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1 Introduction
In 2007, Falcén and Plaza [5] introduced a generalization of Fibonacci sequence called k-Fibonacci
sequence { F. , }n>0 as

Fro=0, Foa=1 Fypn=kFppn1+Fypno n>2 keckR. (1.1)

Later on, in 2011, Falcén [4] extended this generalization to the Lucas sequence and introduced
k-Lucas sequence { Ly, ,, } >0 defined as

Lyo=2, Lyi=k, Lyn=kLpp1+Lppno n=>2 kekR (1.2)
The characteristic equation corresponding to the above recurrence relations is

E—kB—-1=0 (1.3)

k+vVEk?+4 kE—VEk?+4
with roots 3 = % and (3, = % having the following relations:
Bi+Ba=k, Pifa=—1, B1—Pr=Vk>+4. (1.4)
The Binet forms of k-Fibonacci and k-Lucas sequences are given by
Fi, = BLoPE and Ly, = 87 + B3,

A= b
respectively. The first few terms of k-Fibonacci and k-Lucas sequences are shown in the next
Table 1.

Table 1. The first few terms of k-Fibonacci and k-Lucas sequences

K L

0 0 2

1 1 k

2 k k*+2

3 k*+1 k3 + 3k

4 k3 + 2k E* 4+ 4k% + 2

5 1 K*+3k%+1 k® + 5k + 5k
6 || k> +4k® + 3k | kS + 6k* + 9k + 2

In 2015, Ramirez [7] introduced a new sequence of quaternions with coefficients being the
k-Fibonacci and k-Lucas numbers and studied their properties. The k-Fibonacci quaternions Dy, ,,
and the k-Lucas quaternions P ,, are defined by the equations

Dy, = Fyp + Fynt1€1 + Fipyoeo + Fypises, n >0, (1.5)
and

Pin=Lign+ Ly piie1 + Ly pioes + Ly pyses, n >0, (1.6)
where the basis e, ey, e3 satisfies the properties

e] =e3 =e3 = ejegey = —1.
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In general, a quaternion with real coefficients is of the form ¢ = a + be; + ces + des, where
{1, €1, €9, e3} is the quaternion basis satisfying

2 2 2
e] =ey;=e3 =—1, ejeg = —ege; = €3, €963 = —e€363=¢1, eze; = —eje3=ey. (1.7)

Ramirez derived many properties of k-Fibonacci and £-Lucas quaternions, some of which are
restated here:
e The Binet formulae are
ABT — 2An . .
Din =% g Py, = a7+ 05, (18)
B — B2
where & = 1+ Bieq + BPes + Bies and B = 1+ Byer + Bea + Bies.

e The Catalan’s identity for the k-Fibonacci quaternions is

Dk,nfer,nqu - Dl%,n = <_1)n7T+1 (2Fk,er:,r - Lk,ZFk,2r€3>- (19)

e The Cassini’s identity is given by

Dipn-1Dppir — Di = (—1)"(2Dg1 — e3(k* + 2k)). (1.10)

e The d’Ocagne’s identity is given by

(—1)™(Basy™ — aBpy ™)
B1 — B ‘

We proceed with some concepts that will be needed later. Consider an isotropic vector

Diyi1Diyn — Diyp Dipy1 = (1.11)

(z,y,2) € C3, where C? is the three dimensional space referred to as a system of orthogonal
coordinates. Then the vector (z,y, z) satisfies * + y* + z? = 0. Two numbers 7; and 7, can be
associated with this vector as

r=n—n5, y=in+n), z=—2mmn.

By solving the above equations, we get

T —1 [—x —1
771::|: 2y and 772::|: Ty

This leads to a definition of a spinor as introduced by Cartan [1]

n= [7’1] . (1.12)
2

A spinor 7) conjugate to 7 is defined by (Cartan [1])

ii = i A7, (1.13)

0 1
-1 o}’

In 1984, Vivarelli [8] defined a linear and injective correspondence between the quaternions

where 7 is complex conjugate of n and A =

and spinors. Let the sets of quaternions and spinors be denoted as H and S, respectively. Then
the correspondence is defined as below.

