On the multiplicative group

generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\} . \mathrm{V}$

I. Kátai ${ }^{1}$ and B. M. Phong ${ }^{2}$

${ }^{1}$ Department of Computer Algebra, University of Eötvös Loránd 1117 Budapest, Hungary
e-mail: katai@inf.elte.hu
${ }^{2}$ Department of Computer Algebra, University of Eötvös Loránd
1117 Budapest, Hungary
e-mail: bui@inf.elte.hu

Received: 31 January 2023 Accepted: 11 May $2023 \quad$ Online First: 12 May 2023
Abstract: Let f, g be completely multiplicative functions, $|f(n)|=|g(n)|=1(n \in \mathbb{N})$. Assume that

$$
\frac{1}{\log x} \sum_{n \leq x} \frac{|g([\sqrt{2} n])-C f(n)|}{n} \rightarrow 0 \quad(x \rightarrow \infty)
$$

Then

$$
f(n)=g(n)=n^{i \tau}, \quad C=(\sqrt{2})^{i \tau}, \tau \in \mathbb{R}
$$

Keywords: Completely multiplicative functions, Multiplicative group.
2020 Mathematics Subject Classification: 11K65, 11N37, 11N64.

1 Introduction

This paper is a continuation of [2-5].
A function $f: \mathbb{N} \rightarrow \mathbb{C}$ belongs to \mathcal{M}^{*} if $f(n m)=f(n) f(m)$ holds for all $n, m \in \mathbb{N}$ and let

$$
\mathcal{M}_{1}^{*}:=\left\{f \in \mathcal{M}^{*}| | f(n) \mid=1 \quad n \in \mathbb{N}\right\} .
$$

	Copyright © 2023 by the Authors. This is an Open Access paper distributed under the (c) © terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creat ivecommons.org/licenses/by/4.0/

We shall write $f\left(\frac{n}{m}\right)=\frac{f(n)}{f(m)}$ if $f \in \mathcal{M}_{1}^{*}$ and $n, m \in \mathbb{N}$. Let $\{x\}=$ fractional part of x and let

$$
\|x\|=\min (\{x\}, 1-\{x\}) .
$$

In [4] we proved
Theorem A. Let $\varepsilon(n) \downarrow 0, f, g \in \mathcal{M}^{*}, C \in \mathbb{C}$,

$$
|g([\sqrt{2} n])-C f(n)| \leq \varepsilon(n) \quad(n \in \mathbb{N})
$$

furthermore

$$
\sum_{n=2}^{\infty} \frac{\varepsilon(n) \log \log 2 n}{n}<\infty
$$

Then $f(n)=g(n)=n^{i \tau}(\tau \in \mathbb{R})$, where $C=(\sqrt{2})^{i \tau}$.
The proof was based on the following:
Main lemma. ([1]) If $f \in \mathcal{M}_{1}^{*}(n \in \mathbb{N})$ and

$$
\sum_{n=1}^{\infty} \frac{|f(n+1)-f(n)|}{n}<\infty
$$

then $f(n)=n^{i \tau}(\tau \in \mathbb{R})$.
Recently O. Klurman by using the results of [8] and [9] proved a very important theorem:
Theorem B. ([6] and [7]) If $f \in \mathcal{M}_{1}^{*}$,

$$
\frac{1}{\log x} \sum_{n \leq x} \frac{|f(n+1)-f(n)|}{n} \rightarrow 0(x \rightarrow \infty)
$$

then $f(n)=n^{i \tau}(\tau \in \mathbb{R})$.
By using Theorem B we improve Theorem A as follows:
Theorem 1. Let $f, g \in \mathcal{M}_{1}^{*}$,

$$
\frac{1}{\log x} \sum_{n \leq x} \frac{|g([\sqrt{2} n])-C f(n)|}{n} \rightarrow 0 \quad(x \rightarrow \infty)
$$

then $f(n)=g(n)=n^{i \tau}(\tau \in \mathbb{R})$, where $C=(\sqrt{2})^{i \tau}$.

