
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2023, Volume 29, Number 2, 284–309
DOI: 10.7546/nntdm.2023.29.2.284-309

A class of solutions of the equation

d
(
n2
)
= d (φ (n))

Zahra Amroune1, Djamel Bellaouar2

and Abdelmadjid Boudaoud3

1 Laboratory of Pure and Applied Mathematics (LMPA),
University of M’sila, B.P. 166, Ichbilia, 28000 M’sila, Algeria

e-mail: zahra.amroune@univ-msila.dz
2 Department of Mathematics, University 08 Mai 1945 Guelma,

B.P. 401 Guelma 24000, Algeria
e-mail: bellaouar.djamel@univ-guelma.dz
3 Laboratory of Pure and Applied Mathematics (LMPA),

University of M’sila, B.P. 166, Ichbilia, 28000 M’sila, Algeria
e-mail: abdelmadjid.boudaoud@univ-msila.dz

Received: 27 July 2022 Revised: 29 March 2023
Accepted: 26 April 2023 Online First: 2 May 2023

Abstract: For any positive integer n let d (n) and φ (n) be the number of divisors of n and
the Euler’s phi function of n, respectively. In this paper we present some notes on the equation
d (n2) = d (φ (n)). In fact, we characterize a class of solutions that have at most three distinct
prime factors. Moreover, we show that Dickson’s conjecture implies that d (n2) = d (φ (n))

infinitely often.
Keywords: Diophantine equations, Euler’s phi function, Divisor function.
2020 Mathematics Subject Classification: 11A25, 11A41, 11D99.

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



1 Introduction

Let d (n) be the divisor function, which counts the number of positive divisors of n, i.e., if n has
the prime factorization n = qa11 qa22 · · · qakk with distinct primes q1, q2, . . . , qk and positive integers
a1, a2, . . . , ak, then

d (n) = (a1 + 1) (a2 + 1) · · · (ak + 1) .

Let φ (n) be the Euler function, which counts the number of positive integers m ≤ n with
(m,n) = 1. It is well-known that

φ (n) = qa1−1
1 (q1 − 1)qa2−1

2 (q2 − 1) · · · qak−1
k (qk − 1) .

Various diophantine equations involving the divisor function and Euler’s phi function were
investigated by many authors (see [1, 2, 6–8, 10, 11]). In [4, Problem 705, page 78], it is shown
that φ (d (n)) = d (φ (n)) has infinitely many solutions; while in [12, pages 110–111], it is shown
that d (n) = φ (n) has the only solutions 1, 3, 8, 10, 24 and 30, where d (n) < φ (n) for n ≥ 31.
Using these multiplicative functions, we are interested here in problems involving the number
of positive divisors of φ (n). In fact, in the present work, we compare the value of the divisor
function to its value at Euler’s functions. More precisely, we aim to prove that the diophantine
equation

d
(
n2
)
= d (φ (n)) (1)

has infinitely many integer solutions as well as we identify large families of solutions. The first
few terms are:

1, 5, 57, 74, 202, 292, 394, 514, 652, 1354, 2114, 2125, . . . .

For this purpose, define
S :=

{
n ∈ N : d

(
n2
)
= d (φ (n))

}
.

In this paper, we characterize the elements of S that have at most three distinct prime factors.
The problem is interesting because it can force us to solve some diophantine equations involving
prime numbers. Note also that the proofs are all on the elementary side and depend on long case
by case analysis type arguments.

Recall that the Fermat numbers are the sequence (Fn) of positive integers defined by

Fn = 22
n

+ 1, n = 0, 1, . . . .

If a particular Fm is prime it is called a Fermat prime. The only known Fermat primes are
F0, F1, F2, F3 and F4 and it has been conjectured that there are only finitely many. On the other
hand, if p = 2k + 1 is a prime then k = 2n for some n and p is a Fermat prime.