324



Definition 1.1. Let ¢ : H — S be any correspondence between a quaternion ¢ = a + bey 4 ces +

des € H and a spinor n = n € S. It is given by
T2
d+ia
o(a + bey + ces + des) = =0 (1.14)
b+ic

Also, Vivarelli [8] has defined the correspondence between the product of two quaternions
and a spinor product matrix given by

qp — —iQP, (1.15)

where P is the spinor corresponding to the quaternion ¢ and Q is the complex unitary square
matrix defined as

d+1ia b—1ic
1.16
b+ic —d+ia (1.16)
Finally, the mate of a spinor 7 introduced by Castillo [2] is
n = —An. (1.17)

Erisir and Glingor [3] introduced the Fibonacci spinors using Fibonacci quaternions and studied
their algebra. In this paper, we generalize the concept of the Fibonacci spinors by introducing
the k-Fibonacci and k-Lucas spinors. Starting with the Binet formulas we present their basic
properties, such as Cassini’s identity, Catalan’s identity, d’Ocagne’s identity, Vajda’s identity, and
Honsberger’s identity. In addition, we discuss their generating functions. Finally, we obtain sum
formulae and relations between k-Fibonacci and k-Lucas spinors.

2 k-Fibonacci spinors

In this section, we define the k-Fibonacci spinor sequence {F'S,}.>0 and its conjugates.
Moreover, we obtain its Binet type formula, generating function and some interesting identities.

Consider the correspondence between the set of k-Fibonacci quaternions denoted as [F and the
set of spinors S. Using Definition 1.1, the correspondence ¢ : F — S is defined as

Fk,n+3 + Z.Fk,n

Fi, + Frnii1€1 + Fipio0es + Fipises) = )
O(Fy, km+1€1 + Finioes + Finises) Fonst + iFonso

— FSjn. 2.1)

Note that this transformation is linear and injective but not surjective and hence not bijective.
If ﬁk,n = Fyn — Fyny161 — Fip2€2 — Fy i 3e3 18 the conjugate of the quaternion Dy, ,,, then the
k-Fibonacci spinor F'Sy , corresponding to Dy, is

_Fk,n+3 + Z'F}f,n

FS;, = ,
_Fk,n+1 - ZFk,nJrZ

Now, by the above defined transformation we introduce a sequence of k-Fibonacci spinors
recursively given in the following definition.

325



Definition 2.1. For n > 0, the k-Fibonacci spinor sequence {F'Sy,,,} is defined recursively by

FSk,n+2 - kFSk,n+l + FSk,rw (22)
k*+1 k3 42k +1
ith 'S o = dFS,, = .
wi k,0 ik an k1 . i(k:z I 1)

From (2.2) we note that the characteristic equation for k-Fibonacci spinors is same as of
k-Fibonacci sequence (1.3) and hence the roots are 3; and 3, satisfying the relations in (1.4).
Complex conjugate of F'Sy,,, can be written as

S Fypis — 1 F
FSkJL = e "

Fk,n+1 - Z.Fk:,n—&-Q

The spinor conjugate to the k-Fibonacci spinor £'Sj,, equals

Fk,n+2 + iFk,n—H

Skm = ZASk,n = .
_Fk,n - ZFk,n—i—S

9

where we have used (1.13). Also, from (1.17) the mate of IS} ,, is given by

_Fk,nJrl + iFk,nJrQ

Sk,n = _ASk,n = .
Fk,n+3 - ZFk,n

Theorem 2.1 (Binet formula). For n > 0, we have

1 B+ 1 By +1i
FS,,=— , P — , > 2.3
& VEZ+4 | B+ g VEZ+4 | Bo+ i[5 P2 9

Proof. We know that the characteristic equation for the k-Fibonacci spinor sequence { F'Sj .} is
the same as the characteristic equation for the k-Fibonacci sequence. Hence, we can write

