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1 Introduction 

Different generalized recurrences of Fibonacci and Lucas number sequences have had an 

important place in scientific studies for many years. The most basic generalization of the 

Fibonacci numbers is defined as  

, , 1 , 2 , 2k n k n k nF kF F n     

with initial condition 
,0 ,10,  1.k kF F    

Based on this sequence, when 1k   is taken, we have the ordinary Fibonacci numbers. Based 

on this sequence, when 2k   is taken, the Pell number given below and the Pell–Lucas numbers 

are obtained by changing the initial values as shown: 

 1 22 ,  2 n n nP P P n     

with initial conditions 0 10,  1 P P   and 

 1 22 ,  2 n n nQ Q Q n     

with initial conditions 0 1 1.Q Q   

Incomplete and biperiodic studies have been discussed by many authors [1, 4, 9–14, 19]. 

Depending on k any integer, incomplete recurrences of the k-Pell and k-Pell–Lucas sequence [3] 

are defined as follows: 
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Biperiodic Fibonacci numbers were defined by Yayenie [4, 5] with the recurrence and summation 

formulas 
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where  
2

n
n n   . Many generalizations related to these numbers have had an important place 

in recent scientific research and development [1, 4, 12]. This definition of Yayenie not only gives 

a different perspective to the usual recurrence relations, but also many studies have been added to 

the literature by studying this definition when it is applied to different number sequences. Thus, 

based on the above equation, Ramirez [12] defined the following incomplete sequences: 
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Many studies on incomplete number sequences began with Ramirez [13]. In this study, Fibonacci 

and Lucas number sequences are discussed. The following studies are the continuation of these 

studies; for example, Catarino et al. [3] worked with generalized Pell numbers. Similarly, later 

Kuloğlu et al. [10] studied the polynomials of Vieta–Pell number sequences and brought a more 

up-to-date version to these studies as a whole. 

The q-integer of the number a  is defined by  
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and another factorial definition is defined by 
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Similarly, the binomial definition is given by  
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For a n  this value is taken as 0. Here  
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we can take the Pascal-like rule here as 
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Srivastava [18] focused on the historical development of many pertinent polynomials and the 

properties of such sequences, from the generalization of classical Bernoulli polynomials 

(specifically, q-generalization) to Euler polynomials and Euler numbers to Genocchi polynomials.  

The q-integers are related to the q-series of Carlitz [2] and the Fermatians of Shannon [16]  

(the name going back to Fermat’s Little Theorem and Shanks [15]). The binomial definition above 

is a generalization of the Fibonomial coefficients of Jerbic [8]. Hoggatt [6] developed properties 

of them for ordinary Fibonacci numbers. Hoggatt and Lind [7] also applied them to combinatorial 

problems, and Shannon and Horadam [17] used them to obtain generating functions for powers 

of elements of third order recursive sequences. 
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Based on the definitions and properties given above, this article reconstructs the biperiodic 

studies defined on 𝑝-analogues and proves several related theorems.  

2 p-Analogue of biperiodic Pell and Pell–Lucas polynomials 

In this section, the generating functions of the p-analogues of the biperiodic generalizations of 

Pell and Pell-Lucas sequences and their important theorems and propositions depending on the 

generating functions are discussed. 

Definition 2.1. For ,m n  the p-analogue of biperiodic Pell and Pell–Lucas polynomials are 

defined by 
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If we take 0u   and 1v m n s p      here, we get  kP p . 

 

Theorem 2.2. Let  ,kP s p , k-th p-analogue of biperiodic Pell and Pell–Lucas polynomials for 
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Proof. By induction over k, if we take k = 1, the equality holds. Suppose that the equality is true  

for k. We now show that it is true for k + 1.  
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From the definition of k, ( )k  and the recurrence relation of the p-binomial coefficients, where 

k    is the floor function and  
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   is the parity function, 
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This completes the proof.  

We provide the generating function for ( , )kP s p  in the following theorem. Here the functions 

( )f x  defined in [9] with   operator and, similarly, 2 ( )f x  with the same operator defined in 

[14], will be a guide for the proof. 
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Theorem 2.3. For the p-biperiodic Pell and Pell–Lucas polynomials the generating function is  

 𝜉(𝑥) =
𝑢+𝑥(𝑣−𝑛𝑢)+(2𝑚−𝑛)𝑥𝑓(𝑥)

1−𝑛𝑥−𝑥2𝑠𝜂
, 

where  

 𝑓(𝑥) =
𝑣𝑥+𝑠(𝑛𝑢−𝑣)𝑥3

1−4𝑚𝑛𝑥2−𝑠(1+
1

𝑝
)𝑥2𝜂+𝑠2𝑥2𝜂2

. 

Proof. The generating function for the p-analogue biperiodic Pell and Pell–Lucas polynomials is  
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from which we get the desired results as follows 

 𝜉(𝑥) =
𝑢+𝑥(𝑣−𝑛𝑢)+(2𝑚−𝑛)𝑥𝑓(𝑥)

1−𝑛𝑥−𝑥2𝑠𝜂
. 

This completes the proof.  

From [14] we can obtain the following lemma. 
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Theorem 2.5. The generating functions for  ,kP s p  can be also expressed as follows 
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This completes the proof.   

3 A p-analogue of biperiodic incomplete Pell 

and Pell–Lucas polynomials 

Definition 3.1. The p-analogues of biperiodic incomplete Pell polynomials are defined by 
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Theorem 3.2. The p-analogues of biperiodic incomplete Pell polynomials satisfy the following 

relations: 
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A similar proof is made if k is even.  



345 

Theorem 3.3.  ,t

kP s p  satisfy the following equation 
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from which we get   
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as desired.  
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4 Conclusion 

In this study, we have created p-analogue recurrences, similar to, but different from, familiar Pell 

and Pell Lucas polynomials. We have then obtained the corresponding generating functions of 

these sequences and many related properties. We also obtained several additive formulas of these 

new sequences by forming incomplete recurrences, which are the ‘incomplete’ new recurrences 

which yield more descriptive theorems and propositions based on a definition that is different 

from the usual binomial sums. Again, with the help of this definition, a link has been established 

among ‘incomplete’ recurrences. This work can be applied to different number sequences, as well 

as to expanding the p-analogue part to create (p, q)-analogue number sequences. This work has 

been placed in the historical perspective going back to Leonard Carlitz of Duke University. 
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