) for H . The smallest possible
cardinality of a resolving set is said to be a metric dimension of H , and is usually represented by
dimv(H) [7,20]. The minimal cardinality resolving set D serves as the metric basis for H . For a
subset of k distinct ordered vertices D = {a1, a2, a3, . . . , ak}, the k-length code (representation
or coordinate) of vertex j in V (H) is

ζ(v|D) = (d(a1, v), d(a2, v), d(a3, v), . . . , d(ak, v)).

Then, we say that the set D is a metric generator for H , if rv(a|D) ̸= rv(w|D), for every pair
a, w ∈ V (H) of vertices with a ̸= w.

Definition 2.5. (Independent resolving set) [4] Let S be a subset of vertices in H . Then, S is
said to be an independent resolving set if S is (1) an independent set, and (2) a resolving set.

Further, Imran et al. [9] raised an open problem regarding some planar graphs:

Problem: Characterize the classes of radially symmetrical plane graphs H1 obtained from H by
adding new edges in H such that dim(H) = dim(H1) and V (H) = V (H1).

To address this problem partially, in this work a planar graph family, that is denoted by Nn

(nonagonal circular ladder), has been constructed. Then, further by placing new edges in Nn

at different positions we construct three new families of convex polytopes from Nn viz., N1
n,

N2
n, and N3

n with the same vertex set. Hence, in this article, we consider a problem of metric
dimension for four closely related classes of convex polytopes with the same vertex set.

In this paper, we have consider four convex polytopes for which we have V (Nn) = V (N1
n) =

V (N2
n) = V (N3

n) = {pl, ql, rl, sl, ll : 1 ≤ l ≤ n}. We denote the sets of metric codes/coordinates
for the vertices ql, sl, tl, pl, and rl (1 ≤ l ≤ n), respectively by P, Q, R, S, and L, for the convex
polytopes Nn, N1

n, N2
n, and N3

n.
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Khuller et al. [12] derived various results including the metric dimension of a graph with m

vertices that can be estimated in polynomial time within a factor of O(log m), corrected proof
for the characterization of metric dimension in trees, and some few properties of two-metric
dimension graphs. For the graphs with metric dimension 2, the result is as follows:

Theorem 2.1. Consider a metric basis set U in H with cardinality 2, i.e., |U | = 2 and let
U = {v1, v2}. Then,

• There always exists a shortest unique path Ps between the two basis vertices v1 and v2.

• Degrees of basis vertices v1 and v2 is at most 3.

• Vertices other than v1 and v2 on Ps have a degree at most 5.

3 Metric dimension of a nonagonal circular ladder Nn

In this section, we present an interesting family of the planar graphs, denoted by Nn. For this
family, we discuss some of its basic characteristics and determine its basis set, as well as metric
dimension.

The Graph of Nn: The Nn can be obtained from the Heptagonal circular ladder Γn [17] by
placing n new vertices between the vertices pl and ql (1 ≤ l ≤ n) in Γn (see Figure 1). It has a
vertex set and an edge set with cardinality 5n and 6n, respectively. The set of edges and vertices
of the NCL Nn are depicted separately by E(Nn) and V (Nn), where V (Nn) = {pl, ql, rl, sl, tl :
1 ≤ l ≤ n} and E(Nn) = {plql, qlrl, rlsl, sltl, plpl+1, tlsl+1 : 1 ≤ l ≤ n}.

Figure 1. Nonagonal circular ladder Nn

The elements of the set P = {pl : 1 ≤ l ≤ n} in Nn, are called P -set elements, the
elements of the set Q = {ql : 1 ≤ l ≤ n} in Nn, are called Q-set elements, the elements
of the set R = {rl : 1 ≤ l ≤ n} in Nn, are called R-set elements, the elements of the set
ST = {sl, tl : 1 ≤ l ≤ n} in Nn, are called ST -set elements. Next, we are ready to determine
the basis set, as well as the metric dimension for the planar graph Nn.
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Theorem 3.1. For the planar graph Nn with n ≥ 6, we have dimv(Nn) = 3.

Proof. We prove this theorem in two cases depending upon n.

Case (I) n ≡ 0 (mod 2).

This means that n = 2h, where h ∈ Z+ and h ≥ 3. Let D = {p2, ph+1, pn} be a subset of V (Nn)

with three distinct vertices chosen from P -set elements. To complete the proof for this case, when
n is even, we need to show that D is a basis set for the planar graph Nn. For upper bound, we
give the metric coordinates for each vertex of Nn with respect to the set D.

For the P -set elements, the metric coordinates are shown in Table 1.

Table 1. Metric coordinates for P -set elements in Nn

Vertices Codes
pl; l = 1 (1, h, l)

pl; 2 ≤ l ≤ h (l − 2, h− l + 1, l)

pl; l = h+ 1 (l − 2, h− l + 1, 2h− l)

pl; h+ 2 ≤ l ≤ 2h (2h− l + 2, l − h− 1, 2h− l)

For the Q-set elements, the metric coordinates are ζ(ql|D) = ζ(pl|D)+(1, 1, 1) for 1 ≤ l ≤ n.
For the R-set elements, the metric coordinates are ζ(rl|D) = ζ(pl|D) + (2, 2, 2) for 1 ≤ l ≤ n.
Finally, for the ST -set elements (i.e., ST = {sl, tl : 1 ≤ l ≤ n}), the metric coordinates for
vertices {sl : 1 ≤ l ≤ n} are ζ(sl|D) = ζ(pl|D) + (3, 3, 3) for 1 ≤ l ≤ n and the metric
coordinates for vertices {tl : 1 ≤ l ≤ n} are shown in Table 2.

