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1 Introduction

It is well known that any α ∈ Q has a unique simple continued fraction expansion

α = a0 +
1

a1 +
1

. . . +
1

an

= [a0, a1, . . . , an]

where a1, . . . , an are positive integers, a0 ∈ Z and an ≥ 2. The sequence (ai)0≤i≤n is called the
sequence of partial quotients of α. The number n is called the depth of the continued fraction for
α, denoted by ψ(α). This function was introduced by Mendès France in [5].
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Also, as it is well known, there are close connections between the arithmetic behaviour of
algebraic number fields and that of the algebraic function fields in one variable. For instance, in
the 19th century the theory of polynomial continued fractions was started. More precisely, the
ring of polynomials K[T ] over a given field K can play the role of the ring of integers Z and thus
its field of fractions K(T ) will correspond to the field of rational numbers Q. Then, the role of
R will be played by the completion of K(T ) with respect to the valuation ord associated to the
degree, that is, by K((T−1)), the field of formal Laurent series in T−1. If α ∈ Q(T ), then α
has a unique finite continued fraction α = [a0, a1, . . . , an] where (ai)0≤i≤n are polynomials with
coefficients in Q such that deg ai ≥ 1 for i > 0. If α ∈ Q((T−1))\Q(T ) then α can be represented
by an infinite continued fraction expansion. In particular, if the partial quotients in the continued
fraction expansion of α belong to Z[T ], we say that it is specializable, see [9]. The reader can
consult [1] for several interesting specializable continued fraction expansions describing infinite
series.

Almost all of the classical notions and results can be translated into the function fields setting.
In 1973, Mendès France [6] gave an upper bound on ψ(nx), when x ∈ Q and n ∈ N. An analogue
of this result was given in the function field setting, see [8].

We are interested in the length of continued fractions of rational numbers. Pourchet have
proved that for all integer p > 1, q > 1 such that gcd(p, q) = 1 we have lim+∞ ψ((p/q)n) = +∞.
In [5], Mendès France asked the following problem: Let (pn/qn)n≥1 be a sequence of rational
numbers, what can we say about the sequence

(
ψ(pn/qn)

)
n≥1

? Is it true that
(
ψ(pn/qn)

)
n≥1

is of
the order of log(qn)? He proved that if F is a rational function with rational coefficients, then the
sequence

(
ψ(F (n)))

)
n≥1

is periodic from a certain point onward. On the other hand, Corvaja and
Zannier [3] have proved that for some power sums α and β over Q, the lengths of the continued
fractions α(n)/β(n) tend to infinity as n → ∞. In this direction, we will construct in this note
a sequence of rational numbers with continued fractions of constant length. In parallel, we will
expose another sequence of quotients with increasing lengths. Now let us see some examples of
sequences of rational numbers and their corresponding lengths:

1) We consider the Fibonacci numbers defined by the recurrence relation F0 = 0, F1 = 1, and

Fn = Fn−1 + Fn−2. We know that Fn+1

Fn
= [

n 1’s︷ ︸︸ ︷
1, 1, . . . , 1]. So

(
ψ(Fn+1/Fn)

)
n≥1

= n − 1.

Since Fn is asymptotic to φn/
√
5, where φ is the golden ratio, then

(
ψ(Fn+1/Fn)

)
n≥1

∼ log(Fn)/ log(φ).

2) Let (Sn)n≥1 be the sequence of rational numbers defined by the partial sums:

Sn =
n∑

i=0

1

u2i
=
p(n)

q(n)
=
p(n)

u2n

for some integer u ≥ 3. The continued fraction of this sum was given in [7] and it is of
length 2n + 1. So that

(
ψ(p(n)/q(n))

)
n≥1

∼ log(q(n))/ log(u). Our result is based on
the following proposition given by Lasjaunias in his paper [4] for the continued fraction
expansion of a rational fraction P/Q ∈ Q(T ) such that P = (T 2 − 1)k, k ≥ 1 and

Q =

∫ T

0

(x2 − 1)k−1dx =
k−1∑
i=0

(−1)k−i−1Ci
k−1(2i+ 1)−1T 2i+1.
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Proposition 1.1. Let k ≥ 1. Then we have in Q(T ) the following continued fraction expansion