2 Auxiliary results

Let

$$
\begin{equation*}
J_{1}=\left\{n \left\lvert\,\{\sqrt{2} n\}<\frac{1}{\sqrt{2}}\right.\right\} \quad \text { and } \quad J_{2}=\left\{n \left\lvert\,\{\sqrt{2} n\}>\frac{1}{\sqrt{2}}\right.\right\} . \tag{2.1}
\end{equation*}
$$

Then $\mathbb{N}=J_{1} \cup J_{2}$.
Let

$$
\begin{equation*}
a_{n}:=\frac{[\sqrt{2}[\sqrt{2} n]]}{n} . \tag{2.2}
\end{equation*}
$$

$$
a_{n}=\left\{\begin{array}{lll}
\frac{2 n-1}{n} & \text { if } & n \in J_{1} \tag{2.3}\\
\frac{2(n-1)}{n} & \text { if } & n \in J_{2}
\end{array}\right.
$$

For some $N \in \mathbb{N}$, let

$$
\mathcal{B}_{0}=N \quad \text { and } \quad \mathcal{B}_{j}=2 \mathcal{B}_{j-1}-1 \quad \text { for all } \quad j \in \mathbb{N}
$$

In [2] (Lemma 3) we proved that either $N \in J_{2}$, or there is a positive k, for which $\mathcal{B}_{k} \in J_{2}$. Let $T(N):=k+1$, where k is the smallest positive integer for which $\mathcal{B}_{k} \in J_{2}$. We proved that

$$
\begin{equation*}
\frac{2^{k+1}(N-1)}{N}=\frac{2\left(\mathcal{B}_{k}-1\right)}{N}=\left(\prod_{j=0}^{k-1} a_{\mathcal{B}_{j}}\right) a_{\mathcal{B}_{k}} \tag{2.4}
\end{equation*}
$$

furthermore that

$$
\begin{equation*}
T(N) \leq \frac{1}{\log 2} \cdot \log \frac{1}{\|\sqrt{2}(N-1)\|}+c_{1} \tag{2.5}
\end{equation*}
$$

c_{1} is an explicit constant.
Let $\delta(n)=g([\sqrt{2} n])-C f(n), k \in \mathbb{N}$. Let

$$
\mathcal{T}_{k}=\left\{n \in \mathbb{N} \left\lvert\,\{\sqrt{2} n\}<\frac{1}{k}\right.\right\}
$$

It is clear that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{\substack{n \in \mathcal{T}_{k} \\ n \leq x}} \frac{1}{n}=A_{k}(>0) \tag{2.6}
\end{equation*}
$$

If $n \in \mathcal{T}_{k}$, then

$$
\delta(k n)=g(k) g([\sqrt{2} n])-C f(k) f(n)
$$

and

$$
\frac{\delta(k n)}{f(k)}=\frac{g(k)}{f(k)} g([\sqrt{2} n])-C f(n), \quad \delta(n)=g([\sqrt{2} n])-C f(n)
$$

and so

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{\substack{n \in \mathcal{I}_{k} \\ n \leq x}}\left|\frac{g(k)}{f(k)}-1\right| \cdot|g([\sqrt{2} n])| \rightarrow 0
$$

which implies that $g(k)=f(k)$.
Let $\Theta_{1}=\{\sqrt{2} m\}, \Theta_{2}=\{\sqrt{2} \cdot 2 m\}, \Theta_{3}=\{\sqrt{2}(2 m-1)\}$. If

$$
\Theta_{1} \in\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}+1\right)\right):=U
$$

then

$$
\Theta_{2}=2 \Theta_{1}-1<\frac{1}{\sqrt{2}}, 0<\Theta_{3}=\Theta_{2}-(\sqrt{2}-1)<\frac{1}{\sqrt{2}}
$$

and so $m \in J_{2}, 2 m-1 \in J_{1}, 2 m \in J_{1}$. Such integers m for which $\Theta_{1} \in U$ can be found, since $\{\sqrt{2} m\}$ is dense in $[0,1)$.