Table 2. Metric coordinates for vertices {tl : 1 ≤ l ≤ n} in Nn

Vertices Codes
tl; l = 1 (4, h+ 3, 5)

tl; 2 ≤ l ≤ h− 1 (l + 2, h− l + 4, l + 4)

tl; l = h (h+ 2, 4, h+ 3)

tl; l = h+ 1 (h+ 3, 4, h+ 2)

tl; h+ 2 ≤ l ≤ 2h− 1 (2h− l + 5, l − h+ 3, 2h− l + 3)

tl; l = 2h (2h− l + 5, l − h+ 3, 4)

The above list of metric coordinates confirms that |P| = |Q| = |R| = |S| = |L| = n

and each of P, Q, R, S, and L are pairwise disjoint. Thus, we conclude that there exist a set
D with cardinality 3 in Nn, corresponding to which no pair of distinct vertices in Nn have the
same metric coordinates in Nn, indicating that dimv(Nn) ≤ 3. Next, for the reverse inequality,
i.e., dimv(Nn) ≥ 3, we demonstrate that no set D with cardinality 2 is a resolving set for Nn.
To prove this, suppose on contrary that dimv(Nn) = 2. Then, for the set D with cardinality 2, we
have the list of possibilities as follows (here we take n ≥ 14, as for 6 ≤ n ≤ 13, one can easily
derive the contradictions for any set D with cardinality 2 in Nn:
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Resolving sets Contradictions

D = {p1, pj}, pj (2 ≤ j ≤ n)
ζ(q1|D) = ζ(pn|D), for 2 ≤ j ≤ h, and ζ(p2|D) = ζ(pn|D),
for j = h+ 1.

D = {q1, qj}, qj (2 ≤ j ≤ n)
ζ(qn|D) = ζ(pn−1|D), for 2 ≤ j ≤ h − 1; ζ(r2|D) =

ζ(qn−1|D), when j=h, and ζ(p2|D) = ζ(pn|D), when j=h+1.

D = {r1, rj}, rj (2 ≤ j ≤ n)
ζ(qn|D) = ζ(pn−1|D), for 2 ≤ j ≤ h − 1; ζ(r2|D) =

ζ(qn−1|D), when j=h, and ζ(p2|D) = ζ(pn|D), when j=h+1.

D = {s1, sj}, sj (2 ≤ j ≤ n)
ζ(qn−1|D) = ζ(pn−2|D), for 2 ≤ j ≤ h − 2; ζ(s3|D) =

ζ(pn|D), when j = h − 1; ζ(r3|D) = ζ(pn−1|D), when j = h,
and ζ(p2|D) = ζ(pn|D), when j = h+ 1.

D = {t1, tj}, tj (2 ≤ j ≤ n)
ζ(qn−1|D) = ζ(pn−2|D), for 2 ≤ j ≤ h−3; ζ(r3|D) = ζ(p1|D),
when h− 2 ≤ j ≤ h, and ζ(r3|D) = ζ(rn|D), when j = h+1.

D = {p1, qj}, qj (1 ≤ j ≤ n)
ζ(qn|D) = ζ(pn−1|D), for 1 ≤ j ≤ h − 1; ζ(r2|D) =

ζ(qn−1|D), when j=h, and ζ(p2|D) = ζ(pn|D), when j=h+1.

D = {p1, rj}, rj (1 ≤ j ≤ n)
ζ(qn|D) = ζ(pn−1|D), for 1 ≤ j ≤ h− 1; ζ(pn|D) = ζ(q1|D),
when j = h, and ζ(p2|D) = ζ(pn|D), when j = h+ 1.

D = {p1, sj}, sj (1 ≤ j ≤ n)
ζ(qn−1|D) = ζ(pn−2|D), for 1 ≤ j ≤ h − 2; ζ(q1|D) =

ζ(pn|D), when h − 2 ≤ j ≤ h − 1; ζ(pn−1|D) = ζ(q2|D),
when j = h, and ζ(p2|D) = ζ(pn|D), when j = h+ 1.

D = {p1, tj}, lj (1 ≤ j ≤ n)
ζ(qn−1|D) = ζ(pn−2|D), for 1 ≤ j ≤ h − 3; ζ(q1|D) =

ζ(pn|D), when h − 2 ≤ j ≤ h − 1; ζ(l1|D) = ζ(sn|D), when
j = h, and ζ(s2|D) = ζ(tn|D), when j = h+ 1.

D = {q1, rj}, rj (1 ≤ j ≤ n)
ζ(qn|D) = ζ(pn−1|D), for 1 ≤ j ≤ h − 1; ζ(q2|D) =

ζ(pn−1|D), when j=h, and ζ(p2|D) = ζ(pn|D), when j=h+1.

D = {q1, sj}, sj (1 ≤ j ≤ n)
ζ(qn−1|D) = ζ(pn−2|D), for 1 ≤ j ≤ h − 2; ζ(r2|D) =

ζ(pn−2|D), when j = h−1; ζ(q2|D) = ζ(pn−1|D), when j = h,
and ζ(p2|D) = ζ(pn|D), when j = h+ 1.