It is well-known that d(n) = 2 if and only if n is prime and that d(n) is prime if and only if
n = pq−1, where p and q are both prime. Note also that if n is a prime power, namely n = pa with
p ≥ 2 and a ≥ 1, then n ∈ S implies (2a+ 1) = d (p− 1) a. But the last equation is only true
for a = 1 and p = 5. Hence, n = 5. Observe first of all that there is a connection between Fermat
primes and the solutions of the equation (1), where F1 is the unique prime solution. Moreover,
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if n = qa11 qa22 · · · qakk ∈ S, where q1 < q2 < · · · < qk are primes and a1, a2, . . . , ak are positive
integers, then ak must be odd. In fact, since (q1 · · · qk−1(q1 − 1) · · · (qk − 1), qk) = 1 we conclude
that

d (φ(n)) = d
(
qa1−1
1 qa2−1

2 · · · qak−1
k (q1 − 1)(q2 − 1) · · · (qk − 1)

)
ak,

and so ak must be odd since d(n2) =
∏k

i=1(2ai + 1).
Now, let n as above and put

k∏
i=1

(qi − 1) = 2x1+x2+···+xk · qα
(2)
1 +α

(3)
1 +···+α

(k)
1

1 · · · qα
(k−1)
k−2 +α

(k)
k−2

k−2 · qα
(k)
k−1

k−1 ·m,

where x1, x2, . . . , xk,m ≥ 1 and α
(2)
1 , . . . , α

(k)
1 , α

(3)
2 , . . . , α

(k)
2 , . . . , α

(k−1)
k−2 , α

(k)
k−2, α

(k)
k−1 are non-negative

integers with (2q1q2 · · · qk−1,m) = 1. Thus in order to prove that n satisfies (1), it suffices to
confirm that the exponents of the prime factors of n and the above variables satisfy the following
diophantine equation:

k∏
i=1

(2ai + 1) =

(
1 +

k∑
i=1

xi

)(
a1 +

k∑
i=2

α
(i)
1

)(
a2 +

k∑
i=3

α
(i)
2

)
· · ·
(
ak−1 + α

(k)
k−1

)
akd (m) .

(2)
In particular, if k = 3 and n is odd then we need to solve the diophantine equation

(2a+ 1) (2b+ 1) (2c+ 1) = (x1 + x2 + x3 + 1) (a1 + α1 + α2) (b+ α3) c · d (m) ,

where m,x1, x2, x3 ≥ 1 and α1, α2, α3 ≥ 0 with (2q1q2,m) = 1.

Now we are in a position to state the main results of the paper.

2 Solutions having two distinct prime factors

Assume that n = qa1q
b
2 ∈ S, where q1, q2 are distinct primes with 2 ≤ q1 < q2 and a, b ≥ 1. Since

((q1 − 1) (q2 − 1) , q2) = 1, we obtain

(2a+ 1) (2b+ 1) = d
(
(q1 − 1) (q2 − 1) qa−1

1

)
b. (3)

2.1 n is square-free

We have the following result:

Proposition 2.1. The only square-free solutions of the form q1q2 are:
i) n = 3 · 19.

ii) n = 2F3, where F3 = 257.

iii) n = 2 (4p2 + 1), where p and 4p2 + 1 are simultaneously primes.

We need the following lemma.

Lemma 2.1. Let p be a prime number with p ≥ 5. Then the number 2p2a + 1 is composite for
every a ≥ 1. In particular, if p ≡ 1(mod 3), then the number 2pa + 1 is composite for every
a ≥ 2.
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Proof. First, it is clear that if p = 3k + 1 with k ≥ 2, then 2p2a + 1 = 2 (3k + 1)2a ≡ 0(mod 3).
That is, 2p2a + 1 is a multiple of 3. But, if p = 3k + 2 for some k ≥ 1, then p = 3k′ − 1 with
k′ = k + 1 and so

2p2a + 1 = 2 (3k′ − 1)
2a
+ 1 = 2

[
2n∑
i=1

(−1)2n−i

(
i

2n

)
(3k′)

i

]
+ 1 ≡ 0(mod 3),

which is also a multiple of 3. By the same way, if a ≥ 2 and p ≡ 1(mod 3), then 2pa + 1 is a
multiple of 3. This completes the proof.

Remark 2.2. Let p be a prime number with p ≥ 5 and let a ≥ 1. Similar to what we have
shown in Lemma 2.1, if r is odd then the number 2rp2a +1 is composite. However, if r is odd and
p ≡ 1(mod 3), then the number 2rpa + 1 is also composite.

