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Abstract: In this study, a binomial sum, unlike but analogous to the usual binomial sums, is
expressed with a different definition and termed the p-integer sum. Based on this definition,
p-analogue Pell and Pell-Lucas polynomials are established and the generating functions of these
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1 Introduction

Different generalized recurrences of Fibonacci and Lucas number sequences have had an
important place in scientific studies for many years. The most basic generalization of the
Fibonacci numbers is defined as

Fen=KR i+ Fo n=2

with initial condition F ;=0,F , =1.
Based on this sequence, when k =1 is taken, we have the ordinary Fibonacci numbers. Based

on this sequence, when k = 2 is taken, the Pell number given below and the Pell-Lucas numbers
are obtained by changing the initial values as shown:

P=2P +P ,nx2
with initial conditions P, =0,P, =1 and

Q,=2Q,,+Q,,,n=>2
with initial conditions Q, =Q, =1.
Incomplete and biperiodic studies have been discussed by many authors [1, 4, 9-14, 19].

Depending on k any integer, incomplete recurrences of the k-Pell and k-Pell-Lucas sequence [3]
are defined as follows:

Lin=1-j) . . -
Pk'yn:Z( ; JJsz”“J, osls”Tl, neN
and

Q. =le—n "Ikiz 0<i<Mnen
k,n J-:on—j j H — —2, .

Biperiodic Fibonacci numbers were defined by Yayenie [4, 5] with the recurrence and summation
formulas

a , ifniseven
qn — { qn—l + qn—2 (1,1)

bg,,+q,,, ifnisodd

and
n-1

q = aanl)i(n—.i —1) (ab)n;_i | 12)

i—0 I
where (f(n) =n —g. Many generalizations related to these numbers have had an important place

in recent scientific research and development [1, 4, 12]. This definition of Yayenie not only gives
a different perspective to the usual recurrence relations, but also many studies have been added to
the literature by studying this definition when it is applied to different number sequences. Thus,
based on the above equation, Ramirez [12] defined the following incomplete sequences:

B A PR
q,(1)=a Z( ) j(ab) 0= (1.3)

i=0 I
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Many studies on incomplete number sequences began with Ramirez [13]. In this study, Fibonacci
and Lucas number sequences are discussed. The following studies are the continuation of these
studies; for example, Catarino et al. [3] worked with generalized Pell numbers. Similarly, later
Kuloglu et al. [10] studied the polynomials of Vieta—Pell number sequences and brought a more
up-to-date version to these studies as a whole.

The g-integer of the number a is defined by

a

1-q
], =1 1-q
a, ifq=1

, ifg=1

and another factorial definition is defined by

[a]q!:{[a]q [a_l]q”'[l]q, ifa=12,...

1 ifa=0

Similarly, the binomial definition is given by

o e

or

For a < n this value is taken as 0. Here

n-1

(a:9), =[](1-a'a).

j=0

we can take the Pascal-like rule here as

NS
n n n-1

q q q

MRS A

= +q )

n n n-1

q q q

Srivastava [18] focused on the historical development of many pertinent polynomials and the
properties of such sequences, from the generalization of classical Bernoulli polynomials
(specifically, g-generalization) to Euler polynomials and Euler numbers to Genocchi polynomials.
The g-integers are related to the g-series of Carlitz [2] and the Fermatians of Shannon [16]
(the name going back to Fermat’s Little Theorem and Shanks [15]). The binomial definition above
is a generalization of the Fibonomial coefficients of Jerbic [8]. Hoggatt [6] developed properties
of them for ordinary Fibonacci numbers. Hoggatt and Lind [7] also applied them to combinatorial
problems, and Shannon and Horadam [17] used them to obtain generating functions for powers
of elements of third order recursive sequences.

and
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Based on the definitions and properties given above, this article reconstructs the biperiodic
studies defined on p-analogues and proves several related theorems.

2 p-Analogue of biperiodic Pell and Pell-Lucas polynomials

In this section, the generating functions of the p-analogues of the biperiodic generalizations of
Pell and Pell-Lucas sequences and their important theorems and propositions depending on the
generating functions are discussed.