D = {q1, tj}, tj (1 ≤ j ≤ n)

ζ(qn−1|D) = ζ(pn−2|D), for 1 ≤ j ≤ h − 3; ζ(qn|D) =

ζ(pn−1|D), when j=h−2; ζ(qn−1|D) = ζ(s2|D), when j=h−1;
ζ(s2|D) = ζ(rn|D), when j = h, and ζ(r2|D) = ζ(sn|D), when
j = h+ 1.

D = {r1, sj}, sj (1 ≤ j ≤ n)
ζ(p2|D) = ζ(pn|D), for j = 1, h + 1; ζ(qn|D) = ζ(pn−1|D),
when 2 ≤ j ≤ h− 1, and ζ(q2|D) = ζ(pn−1|D), when j = h.

D = {r1, tj}, tj (1 ≤ j ≤ n)

ζ(qn−1|D) = ζ(pn−2|D), for 1 ≤ j ≤ h − 3; ζ(qn|D) =

ζ(pn−1|D), when j = h − 2; ζ(qn|D) = ζ(t2|D), when j =

h−1; ζ(r2|D) = ζ(qn|D), when j = h, and ζ(rn|D) = ζ(q2|D),
when j = h+ 1.

D = {s1, tj}, lj (1 ≤ j ≤ n)

ζ(qn−1|D) = ζ(pn−2|D), for 1 ≤ j ≤ h − 3; ζ(qn|D) =

ζ(pn−1|D), when j = h − 2; ζ(pn|D) = ζ(s3|D), when
j = h − 1; ζ(t2|D) = ζ(rn|D), when j = h, and ζ(r2|D) =

ζ(tn−1|D), when j = h+ 1.
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The list of contradictions as mentioned above confirms that no set D consisting two elements
forms a resolving set for V (Nn) indicating that dimv(Nn) = 3 in this case.

Case (II) n ≡ 1(mod 2).

This means that n = 2h + 1, where h ∈ Z+ and h ≥ 3. Let D = {p2, ph+1, pn} be a subset of
V (Nn) with three distinct vertices chosen from P -set elements. To complete the proof for this
case, when n is odd, we need to show that D is a basis set for the planar graph Nn. For upper
bound, we give the metric coordinates for each vertex of Nn with respect to the set D. For the
P -set elements, the metric coordinates are shown in Table 3.

Table 3. Metric coordinates for P -set elements in Nn

Vertices Codes
pl; l = 1 (1, h, l)

pl; 2 ≤ l ≤ h (l − 2, h− l + 1, l)

pl; l = h+ 1 (l − 2, h− l + 1, 2h− l + 1)

pl; l = h+ 2 (l − 2, l − h− 1, 2h− l + 1)

pl; h+ 3 ≤ l ≤ 2h+ 1 (2h− l + 3, l − h− 1, 2h− l + 1)

For the Q-set elements, the metric coordinates are ζ(ql|D) = ζ(pl|D)+(1, 1, 1) for 1 ≤ l ≤ n.
For the R-set elements, the metric coordinates are ζ(rl|D) = ζ(pl|D) + (2, 2, 2) for 1 ≤ l ≤ n.
Finally, for the ST -set elements (i.e., ST = {sl, tl : 1 ≤ l ≤ n}), the metric coordinates for
vertices {sl : 1 ≤ l ≤ n} are ζ(sl|D) = ζ(pl|D) + (3, 3, 3) for 1 ≤ l ≤ n and the metric
coordinates for vertices {tl : 1 ≤ l ≤ n} are shown in Table 4.

Table 4. Metric coordinates for vertices {tl : 1 ≤ l ≤ n} in Nn

Vertices Codes
tl; l = 1 (4, h+ 3, 5)

tl; 2 ≤ l ≤ h (l + 2, h− l + 4, l + 4)

tl; l = h+ 1 (h+ 3, 4, h+ 3)

tl; h+ 2 ≤ l ≤ 2h (2h− l + 6, l − h+ 3, 2h− l + 4)

tl; l = 2h+ 1 (2h− l + 6, l − h+ 3, 4)

The above list of metric coordinates confirms that |P| = |Q| = |R| = |S| = |L| = n

and each of P, Q, R, S, and L are pairwise disjoint. Thus, we conclude that there exist a set
D with cardinality 3 in Nn, corresponding to which no pair of distinct vertices in Nn have the
same metric coordinates in Nn, indicating that dimv(Nn) ≤ 3. Next, for the reverse inequality,
i.e., dimv(Nn) ≥ 3, we demonstrate that no set D with cardinality 2 is a resolving set for Nn.
To prove this, suppose on contrary that dimv(Nn) = 2. Then, for the set D with cardinality 2, we
have almost the same list of possibilities and contradictions as we obtained for Case (I). Hence,
we have dimv(Nn) = 3 as well in this case, which proves the theorem.
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Next, in accordance with independent resolving set, we have the following corollary.

Corollary 3.1. Nn with n ≥ 6 has an independent resolving set D with cardinality 3.

4 Metric dimension of a convex polytope N1
n

In this section, we present an interesting family of the planar graphs, denoted by N1
n, which is

derived from Nn by adding some new edges to it. For this family, we discuss some of its basic
characteristics and determine its basis set, as well as metric dimension.