Proof of Proposition 2.1. Suppose that n = pq, where p and q are odd primes with p < q. By (3),
we have

9 = d ((p− 1) (q − 1)) . (4)

We put p − 1 = 2sm1 and q − 1 = 2s
′
m2, where m1,m2 are odd and s, s′ ≥ 1. From (4), we

obtain 9 = (s+ s′ + 1) d (m1m2). We distinguish the following cases:

Case 1. s + s′ = 2 and d (m1m2) = 3. That is, s = s′ = 1 and m1m2 = r2 for some prime
r ≥ 3. On the other hand, since p < q we conclude that m1 = 1 and m2 = r2. Hence, p = 3 and
q = 2r2 + 1. But, by Lemma 2.1, the number 2r2 + 1 is a multiple of 3 for r ≥ 5, in which case
n = 3 · 19 is the only solution of this form.

Case 2. s + s′ = 8 and d (m1m2) = 1. That is, m1 = m2 = 1. Therefore, p and q are Fermat
primes and hence s, s′ are powers of 2. This case is not valid since p < q.

Now, assume that n = 2q with q ≥ 3 is prime. By (3), 9 = d (q − 1) from which it follows
that q−1 is either 28 or 22p2 for some prime p ≥ 3. Hence, n = 2 ·257 = 2F3 or n = 2 (4p2 + 1)

with p and 4p2 + 1 are simultaneously primes.
This completes the proof.

2.2 n is not square-free with n odd

Assume that n is odd. We have the following results:

Proposition 2.3. Let n = qa1q2, where 3 ≤ q1 < q2 and a ≥ 2. If n ∈ S, then n is one of the
numbers:

• n = F 3
1F2.

• n = 35t−3 (23 · 3t + 1), where t ≥ 2 and 23 · 3t + 1 is prime.

• n = 55t−3 (22 · 5t + 1), where t ≥ 2 and 22 · 5t + 1 is prime.

• n = 3t−1 (2 · 3t + 1), where t ≥ 4 and 2 · 3t + 1 is prime.

Proof. By (3), we have

3 (2a+ 1) = d
(
(q1 − 1) (q2 − 1) qa−1

1

)
. (5)

There are two cases:
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Case 1. (q2 − 1, q1) = 1. We put q1 − 1 = 2sm1 and q2 − 1 = 2s
′
m2, where (2,m1m2) = 1 and

s, s′ ≥ 1. From (5), we have 3 = a (d (m1m2) (s+ s′ + 1)− 6). Since a ≥ 2, it follows that
a = 3 and s + s′ = 6. Hence, m1 = m2 = 1 and so we must have s = 2 and s′ = 4. That is,
q1 = 5 and q2 = 17, in which case n = 53 · 17.

Case 2. (q2 − 1, q1) = q1. As above, we put q1 − 1 = 2sm1 and q2 − 1 = 2s
′
qt1m2, where

(2,m1m2) = 1 and s, s′, t ≥ 1. By (5) we have

3 (2a+ 1) = d (m1m2) (s+ s′ + 1) (a+ t) . (6)

It is clear that d (m1m2) cannot be ≥ 3, otherwise

3 (2a+ 1) ≥ 3 (a+ t) (s+ s′ + 1) ≥ 9 (a+ 1) > 6a+ 3,

a contradiction. Moreover, if d (m1m2) = 2, then the right-hand side of (6) is even, while its
left-hand side is odd, also a contradiction. Therefore, d (m1m2) = 1 and so by (6) once again,
3 (2a+ 1) = (2i + s′ + 1) (a+ t) for some i ≥ 0. Note also that 2i + s′ + 1 cannot be ≥
6, otherwise 3 (2a+ 1) ≥ 6 (a+ t) > 6a + 3, a contradiction. Consequently, we have either
2i + s′ = 4 or 2i + s′ = 2.

(i) 2i + s′ = 4. There are two possibilities:

• i = 0 and s′ = 3. It follows that a = 5t − 3, q1 = 3 and q2 = 23 · 3t + 1, thus
n = 35t−3 (23 · 3t + 1), where 23 · 3t + 1 is prime. For example, for t = 2, we get
n = 37 · 73.

• i = 1 and s′ = 2. That is, a = 5t − 3, q1 = 5 and q2 = 22 · 5t + 1, thus
n = 55t−3 (22 · 5t + 1), where 22 · 5t + 1 is prime. For example, for t = 2, we
have n = 57 · 101.