FSin = APy + Bp3, 2.4)

with A and B to be determined. We have

FSno=A+B= ’1“2:“1 and FSu, = AB, + Bfs = kkij(if :)
After some necessary calculations, we get
1 [ B+ 1 [ g+
:\/kQ:—i—él By + i3 and B:_\/m Ba+ifs|
This completes the proof. []

With the help of the Binet formula, we can also extend the k-Fibonacci spinor sequence
{F Sk} in the negative direction. This is shown in the next theorem.
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Theorem 2.2. For n > 0, we have

ka,g - ZFk,n

FS, _,=(-1)"
" ( ) Fk,nfl - iFk,an

(2.5)

Proof. Using the fact that §;0, = —1, we have ;" = (—=1)"85 and 5;" = (—1)"67. Upon
replacing n by —n in (2.4), we obtain
FSk,—n - Aﬁl_n + BﬁQ_n
= A(=D"8y + B(=1)"¢
= (=1)"(AB3 + BBY).

_ 1 B3+ 1 B3+
Since A = —— e and B = ——— 27" |, we finally get
VEZ+4 | B+ B VEZ+4 | By +1iB3

[— (k3 + 2k) Fr + (K> + 1) Fypia] — iFkn

FS,._, = (1" ,
k, ( ) (—ka,n + Fk,n+1) + Z[—(k?Q + 1)Fk,n + ka,n—l—l]

i F n—3  F) n
— (=) | Rem T O
_Fk,n—l —1Fypn—2
Theorem 2.3 (Cassini’s identity). For n € N, we have
A A —2Fp 0 +1F,
Sen1FSkni1 — SpnF' Sk, = (—1)" ’ . 2.6
En—1L Ok ni1 k, k, (—1) 9F s+ i2Fs (2.6)

Proof. For n,m € N let ka = ka + kaﬂel + Fk’n_;_geg + Fk’n+363 and Dk,m = Fk,m +
Fymi1e1 + Fymi2e2 + Fimyses be two k-Fibonacci quaternions, respectively. Then by (1.15),
we can write

Dk,nDk,m = _Z'Sk,nFSk,ma

Fk,n+3 + ZFk,n Fk,n+1 - iFk,n+2
Fk:,n—i—l + iFk,n+2 _Fk,n+3 + ZFk,n

Fk,m+3 + ZF1k:,m

) . Thus,
Fk,m—l—l + ZFk,m—l—Q

where Skn = and F'Sy,, =

we have
Dy p—1Dgpt1 — D;in = —Z'gk,anSk,nH + 'lgknFSk:n = —Z'(Sk,anSk,nH — gknFSkn)
Now using Cassini’s identity for the k-Fibonacci quaternions (1.10), we have

Fypa+12F,

or equivalently

—2F1 +1Fg4

Sin 1 FSpni1 — SunFSpn = (—1)"
kn—1L Ok n+1 k, k, ( ) _9F + i2F}s

. O

Note that if we substitute £ = 1 in (2.6), we get Cassini’s identity for the ordinary Fibonacci
spinors as derived in [3].
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Theorem 2.4 (Catalan’s identity). Forn € N, we have

—2F2, +i(2F, Firys — (K2 + 2)Fiar)

S« n—rFS " T_S’ nFS n= —1 n—r+1
k, k,n+ k, k, ( ) 2Fk7rFk,r+2 + 'L.QFk,rFk,’/‘-i-l

2.7)

Proof. We already know that
Dk,nfer,nJrr - D]%’n - _iS’k,nfrFSk,nJrr + ng,nFSk,n = _Z.(S'k,nfrFSk,n+r - S'Ic,nFﬁsk,n)
Now using Catalan’s identity for the k-Fibonacci quaternions (1.9), we get

(2F%, Frps — (K +2) Frop) +02F7,

_i(gk’n_rFSk’nM B gk’nFSk’n> - (_1)"—T+1 2F v Frvin1 +12F)  Fl i
;7 kr+ oL kr+

or equivalently

N N —2F? (2F;  Fpis — (K2 + 2)Fj 0
Sk,n—rFSk7n+7’ - Sk:,nFSk‘,n = (_1)71—7“"!‘1 o T Z( . b +?T ( + ) k2 ) D
—2F o + 120 Frr
Theorem 2.5 (d’Ocagne’s identity). For n,r € N, we have
Q Q —2F n—r (F) n—r F n—r—
St FSen — Sup Sy = (—1)7 |20 #ilFhnria + Flnra) |
_2Fk,n—r+2 + ZZFk,n—T—f—l