Then there exist positive integers k_{1}, k_{2} such that

$$
\left\{\begin{array}{l}
2^{\ell}(2 m-2)+1 \in \begin{cases}J_{1} & \text { for } \ell<k_{1} \\
J_{2} & \text { for } \ell=k_{1},\end{cases} \\
2^{\ell}(2 m-1)+1 \in \begin{cases}J_{1} & \text { for } \ell<k_{2} \\
J_{2} & \text { for } \ell=k_{2} .\end{cases}
\end{array}\right.
$$

Then there exists a suitable $\delta>0$ such that if $\left|\{\sqrt{2} N\}-\Theta_{1}\right|<\delta$, then

$$
\left\{\begin{array}{l}
a_{N}=\frac{2(N-1)}{N}, N \in J_{2} \\
2^{\ell}(2 N-2)+1 \in \begin{cases}J_{1} & \text { for } \ell<k_{1} \\
J_{2} & \text { for } \ell=k_{1}\end{cases} \\
2^{\ell}(2 N-1)+1 \in \begin{cases}J_{1} & \text { for } \ell<k_{2} \\
J_{2} & \text { for } \ell=k_{2}\end{cases}
\end{array}\right.
$$

Let S_{k} be the set of the integers n, for which k is the non-negative smallest integer for which $\mathcal{B}_{k} \in J_{2}$. Let $d_{n}=\frac{[\sqrt{2} n]}{n}$. Then $a_{n}=d_{n} \cdot d_{[\sqrt{2} n]}$.

Let $D=f(2) C^{-2}$. If (2.4) holds, then

$$
D^{k+1} f\left(\frac{N-1}{N}\right)=\prod_{j=0}^{k} C^{-2} f\left(a_{\mathcal{B}_{j}}\right)
$$

and so it follows from $D:=f(2) C^{-2}$ that

$$
\begin{aligned}
\left|D^{k+1} f\left(\frac{N-1}{N}\right)-1\right| & \leq B \sum_{j=0}^{k}\left|C^{-1} f\left(d_{\mathcal{B}_{j}}\right)-1\right|+B \sum_{j=0}^{k}\left|C^{-1} f\left(d_{\mathcal{B}_{\left[\sqrt{2} \mathcal{B}_{j}\right]}}\right)-1\right| \\
& \leq 2 \frac{B}{|C|} \varepsilon(N-1) .
\end{aligned}
$$

Here B is an absolute constant.
Thus

$$
\frac{1}{\log x} \sum_{\substack{N \in S_{k} \\ N \leq x}} \frac{1}{N}\left|D^{k+1} f\left(\frac{N-1}{N}\right)-1\right| \rightarrow 0(x \rightarrow \infty)
$$

Let now $N \in S_{0}, 2 N-1 \in S_{k_{1}}, 2 N \in S_{k_{2}}$. Then

$$
\begin{gathered}
\frac{1}{\log x} \sum_{\substack{N \in S_{0} \\
N \leq x}} \frac{\left|D f\left(\frac{N-1}{N}\right)-1\right|}{N} \rightarrow 0(x \rightarrow \infty) \\
\frac{1}{\log x} \sum_{\substack{2 N-1 \in S_{k_{1}} \\
N \leq x}} \frac{\left|D^{k_{1}+1} f\left(\frac{2 N-2}{2 N-1}\right)-1\right|}{2 N-1} \rightarrow 0(x \rightarrow \infty),
\end{gathered}
$$

$$
\frac{1}{\log x} \sum_{\substack{2 N \in S_{k_{2}} \\ N \leq x}} \frac{\left|D^{k_{2}+1} f\left(\frac{2 N-2}{2 N-1}\right)-1\right|}{2 N} \rightarrow 0(x \rightarrow \infty)
$$

and so

$$
\frac{1}{\log x} \sum_{N \leq x}^{\star} \frac{\left|D^{k_{1}+k_{2}+2}-D\right|\left|f\left(\frac{N-1}{N}\right)\right|}{N} \rightarrow 0
$$

the summation is extended over those N for which $N \in S_{0}, 2 N-1 \in S_{k_{1}}, 2 N \in S_{k_{2}}$ simultaneously holds. Since