(ii) 2i + s′ = 2. That is, i = 0, s′ = 1 and so a = t − 1. Hence, q1 = 3 and q2 = 2 · 3t + 1.
Consequently, n = 3t−1 (2 · 3t + 1), where (2 · 3t + 1) is prime. For example, for t = 4,
we have n = 33 · 163.

This completes the proof.

Proposition 2.4. The number n = F1F
3
2 is the only solution of the form q1q

b
2, where 3 ≤ q1 < q2

and b ≥ 2.

Proof. Assume that n = q1q
b
2 ∈ S, where 3 ≤ q1 < q2 and b ≥ 2. Applying (3), we obtain

3 (2b+ 1) = d ((q1 − 1) (q2 − 1)) b, from which it follows that b (d ((q1 − 1) (q2 − 1))− 6) = 3,
and so d ((q1 − 1) (q2 − 1)) = 7 and b = 3. Or, equivalently, (q1 − 1) (q2 − 1) = 26. Thus,
q1 = 5 and q2 = 17 , in which case n = 5 · 173.

Theorem 2.5. Let n = qa1q
b
2, where 3 ≤ q1 < q2 and a, b ≥ 2. If n ∈ S, then n = 3a (2 · 3t + 1)

b,
where 2 · 3t + 1 is prime and ab+ 2a+ 2b+ 1 = 3bt.

Proof. By (3), we have

(2a+ 1) (2b+ 1) = d
(
(q1 − 1) (q2 − 1) qa−1

1

)
b. (7)

There are two cases:

288



Case 1. (q2 − 1, q1) = 1. We put q1 − 1 = 2xm1 and q2 − 1 = 2ym2, where x, y ≥ 1 and
(2,m1m2) = 1. It then follows from (7) that

(2a+ 1) (2b+ 1) = (x+ y + 1) d (m1m2) ab. (8)

It is clear that d (m1m2) cannot be ≥ 3. Otherwise, (x+ y + 1) a ≥ 3a > 2a+1 and d (m1m2) b ≥
3b > 2b+ 1, a contradiction. Moreover, if d (m1m2) = 2, then the right-hand side of (8) is even,
while its left-hand side is odd, also a contradiction. Therefore, m1 = m2 = 1 and so by (8) once
again, (2a+ 1) (2b+ 1) = (2j + 2i + 1) ab for some j > i ≥ 0 . Note also that 2j+2i+1 cannot
be ≥ 6, and hence i = 0 and j = 1. That is, (2a+ 1) (2b+ 1) = 4ab, which is impossible.

Case 2. (q2 − 1, q1) = q1. We put q1 − 1 = 2xm1 and q2 − 1 = 2yqt1m2, where x, y, t ≥ 1

and (2,m1m2) = 1. By (7), (2a+ 1) (2b+ 1) = (x+ y + 1) d (m1m2) (a+ t) b from which it
is follows that m1 = m2 = 1 and b ≥ 3. Moreover, we see that x + y is even and x + y ≤ 4.
Therefore, if x+ y = 4, then

a (b− 2) = b (2− 5t) + 1. (9)

This is impossible since the left-hand side of (9) is positive, while its right-hand side is negative.
If x + y = 2, then x = y = 1. It follows that n = 3a (2 · 3t + 1)

b, where 2 · 3t + 1 is
prime and ab + 2a + 2b + 1 = 3bt. For example, for a = 10, b = 7 and t = 5, we obtain
n = 310 (2 · 35 + 1)

7
= 310 · 4877.

2.3 n is not square-free with n even

Now, assume that n is even. We have the following notes:

Lemma 2.2. 2x − 3 is divisible by 5 if and only if x ≡ 3(mod 4).

Proof. Clearly, 24k ≡ 1(mod 5) for every k ≥ 0. Hence, 2x ≡ 3(mod 5) if and only if
x ≡ 3(mod 4) .

Proposition 2.6. Let n = 2aq2, where q2 ≥ 3 and a ≥ 2. If n ∈ S, then n is one of the numbers:

• n = 25t−3 (2t · p4 + 1), where p is an odd prime with 2t · p4 + 1 is also prime.

• n = 2t−1 (2t · p2 + 1), where p is an odd prime with 2t · p2 + 1 is also prime.

• n = 2(2
i−3)/5Fi, where i ≡ 3(mod 4) and Fi is a Fermat prime.