P/Q = [u1T, u2T, . . . , u2kT ] (1)

where ui ∈ Q∗ for all 1 ≤ i ≤ 2k. For 1 ≤ i ≤ 2k, we have

ui = (2k − 2i+ 1)(
∏

1≤j<i/2

(2j)(2k − 2j)/
∏

1≤j<(i+1)/2

(2j − 1)(2k − 2j + 1))(−1)i ,

where as usual the empty product is equal to 1. Moreover, if we set

wk = −16k−1(2k − 1)−2(C2k−2
k−1 )−2

then, we also have
u2k+1−i = w

(−1)i+1

k ui for 1 ≤ i ≤ 2k

and consequently

wkP/Q = [u2kT, u2k−1T, . . . , u1T ].

The analogue of this continued fraction in the function field case allows us to describe the
continued fraction for many algebraic irrational power series, see for example [2, 4]. The great
interest of these continued fractions will give us the opportunity to study their analogues in the
real number case.

2 Main results

We have the following lemma whose proof is simple.

Lemma 2.1. For β ∈ Q∗ and a, b ∈ N∗ we have

[a,−b,−β] = [a− 1, 1, b− 1, β]. (2)

Proposition 2.1. Let k ≥ 1 be an integer. Let P = (T 2 − 1)k and Q =

∫ T

0

(x2 − 1)k−1dx. Let

Xi =
i∏

j=1

(2j)(2k − 2j) and Yi =
i∏

j=1

(2j − 1)(2k − 2j + 1) with as usual, in the sequel X0 = 1.

Then

P (Xk−1YkT )

Q(Xk−1YkT )
=

((Xk−1YkT )
2 − 1)k∫ Xk−1YkT

0
(x2 − 1)k−1dx

= [(2k − 1)Xk−1YkT, (2k − 3)Xk−1

k∏
j=2

(2j − 1)(2k − 2j + 1)T,

(2k − 5)Y1Yk

k∏
j=2

(2j)(2k − j)T, (2k − 5)X1Xk

k∏
j=3

(2j − 1)(2k − 2j + 1)T,

. . . , (−2k + 3)Yk−1YkT, (−2k + 1)(Xk−1)
2T ]

with all partial quotients belonging to Z[T ].
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Theorem 2.1. Let k ≥ 1 and n ≥ 1. For 1 ≤ i ≤ k we let Xi =
i∏

j=1

(2j)(2k − 2j) and

Yi =
i∏

j=1

(2j − 1)(2k − 2j + 1) with X0 = 1. Then the rational number

p

q
=

((Xk−1Ykn)
2 − 1)k

k−1∑
i=0

(−1)k−i−1Ck−1
i (2i+ 1)−1(Xk−1Yk)

2i+1n2i+1

,

has a continued fraction expansion of length 2k.

Remark 2.1. Note that the last theorem gives us, for all k ≥ 1, an infinity of rational numbers of
length 2k. Further we note that for all k ≥ 1

−wk
p

q
= [−u2kXk−1Ykn, . . . ,−uk+1Xk−1Ykn,−ukXk−1Ykn, . . . ,−u2Xk−1Ykn,

−u1Xk−1Ykn]

= [−u2kXk−1Ykn, . . . ,−uk+1Xk−1Ykn− 1, 1, ukXk−1Ykn− 1, . . . , u2Xk−1Ykn,

u1Xk−1Ykn]

by applying the identity (2).

The following corollary improves Mendès France results [5].

Corollary 2.1. Let k ≥ 1 be a fixed integer. For all n ≥ 1 the sequence of rational numbers

Fk(n) =
p(n)

q(n)
=

((Xk−1Ykn)
2 − 1)k

k−1∑
i=0

(−1)k−i−1Ck−1
i (2i+ 1)−1(Xk−1Yk)

2i+1n2i+1

satisfies ψ(Fk(n)) = 2k. So the sequence (ψ(Fk(n)))n≥1 is constant and equal to o(log(q(n))).

