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Keywords: Pythagorean triples, Fibonacci and Lucas numbers.
2020 Mathematics Subject Classification: 11B39, 11C20.

1 Introduction and preliminaries

A Pythagorean triple (PT) is an ordered triple of positive integers, (a, b, c) such that a2+ b2 = c2.
A PT is called primitive provided gcd(a, b, c) = 1. Any primitive PT (PPT) can be written in the
form (s2− t2, 2st, s2+ t2) for positive integers s and t with s > t and gcd(s, t) = 1 (see, e.g., [2],
p. 248). A Pythagorean triple preserving matrix (PTPM) is a 3 × 3 matrix that transforms any
given PT into another when the PTs are expressed as column vectors (see, e.g., [4]). The familiar
Fibonacci sequence is defined as F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 3.

Leyendekkers and Shannon constructed families of PPTs using generalized Fibonacci
sequences of the following form:

Fn+1(b) = Fn(b) + bFn−1(b), n ≥ 3, (1)
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where b ranges over the positive integers, F1(b) = 1 and F2(b) = 1 [3]. For example, Fn(1) is
the Fibonacci sequence and Fn(2) is the Jacobsthal sequence. (It should be mentioned that our
notation differs slightly from that in [3].) PPTs are constructed using these sequences by choosing
s = Fn+1(b) and t = Fn(b) when gcd(Fn+1(b), Fn(b)) = 1, and by choosing

s =
Fn+1(b) + Fn(b)

2
, t =

Fn+1(b)− Fn(b)

2
, (2)

when gcd(Fn+1(b), Fn(b)) ̸= 1. In other words, PPTs can be generated using consecutive terms
of the sequence Fn(b) for some positive integer value of b. Alternatively, the PTs generated by (2)
can be obtained by choosing s = Fn+1(b) and t = Fn(b) and dividing each term of the resulting
non-primitive PT by 2 [3].

It should first be noted that although it is claimed in [3] that every PPT can be generated in
this way, there are counterexamples to this claim. For example, consider the PPT (119, 120, 169).
169 has a unique representation as a sum of nonzero integer squares, namely 169 = 122 + 52. To
generate this PPT, we therefore must find positive integers b and n such that either Fn+1(b) = 12

and Fn(b) = 5 or Fn+1(b) = 17 and Fn(b) = 7.
Since F1(b) = 1 and F2(b) = 1 for all possible values of b, n must be at least 3. If b > 9,

Fn(b) > 17 for all n ≥ 4. Therefore, our search is restricted to the cases where b ≤ 8. We may
refer to the values in Table 1 and conclude that the necessary generating values do not occur as
consecutive terms in any of the Fn(b) sequences.

Table 1. Values of generalized Fibonacci sequences

Sequence Sequence values less than 20
Fn(1) 1, 1, 2, 3, 5, 8, 13

Fn(2) 1, 1, 3, 5, 11

Fn(3) 1, 1, 4, 7, 19

Fn(4) 1, 1, 5, 9

Fn(5) 1, 1, 6, 11

Fn(6) 1, 1, 7, 13

Fn(7) 1, 1, 8, 15

Fn(8) 1, 1, 9, 17

Fn(9) 1, 1, 10, 19

Similarly, the PPT (95, 168, 193) requires generating values of Fn+1(b) = 12 and Fn(b) = 7

or Fn+1(b) = 19 and Fn(b) = 5. Table 1 once again shows that we cannot find the necessary
generating values as consecutive terms in any of the Fn(b) sequences.

Although some PPTs are missing from them, the families of PPTs generated by generalized
Fibonacci sequences are nevertheless noteworthy. We will generate these families using PTPMs
in the next section.
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2 Generating the families of PPTs

The following matrix is a PTPM and, in particular, transforms any PT generated by Fn+1(b) and
Fn(b) to the PT generated by s = Fn+2(b) and t = Fn+1(b) (proved in [1]):

Mb =



−b2

2
b

b2

2

1 b 1

1− b2

2
b 1 +

b2

2

 . (3)

For example, M1 transforms a PT generated by consecutive Fibonacci numbers to the next
such PT and, therefore, each such PT can be obtained using powers of M1. For readability, we
have written the PTs as ordered triples in Table 2 rather than column vectors.