Proof. By (3), we have 3 (2a+ 1) = d ((q − 1) 2a−1). Put q − 1 = 2tm, where (2,m) = 1 and
t ≥ 1. It follows that 3 (2a+ 1) = d (m) (a+ t), and hence

(6− d (m)) a = d (m) t− 3. (10)

It is clear from (10) that d (m) is odd and cannot be ≥ 6. Now, we consider separately the
following possibilities:

• d (m) = 5. It follows that m = p4, where p ≥ 3 is prime and a = 5t + 3. Thus,
n = 25t−3 (2t · p4 + 1), where 2t · p4 + 1 is also prime. For example, for t = 1 and p = 3,
we get n = 22 (2 · 34 + 1) = 22 · 163.
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• d (m) = 3. It follows that m = p2, where p ≥ 3 is prime and a = t − 1. Thus,
n = 2t−1 (2t · p2 + 1), where 2t · p2 + 1 is also prime. For example, for t = p = 3,
we have n = 22 (23 · 32 + 1) = 22 · 73.

• d (m) = 1. Then t = 2i for some i ≥ 0, and by (10) we have a = (2i − 3) /5. By Lemma
2.2, i ≡ 3(mod 4). Hence, n = 2(2

i−3)/5Fi, where Fi is a Fermat prime.

This completes the proof.

Proposition 2.7. Let n = 2qb2, where q2 is odd prime and b ≥ 2. Then n /∈ S.

Proof. By (3), we have 3 (2b+ 1) = d (q2 − 1) b. We put q2 − 1 = 2sm, where (2,m) = 1 and
s ≥ 1. It follows that 3 (2b+ 1) = d (m) (s+ 1) b, and so

3 = (d (m) (s+ 1)− 6) b. (11)

By (11), we must have b = 3, d (m) = 7 and s = 0 or d (m) = 1 and so s = 2i = 6 for some i.
Thus there is no solution in both cases.

Proposition 2.8. Let n = 2aqb2, where q2 ≥ 3 and a, b ≥ 2. If n ∈ S, then n is one of the numbers:

• n = 2a (2s · p2 + 1)
b, where p and 2s · p2 + 1 are simultaneously primes with

ab+ 2a+ 2b+ 1 = 3bs,

• n = 2a
(
2(3ab+2a+2b+1)/b + 1

)b
, where b divides 2a+ 1 and 2(3ab+2a+2b+1)/b + 1 is prime.

Proof. By (3), we have (2a+ 1) (2b+ 1) = d (2a−1 (q2 − 1)) b. If we put q2 − 1 = 2sm, where
(2,m) = 1 and s ≥ 1, it follows that

(2b+ 1) (2b+ 1) = d (m) (s+ a) b. (12)

By (12), d (m) cannot be ≥ 6; otherwise, d (m) (s+ a) b ≥ (3b) (2 (a+ s)) > (2a+ 1) (2b+ 1),
a contradiction. Moreover, d (m) cannot be even. So the rest cases are:

• d (m) = 5. By (12), we have b (2− 5s) = a (b− 2)− 1, which has no sense.

• d (m) = 3. Then m = p2 for some prime p ≥ 3, and by (12) we have ab + 2a + 2b + 1 =

3bs. Thus, n = 2a (2s · p2 + 1)
b where p and 2s · p2 + 1 are simultaneously primes with

ab+ 2a+ 2b+ 1 = 3bs. For example, for a = 13, b = 9 and s = 6, we get n = 213 · 5779.
• d (m) = 1. It follows that q = 22

i
+ 1 for some i ≥ 0, and so n = 2aF b

i , where
3ab + 2a + 2b + 1 = 2ib by (12). Or equivalently, n = 2a

(
2(3ab+2a+2b+1)/b + 1

)b, where b

divides 2a+ 1 and 2(3ab+2a+2b+1)/b + 1 is prime.

The proof is finished.

3 Solutions having three distinct prime factors

Let n = qa1q
b
2q

c
3 ∈ S, where q1, q2, q3 are distinct primes with 2 ≤ q1 < q2 < q3 and a, b, c ≥ 1.

Be definition, we see that

(2a+ 1) (2b+ 1) (2c+ 1) = d
(
(q1 − 1) (q2 − 1) (q3 − 1) qa−1

1 qb−1
2

)
c. (13)

We consider separately the cases n is square-free and n is not square-free (odd and even).
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3.1 n is square-free

First, assume that n is square-free odd.