The Graph of N1
n : The convex polytope N1

n is obtained from Nn by inserting n new edges in the
graph Nn between the vertices sl and sl+1 for 1 ≤ l ≤ n. It has a vertex set and an edge set with
cardinality 5n and 7n, respectively. It has 8-sides faces and 3-sides faces each with cardinality n.
Further, it has a face consisting of 2n-sides and a face having n-sides (see Figure 2). The set of
edges and vertices of N1

n are depicted separately by E(N1
n) and V (N1

n), where V (N1
n) = V (Nn)

and E(N1
n) = V (Nn) ∪ {slsl+1 : 1 ≤ l ≤ n}.

Figure 2. The graph N1
n

The elements of the set P = {pl : 1 ≤ l ≤ n} in N1
n, are called P -set elements; the

elements of the set Q = {ql : 1 ≤ l ≤ n} in N1
n, are called Q-set elements; the elements of the set

R = {rl :1≤ l≤n} in N1
n, are called R-set elements; the elements of the set S = {sl : 1 ≤ l ≤ n}

in N1
n, are called S-set elements; and the elements of the set T = {tl : 1 ≤ l ≤ n} in N1

n,
are called T -set elements. Next, we are ready to determine the basis set, as well as the metric
dimension for the planar graph N1

n.
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Theorem 4.1. For the planar graph N1
n with n ≥ 6, we have dimv(N

1
n) = 3.

Proof. We prove this theorem in two cases depending upon n.

Case (I) n ≡ 0 (mod 2).

This means that n = 2h, where h ∈ Z+ and h ≥ 3. Let D = {p2, ph+1, pn} be a subset of V (N1
n)

with three distinct vertices chosen from P -set elements. To complete the proof for this case, when
n is even, we need to show that D is a basis set for the planar graph N1

n. For upper bound, we
give the metric coordinates for each vertex of Nn with respect to the set D.

For the P -set elements, the metric coordinates are shown in Table 5.

Table 5. Metric coordinates for P -set elements in N1
n

Vertices Codes
pl; l = 1 (1, h, l)

pl; 2 ≤ l ≤ h (l − 2, h− l + 1, l)

pl; l = h+ 1 (l − 2, h− l + 1, 2h− l)

pl; h+ 2 ≤ l ≤ 2h (2h− l + 2, l − h− 1, 2h− l)

For the Q-set elements, the metric coordinates are ζ(ql|D) = ζ(pl|D)+(1, 1, 1) for 1 ≤ l ≤ n. For
the R-set elements, the metric coordinates are ζ(rl|D) = ζ(pl|D) + (2, 2, 2) for 1 ≤ l ≤ n. Next,
for the S-set elements, the metric coordinates are ζ(sl|D) = ζ(pl|D) + (3, 3, 3) for 1 ≤ l ≤ n.
Finally, for the T -set elements, the metric coordinates are shown in Table 6.

Table 6. Metric coordinates for ST -set elements in N1
n

Vertices Codes
tl; l = 1 (4, h+ 3, 5)

tl; 2 ≤ l ≤ h− 1 (l + 2, h− l + 4, l + 4)

tl; l = h (h+ 2, 4, h+ 3)

tl; l = h+ 1 (h+ 3, 4, h+ 2)

tl; h+ 2 ≤ l ≤ 2h− 1 (2h− l + 5, l − h+ 3, 2h− l + 3)

tl; l = 2h (2h− l + 5, l − h+ 3, 4)

The above list of metric coordinates confirms that |P| = |Q| = |R| = |S| = |L| = n and
each of P, Q, R, S, and L are pairwise disjoint. Thus, we conclude that there exist a set D with
cardinality 3 in N1

n, corresponding to which no pair of distinct vertices in N1
n have the same

metric coordinates in N1
n, indicating that dimv(N

1
n) ≤ 3. Next, for the reverse inequality, i.e.,

dimv(N
1
n) ≥ 3, we demonstrate that no set D with cardinality 2 is a resolving set for N1

n. To prove
this, suppose on contrary that dimv(N

1
n) = 2. Then, for the set D with cardinality 2, we have the

list of possibilities as follows (here we take n ≥ 14, as for 6 ≤ n ≤ 13, one can easily derive the
contradictions for any set D with cardinality 2 in N1

n):
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Resolving sets Contradictions

D = {p1, pj}, pj (2 ≤ j ≤ n)
ζ(q1|D) = ζ(pn|D), for 2 ≤ j ≤ h, and ζ(p2|D) = ζ(pn|D),
when j = h+ 1.

D = {q1, qj}, qj (2 ≤ j ≤ n)
ζ(qn|D) = ζ(pn−1|D), for 2 ≤ j ≤ h − 1; ζ(r2|D) =

ζ(qn−1|D), when j=h, and ζ(p2|D) = ζ(pn|D), when j=h+1.

D = {r1, rj}, rj (2 ≤ j ≤ n)
ζ(ln|D) = ζ(sn|D), for 2 ≤ j ≤ h, and ζ(s2|D) = ζ(sn|D),
when j = h+ 1.

D = {t1, tj}, tj (2 ≤ j ≤ n)
ζ(r1|D) = ζ(sn|D), for 2 ≤ j ≤ h − 1; ζ(r2|D) = ζ(sn|D),
when j = h, and ζ(s2|D) = ζ(s1|D), when j = h+ 1.