Proof. By the expression (1.11), we write

(=17 (Bapy™ — aBpy™)
By — By '

Using the values of dB and Bo? and Definition 1.5, we rewrite the above expression as

Dk,r—l—le,n - Dk,er,n—i-l =

Dyrs1Diy — Diy Dy i1 = (—1)" (2Dgn—r + (Fin—r—1 — Frn—rs3)es).
Now, we have
Dipi1Din — DiyDinis = —iSkri1 F'Stn + 1Sk FSknts = —i(Skri1 F'Skm — Sk F'Sknt1)-
And thus, we get

(Fk,n—r—i—S + Fk’,n—r—l) + iQFk,n—r

_i<‘§k,r+1FSk,n — Sk,rFSk,n+1> =(—-1)" oF, \ ok,
n—r—+1 n—r+2

or equivalently

gk,rJrlFSk,n - gk,rFSk,nJrl = (1)

_2Fk,n77“ + Z'(Fk,nfTJrS + Fk,nfrfl)
_2Fk,nfr+2 + i2Fk,n77’+1 .

Theorem 2.6 (Honsberger’s identity). For n,r € N, we have

- (Fk,n+r+Fk,n+r+2+Fk,n+r+4+Fk,n+r+6) +7;2Fk,n+7“+3

S’k,nJrlFSk,r_‘_gk,nFSk,rfl: .
—2Fnyry2 +12F i

] . (29
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Proof. Here, we make use of the identity
Dyn1Dky + DipDir—1 = 2D pir + (Frongr + Fiongrt2 + Fionsria + Frpgrso)
in conjunction with (1.15), to get
Dins1Diy + DDyt = —iSkni1 FSpr + iS5 nFSkr1 = —i(Skms1 FSkp + SknFSkr1).
This produces

2Fntrs3 + 1 (Frntr + Fopgrio + Fongria + Fionsrio)

—i(gk,n+lFSk,r + Svk,nFSk,rfl) = 2F, |+ i2F, ,
n+r+ n+r+

and the proof is completed. [
Theorem 2.7 (Vajda’s identity). For n, m,r € N, we have

~2Fy, +i(Fypys — kL)

ot ot b St = (1) F, —2Fy o +12F; 1

] : (2.10)

Proof. Using (1.15), we may write

DintmDinsr — DinDinimir = —i(SkatmF Skntr — SknF Sknymer)
as well as
DinimDinir — DinDinimir = (—1)" Fyn (2Dgy — KLy pe3).
Thus,

(Fk,r+3 - kQLk:,'r) + Z.2Fk,r

( k‘, + k:a + k’ k’ + +) ( ) k;7 2Fk7r+1+’l/2Fk77”+2

and the proof is completed. []

Theorem 2.8 (Generating function). The generating function for the k-Fibonacci spinor sequence
{F Sk,n} is

k2 4+ xk +1+ix
1+ i(k+ )

B 1
1 — kx — a2

Gi(z) 2.11)

Proof. By definition, the generating function for the k-Fibonacci spinor sequence { F'Sy .} is
Gk(ﬂf) = Z FSk,nx”.
n=0
If we multiply the recurrence relation (2.2) by 2”2 and sum from zero to infinity, we get

o0 oo oo
Y FSpnyar™? =k Y FSppma™? = FSpua" =0.