Proposition 3.1. The only possible solutions of the form q1q2q3 are:

• F1F3F4, F0F2 · 73, 11 · F2 · 41.

• F1F2 (4p
2 + 1), where p is an odd prime with 4p2 + 1 is prime.

• F1 (2p+ 1) (2p5 + 1), where p is an odd prime with 2p+ 1 and 2p5 + 1 are primes.

• F1 (2
2p+ 1) (24p+ 1), where p is an odd prime with 22p+ 1 and 24p+ 1 are primes.

• F2 (2p+ 1) (23p+ 1), where p is an odd prime with 2p+ 1 and 23p+ 1 are primes.

For the proof we need the following lemma:

Lemma 3.1. If p is prime greater than 3, then the numbers 22α+1p+ 1 and 22βp+ 1 with α ≥ 0

and β ≥ 1 cannot be simultaneously primes.

Proof. First we note that 22α+1 ≡ 2(mod 3) and 22β ≡ 1(mod 3). Thus if p is of the form
3k + 1, then 22α+1p + 1 = 22α+1(3k + 1) + 1 ≡ 0(mod 3) and if p is of the form 3k + 2, then
22βp+ 1 = 22β(3k + 2) + 1 ≡ 0(mod 3).

Proof of Proposition 3.1. We put q1 − 1 = 2xm1, q2 − 1 = 2ym2, and q3 − 1 = 2zm3, where mi

is odd and x, y, z ≥ 1. Let m = m1m2m3. Applying (13), we have 27 = d (m) (x+ y + z + 1).
We distinguish two cases:

Case 1. d (m) = 1. Then and 2i + 2j + 2k = 26 for some 0 ≤ i < j < k, which is only true for
i = 1, j = 3 and k = 4. Hence, n = F1F3F4.

Case 2. d (m) = 3 and x + y + z = 8. It follows that m = p2, where p ≥ 3 is prime. Also we
consider the following subcases:

Case 2.1. m1 = m2 = 1 and m3 = p2. Since x < y, by Lemma 2.1, there are only two
possibilities:

• n = 3 · 17 · 73.
• n = 5 · 17 · (4p2 + 1), where p and 4p2 + 1 are both primes. For example, p = 3.

Case 2.2. m1 = 1 and m2 = m3 = p. It follows that x = 2i, where i ≥ 0 and y < z. By
Lemma 3.1, we have three possibilities:

• n = 5(2p+ 1)(25p+ 1), where p, 2p+ 1 and 25p+ 1 are simultaneously primes. For
example, for p = 11, we obtain n = 5 · 23 · 353.

• n = 5(4p+1)(16p+1), where p, 4p+1 and 16p+1 are simultaneously primes. For
example, for p = 7, we have n = 5 · 29 · 113.

• n = 17(2p+1)(23p+1), where p, 2p+1 and 23p+1 are simultaneously primes. For
example, for p = 11, we have n = 17 · 23 · 89.

Case 2.3. m1 = m2 = p and m3 = 1. This case is not valid. We have the same for
m1 = m3 = 1 and m2 = p2 or m2 = m3 = 1 and m1 = p2.

Case 2.4. m1 = m3 = p and m2 = 1. It follows that y = 2i, where i ≥ 0 and x < z. Thus
we must have p = 5. Hence, n = 11 · 17 · 41.
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Second, assume that n is square-free even.

Proposition 3.2. The only possible solutions of the form 2q2q3 are:

• 2 · 3 · 1153, 2 · 19 · 1459.

• 2 · 5 (26p2 + 1), where p is an odd prime with 26p2 + 1 is prime.

• 2 · 17 (24p2 + 1), where p is an odd prime with 24p2 + 1 is prime.

• 2 (2p+ 1) (27p+ 1), where p is an odd prime with 2p+ 1 and 27p+ 1 are primes.

• 2 (22p+ 1) (26p+ 1), where p is an odd prime with 22p+ 1 and 26p+ 1 are primes.

• 2 (23p+ 1) (25p+ 1), where p is an odd prime with 23p+ 1 and 25p+ 1 are primes.

• 2 (2p+ 1) (2p7 + 1), where p is an odd prime with 2p+ 1 and 2p7 + 1 are primes.

• 2 (2p3 + 1) (2p5 + 1), where p is an odd prime with 2p3 + 1 and 2p5 + 1 are primes.