Definition 2.1. For m,ne R the p-analogue of biperiodic Pell and Pell-Lucas polynomials are
defined by
P.(s,p)=2mP_ (s, p)+sp“?R_, (s, p), ifkiseven

R.(s,p)=2nR_, (s, p)+sp* P, (s, p), ifkisodd
for k>2and P, (s, p)=u,P,(s,p)=V.

If we take u=0 and v=m=n=s=p=1 here, we get P (p).

Theorem 2.2. Let B, (s, p), k-th p-analogue of biperiodic Pell and Pell-Lucas polynomials for
k>0

N
Pk(s, p):nﬁ(k)u 2 k—j.—Z}(mn)tk;zJ—j pj(j+1)sj+12k—2—2j

2ITk—j-1 K, .
+m <y { J }(mn){ ZJ D plsigkt2l
J

Proof. By induction over k, if we take k = 1, the equality holds. Suppose that the equality is true

for k. We now show that it is true for k + 1.

P.(s p)= 2m°®n2tp (s,p)+sp* P (s, p)

o {k - j —2}(mn)tk22Jj pj(j+1)sj+12k—2—2j

=0 J
7]
2 —j—- k-1] .
+m? Yy {k J 1}(mn)k21” pligiokt2i
=AR
k3 .
+spk_1 né(k_l)ui|:k_ J _3:|(mn)k;3_J pj(j+1)sj+12k—3—2j
=0 J
k-2
. k-2 .
+ m‘s(k‘z)vi{k . 2}(mn)zJ piisioz2
j=0 J



=2 {k— j _2:|(mn)v;2J_j pl(igia

{k - J —3}(mn){k23J1 pj(j+1)+k—lsj+2 ok-3-2]

z
n né(k+l)u z

) 2 o a1
n 2(mn)b(k+1) m&(k)v Z |:k JJ 1:|(mn)v21J_J pjzsj 2k—l—2j
im0

M{k,:z

+m’ vy
=0 J

k-2

(mn)t 2 J*j pj2+k—lsj+12k—2—2j

From the definition of k, 5(k) and the recurrence relation of the p-binomial coefficients, where
| k | is the floor function and &(k)=k - ZEJ is the parity function,

G Jroten=[5] e [5Vee1

J{k - J - 2}(mn)v2_1Jj piligitt k1)

We now obtain

;]_
n n(s(k+1)u{ 2 {k— J —2}(mn){kﬂj pj(j—1)+k—1sj+12k—1—2j

k

(mn)bJ—J p(j—1)2+k—lsj k-2

ol 1

EJ_k_J kKo, .
+m°®y j }(mn){zJ " plsioka,

oL

This completes the proof. L]

We provide the generating function for P (s, p) in the following theorem. Here the functions

n f(x) defined in [9] with 7 operator and, similarly, 7, f (x) with the same operator defined in
[14], will be a guide for the proof.
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Theorem 2.3. For the p-biperiodic Pell and Pell-Lucas polynomials the generating function is

s() =

u+x(v—nu)+(2m-n)xf(x)
1-nx—x2sn

where

vx+s(nu—-v)x3

f(x) =

1—4mnx2—s(1+%)x2n+52x2n2'

Proof. The generating function for the p-analogue biperiodic Pell and Pell-Lucas polynomials is

(f(x):in(s, p)x' =Py (s,p)+P (s, p)X +P, (s, p)X* + Py (s, p)x° +
nx&(x)=nPR, (s, p)x+nP,(s, p)x*+nP, (s, p)x* +nR; (s, p)x*
x*sné(x) =P, (s, p)x’s+ pP,(s, p)x’s+ p°R, (s, p)x*s+ p°Ry (s, p)x St---
and since

P2k+1(s1 p) =2nP,, (S’ p)+5p2k71P2k71 (51 p),
we obtain

(1-mx—x?sn)£(x) = By (5. )+ X(Ry(5. ) =Py (5. P))