D = {p1, qj}, qj (1 ≤ j ≤ n)
ζ(qn|D) = ζ(pn−1|D), for 1 ≤ j ≤ h − 1; ζ(r2|D) =

ζ(qn−1|D), when j=h, and ζ(p2|D)=ζ(pn|D), when j=h+1.

D = {p1, rj}, rj (1 ≤ j ≤ n)
ζ(ln|D) = ζ(sn|D), for 1 ≤ j ≤ h, and ζ(s2|D) = ζ(sn|D),
when j = h+ 1.

D = {p1, tj}, lj (1 ≤ j ≤ n)
ζ(ln|D) = ζ(sn|D), for 1 ≤ j ≤ h, and ζ(s2|D) = ζ(tn|D),
when j = h+ 1.

D = {q1, rj}, rj (1 ≤ j ≤ n)
ζ(tn|D) = ζ(sn|D), for 1 ≤ j ≤ h, and ζ(s2|D) = ζ(sn|D),
when j = h+ 1.

D = {q1, tj}, tj (1 ≤ j ≤ n)
ζ(tn|D) = ζ(sn|D), for 1 ≤ j ≤ h, and ζ(s2|D) = ζ(ln|D),
when j = h+ 1.

D = {r1, tj}, lj (1 ≤ j ≤ n)
ζ(tn|D) = ζ(sn|D), for 1 ≤ j ≤ h, and ζ(s2|D) = ζ(tn|D),
when j = h+ 1.

The list of contradictions as mentioned above confirms that no set D consisting two elements
forms a resolving set for V (N1

n) indicating that dimv(N
1
n) = 3 in this case.

Case (II) n ≡ 1(mod 2).

This means that n = 2h + 1, where h ∈ Z+ and h ≥ 3. Let D = {p2, ph+1, pn} be a subset of
V (N1

n) with three distinct vertices chosen from P -set elements. To complete the proof for this
case, when n is odd, we need to show that D is a basis set for the planar graph N1

n. For upper
bound, we give the metric coordinates for each vertex of N1

n with respect to the set D.
For the P -set elements, the metric coordinates are shown in Table 7.

Table 7. Metric coordinates for P -set elements in N1
n

Vertices Codes
pl; l = 1 (1, h, l)

pl; 2 ≤ l ≤ h (l − 2, h− l + 1, l)

pl; l = h+ 1 (l − 2, h− l + 1, 2h− l + 1)

pl; l = h+ 2 (l − 2, l − h− 1, 2h− l + 1)

pl; h+ 3 ≤ l ≤ 2h+ 1 (2h− l + 3, l − h− 1, 2h− l + 1)

For the Q-set elements, the metric coordinates are ζ(ql|D) = ζ(pl|D)+(1, 1, 1) for 1 ≤ l ≤ n.
For the R-set elements, the metric coordinates are ζ(rl|D) = ζ(pl|D) + (2, 2, 2) for 1 ≤ l ≤ n.
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Next, for the S-set elements, the metric coordinates are ζ(sl|D) = ζ(pl|D) + (3, 3, 3) for
1 ≤ l ≤ n. Finally, for the T -set elements, the metric coordinates are shown in Table 8.

Table 8. Metric coordinates for T -set elements in N1
n

Vertices Codes
tl; l = 1 (4, h+ 3, 5)

tl; 2 ≤ l ≤ h (l + 2, h− l + 4, l + 4)

tl; l = h+ 1 (h+ 3, 4, h+ 3)

tl; h+ 2 ≤ l ≤ 2h (2h− l + 6, l − h+ 3, 2h− l + 4)

tl; l = 2h+ 1 (2h− l + 6, l − h+ 3, 4)

The above list of metric coordinates confirms that |P| = |Q| = |R| = |S| = |L| = n and
each of P, Q, R, S, and L are pairwise disjoint. Thus, we conclude that there exist a set D with
cardinality 3 in N1

n, corresponding to which no pair of distinct vertices in N1
n have the same

metric coordinates in N1
n, indicating that dimv(N

1
n) ≤ 3. Next, for the reverse inequality, i.e.,

dimv(N
1
n) ≥ 3, we demonstrate that no set D with cardinality 2 is a resolving set for N1

n. To prove
this, suppose on contrary that dimv(N

1
n) = 2. Then, for the set D with cardinality 2, we have

almost the same list of possibilities and contradictions as we obtained for Case (I).
Hence, we have dimv(N

1
n) = 3 as well in this case, which proves the theorem.

Next, in accordance with independent resolving set, we have the following corollary.

Corollary 4.1. N1
n with n ≥ 6 has an independent resolving set D with cardinality 3.

5 Metric dimension of a convex polytope N2
n

In this section, we again present an interesting family of the planar graphs, denoted by N2
n, which

is derived from Nn by adding some new edges to it. For this family, we discuss some of its basic
characteristics and determine its basis set, as well as metric dimension.

The Graph of N2
n : The convex polytope N2

n is obtained from the NCL Nn by inserting n new
edges in the graph Nn between the vertices sl and pl+1 for 1 ≤ l ≤ n. It has a vertex set and
an edge set with cardinality 5n and 7n, respectively. It has 5-sides faces and 6-sides faces each
with cardinality n. Further, it has a face consisting of 2n-sides and a face having n-sides (see
Figure 3). The set of edges and vertices of N2

n are depicted separately by E(N2
n) and V (N2

n),
where V (N2

n) = V (Nn) and E(N2
n) = E(Nn) ∪ {slpl+1 : 1 ≤ l ≤ n}.