Table 2. PTs generated by consecutive Fibonacci numbers

PT Generating values Matrix computation
(3, 4, 5) s = 3, t = 2 M1[ 0 2 2 ]T

(5, 12, 13) s = 3, t = 2 M2
1 [ 0 2 2 ]T

(16, 30, 34) s = 5, t = 3 M3
1 [ 0 2 2 ]T

(39, 80, 89) s = 8, t = 5 M4
1 [ 0 2 2 ]T

(105, 208, 233) s = 13, t = 8 M5
1 [ 0 2 2 ]T

(272, 546, 610) s = 21, t = 13 M6
1 [ 0 2 2 ]T

The vector
[
0 2 2

]T
appears in the matrix computations because (0, 2, 2) is the ordered

triple generated by s = 1 and t = 1. The triple (0, 2, 2) is not a PT, but is generated by the first
two (nonzero) terms of the Fibonacci sequence. As illustrated in Table 2, the non-primitive PTs
appear when the power of M1 is a multiple of 3. Therefore, every PPT generated by consecutive
Fibonacci numbers is of one of these two forms:

1

2
Mk

1

[
0 2 2

]T
, k ≡ 0 mod 3,

Mk
1

[
0 2 2

]T
, k ̸≡ 0 mod 3.

As another example, we list several PTs generated when b = 2 (by consecutive Jacobsthal
numbers) in Table 3.

Table 3. PTs generated by consecutive Jacobsthal numbers

PT Generating values Matrix Computation
(8, 6, 10) s = 3, t = 1 M2[ 0 2 2 ]T

(16, 30, 34) s = 5, t = 3 M2
2 [ 0 2 2 ]T

(96, 110, 146) s = 11, t = 5 M3
2 [ 0 2 2 ]T

(320, 462, 562) s = 21, t = 11 M4
2 [ 0 2 2 ]T
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Since every term of the Jacobsthal sequence is odd, consecutive terms cannot generate a PPT
and we must divide each term of the resulting PT by 2. Therefore, every PPT generated in this

case is of the form
1

2
Mk

2

[
0 2 2

]T
. (0, 2, 2) is once again the ordered triple generated by the

first two (nonzero) terms of the sequence.
The parity of the terms in Fn(b) for other values of b follows the same pattern as the Fibonacci

sequence when b is odd and the Jacobsthal sequence when b is even. This means that every
PPT generated by consecutive terms of the Fn(b) sequences can be expressed using one of the
following forms:

1

2
Mk

b

[
0 2 2

]T
, where b is odd and k ≡ 0 mod 3,

1

2
Mk

b

[
0 2 2

]T
, where b is even

Mk
b

[
0 2 2

]T
, where b is odd and k ̸≡ 0 mod 3.

3 Generalized Lucas sequences

We may also consider generalized Lucas sequences that obey the same recurrence relation as
Fn(b), namely

Ln+1(b) = Ln(b) + bLn−1(b),

but L1(b) = 1 and L2(b) = 2b + 1, [3]. The Mb matrices also transform a PT generated by
Ln+1(b) and Ln(b) to the PT generated by Ln+2(b) and Ln+1(b). In other words, if we do not
change the recurrence relation, Mb will transform PTs in the same way regardless of the two
initial terms of the sequence [1]. As before, we obtain several families of PPTs. We need only

replace
[
0 2 2

]T
with the ordered (non-PT) triple generated by L2(b) = 2b+1 and L1(b) = 1:

1

2
Mk

b

[
4b(b+ 1) 2(2b+ 1) 4b(b+ 1) + 2

]T
, where b is odd and k ≡ 0 mod 3,

1

2
Mk

b

[
4b(b+ 1) 2(2b+ 1) 4b(b+ 1) + 2

]T
, where b is even,

Mk
b

[
4b(b+ 1) 2(2b+ 1) 4b(b+ 1) + 2

]T
, where b is odd and k ̸≡ 0 mod 3.

As with the families of PPTs generated by the Fn(b) sequences, certain PPTs cannot be
expressed in this form. The reader may verify that while (119, 120, 169) can be generated in
this way (setting b = 2 and k = 2), (95, 168, 193) once again cannot.

4 Conclusion

In this paper, we have shown how to generate primitive Pythagorean triples arising from
consecutive terms of generalized Fibonacci and generalized Lucas sequences using Pythagorean
triple preserving matrices. We have also shown that some primitive Pythagorean triples cannot
be generated using consecutive terms of such sequences.
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There are several avenues of further research the interested reader may wish to pursue. First,
the PPTs that cannot be generated using generalized Fibonacci or generalized Lucas sequences
have yet to be enumerated. It may be helpful to find a closed form for Mk

b in the pursuit of this
aim. Second, the matrix forms of the PTs discussed here may help one catalog which PPTs appear
in multiple families. For example, (8, 15, 17) is generated by both the Fibonacci and Jacobsthal
sequences. Finally, since each matrix Mb transforms any PT to another, the reader may wish to
explore how the Mb-matrices transform other collections of PTs: for example, PTs with a leg
difference of 1.
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