The following corollary give us the length of the simple continued fraction of quotients of
sequences having special progressions kind.

Corollary 2.2. Let n ≥ 1 be a fixed integer. For all k ≥ 1 the sequence

Gn(k) =
p(k)

q(k)
=

((Xk−1Ykn)
2 − 1)k

k−1∑
i=0

(−1)k−i−1Ck−1
i (2i+ 1)−1(Xk−1Yk)

2i+1n2i+1

has an unbounded length ψ(Gn(k)) = 2k. Further ψ(Gn(k)) = o(log(q(k))).

3 Proofs of the main results

Proof of Proposition 2.1. We follow the same notation of the partial quotients of (1). We have
u1 = 2k − 1 and for 1 ≤ i ≤ k

u2i = (2k − 4i+ 1)Xi−1/Yi u2i−1 = (2k − 4i+ 3)Yi−1/Xi−1.

375



Then
u2k = (−2k + 1)Xk−1/Yk u2k−1 = (−2k + 3)Yk−1/Xk−1.

Now, to obtain partial quotients in the continued fraction (1) with coefficients in Z, we
substitute T by Xk−1YkT . We get:

u1Xk−1YkT = (2k − 1)Xk−1YkT,

u2Xk−1YkT = (2k − 3)(X0/Y1)Xk−1YkT = (2k − 3)Xk−1

k∏
j=2

(2j − 1)(2k − 2j + 1)T,

u3Xk−1YkT = (2k − 5)(Y1/X1)Xk−1YkT = (2k − 5)Y1Yk

k∏
j=2

(2j)(2k − 2j)T,

u4Xk−1YkT = (2k − 7)(X1/Y2)Xk−1YkT = (2k − 5)X1Xk

k∏
j=3

(2j − 1)(2k − 2j + 1)T,

...

u2k−1Xk−1YkT = (−2k + 3)Yk−1YkT

u2kXk−1YkT = (−2k + 1)(Xk−1)
2T. □

Proof of Theorem 2.1. According to the result of the last proposition, since u1 = 2k − 1 and for
1 ≤ i ≤ k

u2i = (2k − 4i+ 1)Xi−1/Yi

u2i−1 = (2k − 4i+ 3)Yi−1/Xi−1,

then

u2i < 0 for i ≥ k + 1

2
when k is odd

u2i−1 < 0 for i ≥ k + 2

2
when k is even.

So uk+1, uk+2, . . . , u2k are negative integers. If we specialize by “T = n” with n ≥ 1 and we
apply the identity (2) we obtain

p

q
=
P (Xk−1Ykn)

Q(Xk−1Ykn)
= [u1Xk−1Ykn, u2Xk−1Ykn, . . . , ukXk−1Ykn, uk+1Xk−1Ykn,

uk+2Xk−1Ykn, . . . , u2kXk−1Ykn]

= [u1Xk−1Ykn, u2Xk−1Ykn, . . . , ukXk−1Ykn− 1, 1,

−uk+1Xk−1Ykn− 1,−uk+2Xk−1Ykn, . . . ,−u2kXk−1Ykn].

This continued fraction has a length equal to 2k. □

Proof of Corollary 2.1. By a simple calculation of the limit, we easily show that

(ψ(Fk(n)))n≥1 = o(log(q(n))). □

Proof of Corollary 2.2. By a simple calculation of the limit, we easily show that

ψ(Gn(k)) = o(log(q(k))). □
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Example 3.1. For k = 2. We have X1 = 4, Y1 = 3 and Y2 = 9, then Xk−1Yk = X1Y2 = 36. So

(1296T 2 − 1)2

15552T 3 − 36T
= [108T, 12T,−27T,−48T ].

So for all n ≥ 1

F2(n) =
(1296n2 − 1)2

15552n3 − 36n
= [108n, 12n,−27n,−48n] = [108n, 12n− 1, 1, 27n− 1, 48n].

Furthermore, w2 = −4

9
, then

−w2F2(n) = −w2
(1296n2 − 1)2

15552n3 − 36n
= [48n, 27n− 1, 1, 12n− 1, 108n].
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