This is simply
(Gk(l') — FS]C,O — FSk,ll') — xk(Gk(:c) — FSk’()) — $2Gk(l’) =0

or
Gk<1‘> — $I€Gk(l’) — $2Gk(l’) = FSk}O + (FSkJ — kFSho)LL‘

The proof is completed upon inserting the initial values. ]
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Theorem 2.9 (Finite sum formulae). The sums of the first n terms of the k-Fibonacci spinor
sequence {F'Sy, ,} equal

L35  FSy;= 2[FSkps1 + FSpn — (FSko + FSea)l,
2. 330 FSy = 1 [FSuzns1 — FSpal,
3. 22121 FSij_l = %[Fsk,Qn - FS&Q].

Proof. These finite sum identities can be proved by using the corresponding sum identities for
k-Fibonacci sequences (see [5,6]). For instance, the first identity follows from Z?Zl Fr; =
%[kaﬂ + F}.n — 1], while the second identity uses Z?Zl Fioj = %[Fk,2n+1 — 1], and the third
identity follows from Z?:l Froj1 = %[F e.2n) - O

3 k-Lucas spinors

In this section, we introduce the k-Lucas spinor sequence { LSy ,} analogous to the k-Fibonacci
spinor sequence {F'Sy,} and state the basic properties of this sequence like Binet formula,
Cassini’s identity, Catalan’s identity and so on.

Let Py, = Lin + Lypi1€1 + Lgnioes + Ly nises be the k-Lucas quaternion. Then the
corresponding k-Lucas spinor is given by

Lk,n+3 + ZLk),n
Lk,n—i—l + Z'Lk,n+2

&(Lgy + Lint1e1 + Ly ny2€s + Ly nyses) = [ ] = LSj . (3.1)

The k-Lucas spinor LS,j;n corresponding to the conjugate FM = Lipn — Lyni1e1 — Ly pio€2 —
Lk,n+3e3 of Pk,n is

LS: — k, +3+.Z k, .
’ —Lj i1 — 1Lk nqo

Definition 3.1. For n > 0, k-Lucas spinor sequence { LS}, , }n>0 is defined recursively by
LSy nt2 = kLSk i1 + LSk n, (3.2)

with the initial values

(k3 + 3k) + 2
k+i(k*+2)

(K* + 4k* + 2) + ik

LSy =
0 (k2 4 2) + i(k® + 3k)

and LSy, =

Lk,n+3 - ZLk,n ]

The complex conjugate of LS, is L_Sk,n = )
Lk,nJrl - ZLk,n+2

The spinor conjugate to the k-Lucas spinor LSy, is LSy, = i ALSy,, = ,
—Ljy — 1L i3

Ly pni2 + iLk,n+1]

. S —Lin i L.,
Finally, the mate of LS}, ,, can be written as LSy, = —ALSy,, = [ kit + ok, +2] .

Lk,n+3 - ZLk,n
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Theorem 3.1 (Binet formula). For n > 0, we have

B3 +i
/82+i622

B3+
LS, = ] 4 . 3.3
k, 61-'—25% 51 ﬁQ ( )

Proof. Consider the expression LSy, = AB + BfAy. Then using the initial values in (3.2), we
obtain

(k3 + 3k) + 42 (K* + 4Kk* + 2) + ik
A+B= d Ap+ BBy = .
Eri )| 2 ARTBRE e o) 8 3k
Solving for A and B, respectively, gives the Binet form as required. [

The extension of the k-Lucas spinor sequence LS ,, to negative subscripts is accomplished in
the same way as it was done for the k-Fibonacci spinor sequence.

Theorem 3.2. Forn > 0, we have

—L n— L n
LSy = (1) | Fn=s Tt (3.4)
Lkz,n—l + ZLk,n—Z
Proof. Use the fact 8,3, = —1 in Theorem 3.1. O]
Theorem 3.3 (Cassini’s identity). For n € N, we have
§ LSemir— 8o LS = (—1)yH (2 4y | 2R H26) (3.5)
RSOkl T Sl (K2 + 1) + a2k | '

Proof. From (1.15), we have
Prn-1Prnst — Ply = —iSy 1 LSkmns1 + 1Sy, LSk = —i(Spn_1LSkns1 — S pLSkn)-

Using the Cassini’s identity Py, 1Py i1 — P2, = (—1)" " (k* + 4)(2Dy 1 — (k* + 2k)es),

v

we may write

—2F2, + i(2F1Fa — (K* 4 2)F0)