• 2 (2p1 + 1) (2p1p
2
2 + 1), where p1, p2, 2p1 + 1 and 2p1p

2
2 + 1 are simultaneously primes.

For the proof, we need the following lemma:

Lemma 3.2. If p1 and p2 are primes greater than 3, then 2p21p
2
2 + 1 is composite.

Proof. This follows immediately from the proof of Lemma 2.1.

Proof of Proposition 3.2. We put q1 − 1 = 2xm1 and q2 − 1 = 2ym2, where (2,m1m2) = 1 and
x, y ≥ 1. By (13), 27 = d (m1m2) (x+ y + 1). There are three cases to consider.

Case 1. d (m1m2) = 1. That is, 2i+ 2j = 26 for some i, j ≥ 0. This is impossible.

Case 2. d (m1m2) = 3 and x+y = 8. It follows that m1m2 = p2, where p ≥ 3 is prime. We have
three subcases:

Case 2.1. m1 = 1 and m2 = p2. Then the solutions are given by:

• n = 2 · 3(27p2 + 1) with p and 27p2 + 1 are both prime, and by Lemma 2.1, p = 3 is
the only prime with this property, in which case n = 2 · 3 · 1153.

• n = 2 · (5(26p2 + 1) with p and 26p2 + 1 are both prime. For example, for p = 3, we
have n = 2 · 5 · 577.

• n = 2 · 17(16p2 +1) with p and 16p2 +1 are both prime. For example, for p = 5, we
have n = 2 · 17 · 401.

Case 2.2. m1 = m2 = p. Then x < y, and the solutions are:

• 2 · (2p+1)(27p+1), where p, 2p+1 and 27p+1 are primes. For example, for p = 5,
we get n = 2 · 11 · 641.

• n = 2(4p + 1)(26p + 1), where p, 4p + 1 and 26p + 1 are primes. For example, for
p = 7, we get n = 2 · 29 · 449.

• n = 2(8p + 1)(25p + 1), where p, 8p + 1 and 25p + 1 are primes. For example, for
p = 11, we have n = 2 · 89 · 353.

Case 2.3. m1 = p2 and m2 = 1. This case is not valid.
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Case 3. d (m1m2) = 9 and x+ y = 2. We have two subcases:

Case 3.1. m1m2 = p8, where p ≥ 3 is prime. Then the solutions are:

• n = 2(2p+ 1)(2p7 + 1), where p, 2p+ 1 and 2p7 + 1 are primes.

• n = 2(2p2 +1)(2p6 +1), where p, 2p2 +1 and 2p6 +1 are primes, which is only true
for p = 3, and so n = 2 · 19 · 1459.

• n = 2(2p3 + 1)(2p5 + 1), where p, 2p3 + 1 and 2p5 + 1 are primes. For example, for
p = 29, we have n = 2 · 48779 · 41022299.

Case 3.2. m1m2 = p21p
2
2, where p1, p2 are odd primes with p1 < p2. By Lemma 3.2, the

number 2 · 3 · (2p21p22 + 1) is composite and by Lemma 2.1, we obtain

• n = 2(2p1+1)(2p1p
2
2+1) with p1, p2, 2p1+1 and 2p1p

2
2+1 are primes. For example,

for p1 = 3 and p2 = 5, n = 2 · 7 · 151.

• n = 2(2p2+1)(2p21p2+1) with p1, p2, 2p2+1 and 2p21p2+1 are primes. For example,
for p1 = 3 and p2 = 11 we obtain n = 2 · 23 · 199.

This completes the proof.

3.2 n is not square-free with n odd

Assume that n is not square-free with n is odd. Here, we characterize all odd solutions having
only one power prime.

Proposition 3.3. The only possible solutions of the form qa1q2q3, where a ≥ 2 and 3 ≤ q1<q2<q3
are:

• 53(2p+ 1)(8p+ 1), where p, 2p+ 1and 8p+ 1 are prime numbers.

• q
17(t+t′)−9
1 (2yqt1 + 1)(2zqt

′
1 + 1), where q1 is a Fermat prime and y, z are positive integers

with (q1, y + z) ∈ {(3, 15), (5, 14), (17, 12), (257, 8)} and 2yqt1 + 1, 2zqt
′
1 + 1 are primes.