The elements of the set P = {pl : 1 ≤ l ≤ n} in N2
n, are called P -set elements, the elements

of the set Q = {ql : 1 ≤ l ≤ n} in N2
n are called Q-set elements, the elements of the set

R={rl : 1 ≤ l ≤ n} in N2
n are called R-set elements, the elements of the set S={sl : 1 ≤ l ≤ n}

in N2
n are called S-set elements, and the elements of the set T = {sl : 1 ≤ l ≤ n} in N2

n are
called T -set elements. Next, we are ready to determine the basis set as well metric dimension for
the planar graph N2

n.
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Figure 3. The graph N2
n

Theorem 5.1. For the planar graph N2
n with n ≥ 6, we have dimv(N

2
n) = 3.

Proof. For 6 ≤ n ≤ 10, it can be easily verified that the metric dimension of N2
n is 3 (using the

resolving set D = {l1, lh+1, ln}). Now, for n ≥ 11, we prove this theorem in two cases depending
upon n.

Case (I) n ≡ 0 (mod 2).

This means that n = 2h, where h ∈ Z+ and h ≥ 3. Let D = {t1, th+1, tn} be a subset of V (N2
n)

with three distinct vertices chosen from T -set elements. To complete the proof for this case, when
n is even, we need to show that D is a basis set for the planar graph N2

n. For upper bound, we
give the metric coordinates for each vertex of Nn with respect to the set D.

For the P -set elements, the metric coordinates are shown in Table 9. For the Q-set elements,
the metric coordinates are shown in Table 10. For the R-set elements, the metric coordinates are
shown in Table 11. For the S-set elements, the metric coordinates are shown in Table 12. Finally,
for the T -set elements, the metric coordinates are shown in Table 13.

Table 9. Metric coordinates for P -set elements in N2
n

Vertices Codes
pl; l = 1 (3, h, 2)

pl; l = 2 (2, h+ 1, 2)

pl; 3 ≤ l ≤ h+ 1 (l − 1, h− l + 4, l)

pl; l = h+ 2 (h+ 1, 2, h+ 1)

pl; h+ 3 ≤ l ≤ 2h (2h− l + 4, l − h− 1, 2h− l + 3)
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Table 10. Metric coordinates for Q-set elements in N2
n

Vertices Codes
ql; l = 1 (3, h+ 1, 3)

ql; l = 2 (3, h+ 2, 3)

ql; 3 ≤ l ≤ h (l, h− l + 5, l + 1)

ql; l = h+ 1 (h+ 1, 3, h+ 2)

ql; l = h+ 2 (h+ 2, 3, h+ 2)

ql; h+ 3 ≤ l ≤ 2h− 1 (2h− l + 5, l − h, 2h− l + 4)

ql; l = 2h (2h− l + 5, l − h, 3)

Table 11. Metric coordinates for R-set elements in N2
n

Vertices Codes
rl; l = 1 (2, h+ 2, 2)

rl; l = 2 (2, h+ 3, 4)

rl; 3 ≤ l ≤ h− 1 (l + 1, h− l + 5, l + 3)

rl; l = h (h+ 1, 4, h+ 3)

rl; l = h+ 1 (h+ 2, 2, h+ 3)

rl; l = h+ 2 (h+ 3, 2, h+ 2)

rl; h+ 3 ≤ l ≤ 2h− 2 (2h− l + 5, l − h+ 1, 2h− l + 4)

rl; l = 2h− 1 (2h− l + 5, l − h+ 1, 4)

rl; l = 2h (2h− l + 5, l − h+ 1, 2)

Table 12. Metric coordinates for S-set elements in N2
n

Vertices Codes
sl; l = 1 (1, h+ 3, 1)

sl; l = 2 (1, h+ 2, 3)

sl; l = 3 (3, h+ 1, 5)

sl; 4 ≤ l ≤ h− 1 (l + 1, h− l + 4, l + 2)

sl; l = h (h+ 1, 3, h+ 2)

sl; l = h+ 1 (h+ 2, 1, h+ 2)

sl; l = h+ 2 (h+ 2, 1, h+ 1)

sl; h+ 3 ≤ l ≤ 2h− 2 (2h− l + 4, l − h+ 1, 2h− l + 3)

sl; l = 2h− 1 (2h− l + 4, l − h+ 1, 3)

sl; l = 2h (3, l − h+ 1, 1)
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Table 13. Metric coordinates for T -set elements in N2
n

Vertices Codes
tl; l = 2 (2, h+ 2, 4)

tl; l = 3 (4, h+ 1, 6)

tl; 4 ≤ l ≤ h− 2 (l + 2, h− l + 4, l + 3)

tl; l = h− 1 (h+ 1, 4, h+ 2)

tl; l = h (h+ 2, 2, h+ 3)

tl; l = h+ 2 (h+ 2, 2, h+ 1)

tl; l = h+ 3 (h+ 1, 4, h)

tl; h+ 4 ≤ l ≤ 2h− 3 (2h− l + 4, l − h+ 2, 2h− l + 3)

tl; l = 2h− 2 (2h− l + 4, l − h+ 2, 4)

tl; l = 2h− 1 (4, l − h+ 2, 2))