S LSpni1— S LSy, = (—1)"""(k?+4
kn—1 k,n+1 k,n k, ( ) ( + ) _2Fk,1Fk73+i2Fk,1Fk72

or
Sy 1 LSkmi1—Sp  LSkn = (—1)" (K2 +4) —2 4 ilk° + 2K) O
fn—1 kL ke ke —2(k® 4+ 1) +i2k|
Theorem 3.4 (Catalan’s identity). For n € N, we have
A A —2F7? 1 (2F)  Flyris— (K2 4 2) o,
Sk n—rLSk,n—H“_Sk nLSk,n:(_l)n_T+2(k2+4) o N Z( wor ks +? ( N ) w2 ) . (36)
’ ’ —2FFypqo + 120 Frin
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Proof. The Catalan identity for the k-Lucas quaternions is given by
Pk:,n—'rpk,n—l—r - Pk?,n - (_1)n—r+2(k2 + 4)(2Fk,er,r - Lk,2Fk,2r€3)-
Thus,

(2Fk,rFk,r+3 - (k2 + 2>Fk,2r) + 22Fk27r
2Fr Frpy1 +12Fg  F o

—2F?, +i(2F, Fiopss — (K +2)Fror)
—2F  Fy o + 12F) , F 1

Stm—sLSknsr — SppLSkp = i(—=1)""2(k* + 4)

— (_1)nfr+2<k2 +4)

?

as required. ]

Theorem 3.5 (d’Ocagne’s identity). For n,r € N, we have

_2Fk,nfr + Z.(Fk,nfr+3 + Fk,nfrfl)

Skr1LSkn — Sy LSkms1 = (1) (> + 4
k?,7'+1 k7 k,'f‘ k, +1 ( ) ( ) —2Fk7n_T+2 +Z2Fk’n_r+1

] . 3.7

Proof. From (1.15), we have
Prrs1Pin — PeyPens1 = =iy, 1 LSk + 1Sy, LSkns1 = —i(Sp1LSkn — Sy LSkns1).
Next, the d’Ocagne’s identity for the k-Lucas quaternions is

Pyri1Pin — PoyPinsr = (—1) T (E* +4) (2D —r + (Fln—m—1 — Frnm+3)€s).
Combining these two identities yields

(Fk,nfr+3 + Fk,nfrfl) + Z'2Fk,nfr

—i(Syp11LSkm — SppLiSkni) = (1) (K> + 4
( k,r+1 k7 k‘,?" k; +1) ( ) ( ) 2Fk,n_7.+1 +’[/2Fk7n_r+2

which is the stated result. ]

Theorem 3.6 (Honsberger’s identity). For n,r € N, we have

Stams1LSkr+ Sy LSpr—1 = (k*+4)

— (Fk,n+r + g2+ Flongrta +Fk,n+r+6) +12F) pqri3
—2F yrq2 +102F ) r

(3.8)
Proof. Using the identity
Pins1Piy + PonProro1 = (K* + 4)[2Dgpsr + (Frontr + Frontre2 + Finsria + Frpgrio) ]
and (1.15), we have

Pk,n+1Pk,r + Pk,npk,rfl = _igl/g,n+1LSk7T + iSI;,nLSk,rfl
= —i(Sp 41 LSkr + S LSkro1)-
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SO, LAl 1
- @(Sk7n+1LSk77~ + Sk,nLSkﬂ"_l)
2Fkniri3 + i(Fk,n+r + Frngrs2 + Frngrya + Fk,n+r+6)]

= (k* +4 ,
( ) 2Fy pyr1 + 02F ) g2

= (k* +4)

_(Fk,n+7“ + Frngrso + Frngrya + Fk,n+r+6) +12F) pyri3
—2F s ngrs2 + 128 gt

Theorem 3.7 (Vajda’s identity). For n, m,r € N, we have

—2F}, + i(Fk,r+3 — kQLk,r)