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{N \leq x}^{\star} \frac{1}{N}>0
$$

we obtain that

$$
D^{k_{1}+k_{2}+1}=1
$$

One can compute easily that if $m=2$, then $k_{1}=2, k_{2}=1$ and if $m=14$, then $k_{1}=k_{2}=1$.
Thus, $D=1$ and $C^{2}=f(2)$.

3 Proof of Theorem 1

We shall prove that

$$
\begin{equation*}
\frac{1}{\log x} \sum_{\substack{T(N)=k \\ N \leq x}} \frac{\left|f\left(\frac{N-1}{N}\right)-1\right|}{N} \rightarrow 0 \quad(x \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

holds for every fixed k.
We have

$$
f\left(\frac{N-1}{N}\right)=\prod_{j=0}^{k} f\left(d_{\mathcal{B}_{j}}\right) f\left(d_{\mathcal{B}_{\left[\sqrt{2} \mathcal{B}_{j}\right]}}\right)
$$

and so

$$
\begin{aligned}
\left|f\left(\frac{N-1}{N}\right)-1\right| & \leq c\left|\log f\left(\frac{N-1}{N}\right)\right| \\
& \leq c \sum_{j=0}^{k}\left|f\left(d_{\mathcal{B}_{j}}\right)-1\right|+c \sum_{j=0}^{k}\left|f\left(d_{\mathcal{B}_{\left[\sqrt{2} \mathcal{B}_{j}\right]}}\right)-1\right|
\end{aligned}
$$

The assumption of Theorem 1 implies (3.1).
Finally we note that

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{\substack{T(N) \geq U \\ N \leq x}} \frac{1}{N}=d(U),
$$

where $d(U) \rightarrow 0$ if $U \rightarrow \infty$.
We obtain that

$$
\frac{1}{\log x} \sum_{N \leq x} \frac{1}{N}\left|f\left(\frac{N-1}{N}\right)-1\right| \rightarrow 0
$$

We can apply Theorem B and the proof of Theorem 1 is complete.

The following result is a consequence of Theorem 1.
Theorem 2. Let F, G be completely additive functions, $A \in \mathbb{R}$ and

$$
\frac{1}{\log x} \sum_{n \leq x} \frac{\|G([\sqrt{2} n])-F(n)-A\|}{n} \rightarrow 0 \quad(x \rightarrow \infty) .
$$

Then $F(n)=G(n)=\frac{2 A}{\log 2} \log n$ for every $n \in \mathbb{N}$.

References

[1] Kátai, I. (1984). Multiplicative functions with regularity properties II. Acta Mathematica Hungarica, 43(1-2), 105-130.
[2] Kátai, I., \& Phong, B. M. (2015). On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Acta Mathematica Hungarica, 145 (1), 80-87.
[3] Kátai, I., \& Phong, B. M. (2015). On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$ II. Acta Scientiarum Mathematicarum (Szeged), 81(3-4), 431-436.
[4] Kátai, I., \& Phong, B. M. (2015). On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$ III. Acta Mathematica Hungarica, 147, 247-254.
[5] Kátai, I., \& Phong, B. M. (2014-2015). On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$ IV. Mathematica Pannonica, 25(1), 105-112.
[6] Klurman, O. (2017). Correlations of multiplicative functions and applications. Compositio Mathematica, 153, 1620-1657.
[7] Klurman, O., \& Mangerel, A. (2018). Rigidity theorems for multiplicative functions. Mathematische Annalen, 372(1-2), 651-697.
[8] Matomäki, K., \& Radziwill, M. (2016). Mulitplicative functions in short intervals. Annals of Mathematics, 183(3), 1015-1056.
[9] Tao, T. (2016). The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. Forum of Mathematics, Pi, 4, e8, 36 pages.

