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1 Introduction

We begin by recalling the definition of Gauss’s hypergeometric series or simply a hypergeometric
series defined as follows [5]:
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Here (a)n is the well-known Pochhammer’s symbol defined for any complex number a (̸= 0) by

(a)n =

1, n = 0,

a(a+ 1) · · · (a+ n− 1), n ∈ N.
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The series defined in (1) is convergent for all values of z if |z| < 1 and divergent if |z| > 1. When
z = 1, the series is convergent if ℜ(c− a− b) > 0 and divergent if ℜ(c− a− b) ≤ 0. Also,
when z = −1, the series is absolutely convergent if ℜ(c− a− b) > 0 and is convergent but not
absolutely if −1 < ℜ(c− a− b) ≤ 0 and divergent if ℜ(c− a− b) < 1.

It should be remarked here that whenever a hypergeometric series reduces to the gamma
function, the results are very important from the application point of view. Thus the classical
summation theorems such as those of Gauss, Gauss second, Kummer, Bailey, and a few
terminating summations play an important role.

However, in our present investigation, we shall require the following hypergeometric
summation theorem and identities [3, 5] each valid for n ∈ N0.

Gauss second summation theorem [5]
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Hypergeometric identities [3, 5]

2F1

[
−2n, a

2a
; 2

]
=

(
1
2

)
n(

a+ 1
2

)
n

, (3)

2F1

[
−2n− 1, a

2a
; 2

]
= 0, (4)

2F1

[
−2n, a

2a+ 1
; 2

]
=

(
1
2

)
n(

a+ 1
2

)
n

, (5)

2F1

[
−2n− 1, a

2a+ 1
; 2

]
=

1

2a+ 1

(
3
2

)
n(

a+ 3
2

)
n

. (6)

On the other hand, one of the applications of the hypergeometric series is to solve binomial
sums [7]. Using this method, the given sum is first converted into a hypergeometric series. This
is accomplished by combining any terms that are polynomial in the summation index
with binomials, expanding the binomials into factorials, and transferring the factorials into
Pochhammer symbols. If successfully converted, the resulting hypergeometric series is compared
with known summation theorems and a closed-form sum may be obtained when a suitable match
is found.

In this context, we first mention here the following famous combinatorial sum known as
Knuth’s old sum viz.
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The above combinatorial identity is, in the literature, also known as Reed Dawson identity because
Reed Dawson presented this identity in a private communication to Riordan who recorded it in
his well-known book [6, p. 71].
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It is not out of place to mention here that from time to time, several different proofs of the
above sums have been given in the literature. In this regard, we would like to refer to a survey
paper by Prodinger [4]. In 1974, Andrews [1, p. 478] established the identity given in (7) by
employing Gauss second summation theorem (2). Later, in 2004, Choi et al. [2] established by
utilizing the hypergeometric identities (3) and (4).

Riordan [6], by the method of inverse relations, established the following identity closely
related to (7) viz.
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The aim of this note is to provide a natural generalization of the Riordan identity (8) via
a hypergeometric series approach by employing the hypergeometric identities (5) and (6). The
same is given in the next section.

2 Generalization of Riordan identity

In this section, we shall establish the natural generalization of the Riordan identity (8) asserted in
the following theorem.

Theorem 2.1. For i ∈ N, the following identity holds true.
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Proof. In order to establish the result (9) asserted in the theorem, we proceed as follows. Denoting
the left-hand side of (9) by Si, we have
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Upon converting binomial coefficients into Pochhammer symbols viz.(
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we have, after some simplification
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Finally, summing up the series with the help of the equation (1), we have

Si =
Γ(n+ i+ 1)

Γ(n+ 1)Γ(i+ 1)
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Now, changing n to 2n and 2n+1, respectively, and using the results (5) and (6), we easily arrive
at the right-hand side of (9).

This completes the proof of the generalization of the Riordan identity (9) asserted in the
theorem.

3 Corollaries

In this section, we shall mention known as well as some new identities of our main findings.

Corollary 3.1. In (9), if we set i = 1, we at once recover the Riordan identity (8).

Corollary 3.2. In (9), if we set i = 2, we get the following interesting identity.
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Corollary 3.3. In (9), if we set i = 3, we get the following interesting identity.
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Similarly, other results can be obtained.

Remark 3.1. The identities (10) and (11) are closely related to the Riordan identity (8).

4 Concluding remark

In this short note, we have provided a generalization of the well-known and useful identity due to
Riordan via a hypergeometric series approach.
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