Sy oo LSpmir — S LSkmsmar = (—1)"(k* +4) Fy
k,n+ k,n+ k, k.n+m+ ( ) ( ) k, —2Fk,,~+2+i2Fk,r+1

] . (3.9
Proof. From (1.15) it is easy to see that

Py i Prentr — PonPrntmar = _i(‘é’l;,n—i-mLSk,n-&-r - Sz;,nLSk,n+m+r)
and

PrpsmPrpir — PionPonimir = (—1)"(K* + 4) Fy (2Dg, — k* Ly ve3).
Hence, we can conclude that

(Frrts — k*Liy) +i2F,

—i(S, o LSinir — S LSkmimir) = (=1)"(k* + 4) Fy
i knt+mbPkn+ knLPkn+ ) = (=1)"( ) k, O F i1 + 12F} 1

O

Theorem 3.8 (Generating function). The generating function for the k-Lucas spinors { LSy ,,} is

1 k3 + 3k k% + 2 (2 -k
Hyw) = —+ |[(F 0 30) 2k + 2)] +i(2 = k) (3.10)
1 —kx — a? (k +2x) + i(k* + 2 + kx)
Proof. The proof is essentially a copy of the proof of Theorem 2.8 (with different initial values)
and omitted. [

Theorem 3.9 (Finite sum formulae). The sums of the first n terms of the k-Lucas spinor sequence
{LSk} are given by

1. Z;L=1 LSy, = %[Lsk,n-u + LSkn — 2(FSko + FSkJﬂ»
2. 305, LSkaj = §[LSkant1 — 2F Sy,
3. Yjo1 LSkpj—1 = 1[LSk2a — 2FSk].

Proof. Using the relation LSy, = F'Sy,—1 + F'Sk 41 and the sum 1. in Theorem 2.9, we may
write

> LSi;j=) FSpj1+ Y FSiju
j=1 j=1 j=1

1
[F Sk + FSpn-1— (FSko+ FSk1)] + z [FSin+2 + FSknt1 — (FSko+ FSki)]

el e e N |

[FSk,n + FSpnto + FSpno1 + FSkpi1 — 2(FSko + FSk,1)]

LSnt+1 + LSkn — 2(FSko + FSik1)].

The remaining two identities can be easily derived using LSy ,, = 'Sy n—1 + FSi 41 and the
sum identities 2. and 3. in Theorem 2.9. O]
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4 Combinatorial properties

We conclude with some identities relating k-Fibonacci and k-Lucas spinors. These identities can
be proved by using the relations of k-Fibonacci and k-Lucas numbers. So, we only state these
identities and omit the proofs.

Theorem 4.1. The following identities hold true:

] 5, FS _(2Fk2,n - <k2 + Q)Fk,2n+3) + Z-(2Fk,an,n-i-B)
. Pkn kn — . )
_(2Fk,an,n+2) + Z(2Fk,an’,n+1)
2 5,/ LS _(QLi,n - (k2 + 2)(k2 + 4)Fk,2n+3) + Z‘(2[176771[46771—1-3)
. k,n kn — . )
_<2Lk,nLk,n+2) + Z(2Lk,nLk,n+1)
A k? + 2)F 00,
3 Garse, =i | ()) banis |

y K2+ 2) (k2 + 4) Fian
4 5,18y, =i |F TAE T D

Y

0
2F}

5. FSen+ FSp,=i| ™ 1
2Lsen

6. LSpn+ LS}, =i [ " ] :

0

Theorem 4.2. The following identities hold true:

1. FSgn1+ FSpps1 = LSip,

2. LSkn_1+ LSkns1 =5F Sy,

3. FSpn+ LSk = 2F S i1,

4. FSppim + (=1)™FSkn—m = LimF Sy,

5. FSimim — (—1)™FSkn_m = FrmLSin,

6. LSkmim + (—1)™LSkn—m = LimLSkn,

7. LSkmsm — (—1)™LSknm = 5FemF Skn,

8. kFSknim = Fiomt1EF Skt — Frm—1F"Skn—1,

9. FStmin = FemFSint1 + Frm1FSn.
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