+ > (Py (5, P) =Py, 4 (5, p)dsp™ ?Ryy , (5, p)) X*

k=1
and since

Poy (S’ p) =2mP,, , (S, p)+5p2k72P2k72 (S, IO),
we have

(2mp2k—1(s’ p)_npzk—l(sl p))XZk
1(P2k—1(51 p)(2m_n))x2k

( m-— n sz.o;(PZK—l S p) y 21

(

2m—n)xf (x)

(1—nx—xzsn)§(x)=u+x(v—nu)+

DM+ T

=u+x(v-nu)+

=
Il

+
N

=u+x(v-nu)
=u+x(v-nu)+
On the other hand, we find that
Py (S P)=2nP, (s, p)+p* Py (s, P)
=2n(2mP,_, (s, p)+5p™ *Py., (s, p))+5p™ Py s (s, P)

=Py 1 (S, p)(4mn+sp™*)+2nsp™ *R,, , (s, p)

=Py 1 (S, p)(4mn+5p™*)+5p™ % (P, (5, p) — 0™ Py 5 (5, D))
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= sz—l(S: p)(4mn+sp2k_1)+sp2k_2P2k_1(s, p) 2p4k 5P2k 3( ) p)
_ 4m”+5P2k1(1+%Nsz_1(3' p)—s’p* Py 5(s, P).

Thus, we can write
(1—4mnx2 —s(1+%j X°n + szxznzj f(x) =vx+s(nu—-v)x®

from which we get the desired results as follows

§(x) =

ut+x(v—-nu)+(@2m-— n)xf(x)
1-nx—x2sn

This completes the proof.

From [14] we can obtain the following lemma.
20\ o2 _ kitnokeiyi | K oo
Lemma 2.4. (nx+x%sp) %% =X Ix] j sip
and

(nX+X2577)k 2 _ k+22nk JX |: }S p j+1

Theorem 2.5. The generating functions for P, (s, p) can be also expressed as follows

kZ: (s, p X —sz' s' {[(nxl;]p). [1+%7Xpij+(nx;xp)' (v—nu+(2m—n)f(x))]}

Proof. From Theorem 2.3. we obtain

ACHEE

U+x(v—nu)+(2m—n)xf (x)

(1-nx—x*sp)

and from Lemma 2.4.

Ms

=3 (mx+x° sn) (u+x(v=nu)+(2m=n)xf (x))

k

[

u (nx+xzsn)k_1(nx+xzsn) v—nu i(nx+x sn)
k=0

k

I
o

Nk

+(2m—n)>"(nx+ xzsry)n xf ()

= i(nx+ X 577)

+(v—nu)

Il
o

x+usZ(nx+ X sn)n ¥

M s

(nx+x2577) Xx+(2m-n i(nx+x237y)n xf (X)
k=0

k
and using the above Lemma, we get

I
o
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- c —i-lqiyi k-1 i2 ke d —icliyi k=11 i
zpk (S, p)xk _ unzxkznk 1giy [ | } p +USZXk 1an 1giy { . } p( l)77
© k
V nU szJrlznk |S| ||: :|p + 2m n Zxkﬂznk i | ||: :| (X)
k=0 i=0 i=
k=i-1i k+||: } i2 k-i-1.i k+i+1|:k_1:| i(i+1)
—un p +usZZn s'x . 1pV

k=0i=0
ok
V nU Zznkl | k+l+||:k:|p + 2m n zznkl | k+|+l|:k:| pizf(x)
k=0i=0 k=0i=0
k+i-1| .
=u nk i k+2||: - i|p| +— nk |+1 k+2|+1|: j| ||+1

V nu an | k+2|+1{ki+ }p i 2m n ans'ka*{k—'_l} pizf(X);

k,i=0 |

from the p-binomial formula

we get

ZP S p X _UZSI 2| | _ZSHl 2|+1 ||+1 1

= (nx; p) n4<s (nx; p),

n

1 1
V nU SI 2i+1 | 2m n sl 2i+1 | f X
; (nX, p)|+1 ; (nX; p)i+1 ( )
20 i i u N7 X
=Y'x%s'p (1+—xpj+ v—nu+(2m-n)f (x)) |¢.
Z {(HX:p)i n (nx;p)m( (em=n) 7 ()
This completes the proof. [