The above list of metric coordinates confirms that |P| = |Q| = |R| = |S| = |L| = n and
each of P, Q, R, S, and L are pairwise disjoint. Thus, we conclude that there exist a set D with
cardinality 3 in N2

n, corresponding to which no pair of distinct vertices in N2
n have the same

metric coordinates in N2
n, indicating that dimv(N

2
n) ≤ 3. Next, for the reverse inequality, i.e.,

dimv(N
2
n) ≥ 3, we demonstrate that no set D with cardinality 2 is a resolving set for N2

n. To prove
this, suppose on contrary that dimv(N

2
n) = 2. Then, for the set D with cardinality 2, we have the

list of possibilities as follows (here we take n ≥ 14, as for 6 ≤ n ≤ 13, one can easily derive the
contradictions for any set D with cardinality 2 in N2

n):

Resolving sets Contradictions

D = {q1, qj}, qj (2 ≤ j ≤ n)
ζ(sn|D) = ζ(pn|D), for 2 ≤ j ≤ h, and ζ(p2|D) = ζ(pn|D),
when j = h+ 1.

D = {r1, rj}, rj (2 ≤ j ≤ n)
ζ(sn|D) = ζ(pn|D), for 2 ≤ j ≤ h, and ζ(p2|D) = ζ(pn|D),
when j = h+ 1.

D = {t1, tj}, tj (2 ≤ j ≤ n)
ζ(r1|D) = ζ(ln|D), for 2 ≤ j ≤ h, and ζ(sn|D) = ζ(q1|D),
when j = h+ 1.

D = {q1, rj}, rj (1 ≤ j ≤ n)
ζ(sn|D) = ζ(pn|D), for 1 ≤ j ≤ h, and ζ(p2|D) = ζ(pn|D),
when j = h+ 1.

D = {q1, sj}, sj (1 ≤ j ≤ n)
ζ(rn|D) = ζ(ln−1|D), for j = 1; ζ(sn|D) = ζ(pn|D), when
2 ≤ j ≤ h − 2, and ζ(sn−1|D) = ζ(qn|D), when h − 1 ≤ j ≤
h+ 1.

D = {r1, sj}, sj (1 ≤ j ≤ n)
ζ(p2|D) = ζ(ln|D), for j = 1; ζ(sn|D) = ζ(pn|D), when 2 ≤
j ≤ h−2, and ζ(sn−1|D) = ζ(qn|D), when h−1 ≤ j ≤ h+1.

The list of contradictions as mentioned above confirms that no set D consisting two elements
forms a resolving set for V (N2

n) indicating that dimv(N
2
n) = 3 in this case.
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Case (II) n ≡ 1 (mod 2).

This means that n = 2h + 1, where h ∈ Z+ and h ≥ 3. Let D = {t1, th+1, tn} be a subset of
V (N2

n) with three distinct vertices chosen from P -set elements. To complete the proof for this
case, when n is odd, we need to show that D is a basis set for the planar graph N2

n. For upper
bound, we give the metric coordinates for each vertex of N2

n with respect to the set D. For the
P -set elements, the metric coordinates are shown in Table 14.

Table 14. Metric coordinates for P -set elements in N2
n

Vertices Codes
pl; l = 1 (3, h, 2)

pl; l = 2 (2, h+ 1, 2)

pl; 3 ≤ l ≤ h+ 1 (l − 1, h− l + 4, l)

pl; l = h+ 2 (h+ 1, 2, h+ 2)

pl; h+ 3 ≤ l ≤ 2h+ 1 (2h− l + 5, l − h− 1, 2h− l + 4)

For the Q-set elements, the metric coordinates are shown in Table 15.

Table 15. Metric coordinates for Q-set elements in N2
n

Vertices Codes
ql; l = 1 (3, h+ 1, 3)

ql; l = 2 (3, h+ 2, 3)

ql; 3 ≤ l ≤ h (l, h− l + 5, l + 1)

ql; l = h+ 1 (h+ 1, 3, h+ 2)

ql; l = h+ 2 (h+ 2, 3, h+ 3)

ql; h+ 3 ≤ l ≤ 2h (2h− l + 6, l − h, 2h− l + 5)

ql; l = 2h+ 1 (2h− l + 6, l − h, 3)

For the R-set elements, the metric coordinates are shown in Table 16.

Table 16. Metric coordinates for R-set elements in N2
n

Vertices Codes
rl; l = 1 (2, h+ 2, 2)

rl; l = 2 (2, h+ 3, 4)

rl; 3 ≤ l ≤ h− 1 (l + 1, h− l + 5, l + 3)

rl; l = h (h+ 1, 4, h+ 3)

rl; l = h+ 1 (h+ 2, 2, h+ 3)

rl; l = h+ 2 (h+ 3, 2, h+ 4)

rl; h+ 3 ≤ l ≤ 2h− 1 (2h− l + 7, l − h+ 1, 2h− l + 5)

rl; l = 2h (6, l − h+ 1, 4)

rl; l = 2h+ 1 (4, l − h+ 1, 2)
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For the S-set elements, the metric coordinates are shown in Table 17.

Table 17. Metric coordinates for S-set elements in N2
n

Vertices Codes
sl; l = 1 (1, h+ 3, 1)

sl; l = 2 (1, h+ 2, 3)

sl; l = 3 (3, h+ 1, 5)

sl; 4 ≤ l ≤ h− 1 (l + 1, h− l + 4, l + 2)

sl; l = h (h+ 1, 3, h+ 3)

sl; l = h+ 1 (h+ 2, 1, h+ 3)

sl; l = h+ 2 (h+ 3, 1, h+ 2)

sl; h+ 3 ≤ l ≤ 2h− 1 (2h− l + 5, l − h+ 1, 2h− l + 4)

sl; l = 2h (2h− l + 5, l − h+ 1, 3)

sl; l = 2h+ 1 (3, l − h+ 1, 1)

Finally, for the T -set elements, the metric coordinates are shown in Table 18.

Table 18. Metric coordinates for T -set elements in N2
n

Vertices Codes
tl; l = 2 (2, h+ 2, 4)

tl; l = 3 (4, h+ 1, 6)

tl; 4 ≤ l ≤ h− 2 (l + 2, h− l + 4, l + 3)

tl; l = h− 1 (h+ 1, 4, h+ 2)

tl; l = h (h+ 2, 2, h+ 3)

tl; l = h+ 2 (h+ 3, 2, h+ 2)

tl; l = h+ 3 (h+ 2, 4, h+ 1)

tl; h+ 4 ≤ l ≤ 2h− 2 (2h− l + 5, l − h+ 2, 2h− l + 4)

tl; l = 2h− 1 (2h− l + 5, l − h+ 2, 4)

tl; l = 2h (4, l − h+ 2, 2)

The above list of metric coordinates confirms that |P| = |Q| = |R| = |S| = |L| = n and
each of P, Q, R, S, and L are pairwise disjoint. Thus, we conclude that there exist a set D with
cardinality 3 in N2

n, corresponding to which no pair of distinct vertices in N2
n have the same

metric coordinates in N2
n, indicating that dimv(N

2
n) ≤ 3. Next, for the reverse inequality, i.e.,

dimv(N
2
n) ≥ 3, we demonstrate that no set D with cardinality 2 is a resolving set for N2

n. To prove
this, suppose on contrary that dimv(N

2
n) = 2. Then, for the set D with cardinality 2, we have

almost the same list of possibilities and contradictions as we obtained for Case (I). Hence, we
have dimv(N

2
n) = 3 as well in this case, which proves the theorem.

Next, in accordance with independent resolving set, we have the following corollary.

Corollary 5.1. N2
n with n ≥ 6 has an independent resolving set D with cardinality 3.
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6 Metric dimension of a convex polytope N3
n

In this section, we again present an interesting family of the planar graphs, denoted by N2
n, which

is derived from Nn by adding some new edges to it. For this family, we discuss some of its basic
characteristics and determine its basis set, as well as metric dimension.

The Graph of N3
n: The convex polytope N3

n is obtained from the NCL Nn by inserting n new
edges in the graph Nn between the vertices ql and pl+1 for 1 ≤ l ≤ n. It has a vertex set and
an edge set with cardinality 5n and 7n respectively. It has 3-sides faces and 8-sides faces each
with cardinality n. Further, it has a face consisting of 2n-sides and a face having n-sides (see
Figure 4). The set of edges and vertices of N3

n are depicted separately by E(N3
n) and V (N3

n),
where V (N3

n) = V (Nn) and E(N3
n) = E(Nn) ∪ {qlpl+1 : 1 ≤ l ≤ n}.

Figure 4. The graph N3
n

The elements of the set P = {pl : 1 ≤ l ≤ n} in N3
n, are called P -set elements, the elements

of the set Q = {ql : 1 ≤ l ≤ n} in N3
n, are called Q-set elements, the elements of the set R =

{rl : 1 ≤ l ≤ n} in N3
n, are called R-set elements, the elements of the set S = {sl : 1 ≤ l ≤ n}

in N3
n, are called S-set elements, and the elements of the set T = {tl : 1 ≤ l ≤ n} in N3

n, are
called T -set elements. Next, we are ready to determine the basis set as well metric dimension for
the planar graph N3

n.

Theorem 6.1. For the planar graph N3
n with n ≥ 6, we have dimv(N

3
n) = 3.

Proof. Let D = {p2, ph+1, pn} ⊂ V(N3
n). Then, by using a similar argument as utilized in

Theorem 5.1, we prove that the set D is the minimum resolving set for N3
n, and in this way

dimv(N
3
n) = 3, which proves the theorem.

Next, in accordance with independent resolving set, we have the following corollary.

Corollary 6.1. N3
n with n ≥ 6 has an independent resolving set D with cardinality 3.
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7 Conclusion and discussion

In this article, the metric dimension of a planar graph Nn and of three classes of convex polytopes
obtained from Nn have been studied. For these classes of convex polytopes, we proved that
V (Nn) = V (N1

n) = V (N2
n) = V (N3

n) and dim(Nn) = dim(N1
n) = dim(N2

n) = dim(N3
n) = 3

(a partial answer to the problem raised in [9]). We also proved that the resolving sets for all of
these convex polytopes are independent. Future work will expand on these results to determine
the edge metric dimension, mixed metric dimension, and other variants of metric dimension for
each of these planar graphs.
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