3 A p-analogue of biperiodic incomplete Pell
and Pell-Lucas polynomials

Definition 3.1. The p-analogues of biperiodic incomplete Pell polynomials are defined by

F’t S, p Z|: } {kzzJ*i pi(i+l)si+12k—2—2i
Vi{ —i- ]} mn tk 1J i pizsizk—l—zi

i=0

(3.1)

for OstskT_l.

Theorem 3.2. The p-analogues of biperiodic incomplete Pell polynomials satisfy the following
relations:
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R (s,p)=2mR; (s, p)+spP; (s, p), if kiseven,

(3.2)
R (s,p)=2nR: (s, p)+sp“Ri (s, p), ifkisodd,
for 0<t< ?2
Proof. Let k be odd. Then by using (3.1), we get
—i-1 kLl o .
2nR;1 (s, ) +sp*Py (s, p) =" ﬂuz[ . } )7 g
G| k- H i2 oi ok+1-2i
2
+m’ VZ[ | } (mn p"s
t _i— k=21 . ) .
+ Spkn uz{k I 2:| t 2 J*l p|(|+1)s|+12k—2|—2
i=0
t - kil H -2 . .
+spm°¥ le{k II 1}(mn){2J_' p's'2<tA
i=0
_ n6(k+2)u§|:k —i _1:|(mn)v2_lj—i pi(i+l)Si+12k—2i
+nm k+1 +1V§ k 2k+1—2i
i
+Sp n?(+2) < {k } J i+l pl(u Dgi gk-2i
5(k+1) k- Sl (i-0) i pk4l-2i
+ p*m” VZ . 1 p!' ™ g2kt
so that
] L, A k=i=-1 T k=i-1 ki
2nPkt:j(S' p)+Spk Pkt (S, p) _ no(k+2)uzs|+1p|(|+1)2k-2| {[ il ]I_ pk—2||: i Il }}(mn)M
i=0 -
N —i . —i k|
+Vmé(k+l)zs| pl 2k—2|+1 {|:k| I:|+ kaHIFi(_]j}(mnﬂ 2 J
i=0
and from (1.5) and (3.1) we obtain
S(k+2 S k- FJ—i i(i+1) 1i i
2nPE (s, p)+sp*P. (s, p)=n"" )UZ{ i }(mn) 2] piitgitt k-2
i=0
t+1 _1 k+1 | .
n m(s(kﬂ)VZ{k _' +1}(mn){2lJ_' pizsi2k+l—2i
i—0 |
= Pkt:;(s, p)-
A similar proof is made if k is even. L]
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Theorem 3.3. B/ (s, p) satisfy the following equation

S 2] e
g;‘ Pkt (S, p) :(%4_1} P, (S, p)_%pk (51 p)+n5(k)u ;:Si {k 2

Proof. We have

Also, we obtain

from which we get

2

- H - i - k— H S . .
2P (s, p)=&leJ+1j P (s, p)—%Pk (s,p)+n"u 2.’ {k : 2}(mn)UJ-' 051 k221
t=0 i=0

as desired.



4 Conclusion

In this study, we have created p-analogue recurrences, similar to, but different from, familiar Pell
and Pell Lucas polynomials. We have then obtained the corresponding generating functions of
these sequences and many related properties. We also obtained several additive formulas of these
new sequences by forming incomplete recurrences, which are the ‘incomplete’ new recurrences
which yield more descriptive theorems and propositions based on a definition that is different
from the usual binomial sums. Again, with the help of this definition, a link has been established
among ‘incomplete’ recurrences. This work can be applied to different number sequences, as well
as to expanding the p-analogue part to create (p, g)-analogue number sequences. This work has
been placed in the historical perspective going back to Leonard Carlitz of Duke University.
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