• q
5(t+t′)−3
1 (2yqt1+1)(2zqt

′
1 +1), where q1 is a Fermat prime and y, z, t, t′ are positive integers

with (q1, y + z) ∈ {(3, 13), (5, 12), (17, 10), (257, 6)} and 2yqt1 + 1, 2zqt
′
1 + 1 are primes.

• q
13(t+t′)−9

5
1 (2yqt1+1)(2zqt

′
1 +1), where q1 is a Fermat prime and y, z, t, t′ are positive integers,

with (q1, y + z) ∈ {(3, 11), (5, 10), (17, 8), (257, 4)} and 2yqt1 + 1, 2zqt
′
1 + 1 are primes.

• q
11(t+t′)−9

7
1 (2yqt1+1)(2zqt

′
1 +1), where q1 is a Fermat prime and y, z, t, t′ are positive integers

with (q1, y + z) ∈ {(3, 9), (5, 8), (17, 6)} and 2yqt1 + 1, 2zqt
′
1 + 1 are primes.

• qt+t′−1
1 (2yqt1 + 1)(2zqt

′
1 + 1), where q1 is a Fermat prime and y, z, t, t′ are positive integers

with (q1, y + z) ∈ {(3, 7), (5, 6), (17, 4)} and 2yqt1 + 1, 2zqt
′
1 + 1 are primes.

• q
7(t+t′)−9

11
1 (2yqt1+1)(2zqt

′
1 +1), where q1 is a Fermat prime and y, z, t, t′ are positive integers

with (q1, y + z) ∈ {(3, 5), (5, 4)} and 2yqt1 + 1, 2zqt
′
1 + 1 are primes.

• q
5(t+t′)−9

13
1 (2yqt1+1)(2zqt

′
1 +1), where q1 is a Fermat prime and y, z, t, t′ are positive integers

with (q1, y + z) ∈ {(3, 3), (5, 2)} and 2yqt1 + 1, 2zqt
′
1 + 1 are primes.
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• n = (2xq + 1)5(t+t′)−3 (2y(2xq + 1)tq + 1)
(
2z(2xq + 1)t

′
+ 1
)
, where q, 2xq + 1,

2y(2xq + 1)tq + 1, 2z(2xq + 1)t
′
+ 1 are primes and x, y, z, t, t′ are positive integers with

x+ y + z = 4.

• n = (2xq + 1)5(t+t′)−3 (2y(2xq + 1)t + 1)
(
2z(2xq + 1)t

′
q + 1

)
, where q, 2xq + 1,

2y(2xq + 1)t + 1, 2z(2xq + 1)t
′
q + 1 are primes and x, y, z, t, t′ are positive integers with

x+ y + z = 4.

• n = (2x + 1)5(t+t′)−3 (2y(2x + 1)tq + 1)
(
2z(2x + 1)t

′
q + 1

)
, where q, 2x + 1,

2y(2xq + 1)tq + 1, 2z(2xq + 1)t
′
q + 1 are primes and x, y, z, t, t′ are positive integers

with x+ y + z = 4.

• n = (2x + 1)5(t+t′)−3 (2y(2x + 1)tq2 + 1)
(
2z(2x + 1)t

′
+ 1
)
, where q, 2x + 1,

2y(2xq2 + 1)tq + 1, 2z(2xq + 1)t
′
+ 1 are primes and x, y, z, t, t′ are positive integers

with x+ y + z = 4.

• n = (2x + 1)5(t+t′)−3 (2y(2x + 1)t + 1)
(
2z(2x + 1)t

′
q2 + 1

)
, where q, 2x + 1,

2y(2xq + 1)t + 1, 2z(2xq + 1)t
′
q2 + 1 are primes and x, y, z, t, t′ are positive integers with

x+ y + z = 4.

Proof. Let n = qa1q2q3 ∈ S. Therefore, by (13) we get

9 (2a+ 1) = d
(
(q1 − 1) (q2 − 1) (q3 − 1) qa−1

1

)
. (14)

There are two cases:
Case 1. Suppose that ((q2 − 1) (q3 − 1) , q1) = 1. It follows from (14) that

9 = (d ((q1 − 1) (q2 − 1) (q3 − 1))− 18) a. (15)

We distinguish the following subcases:

Case 1.1. a = 9. From (15), d ((q1 − 1) (q2 − 1) (q3 − 1)) = 19. We must have

(q1 − 1) (q2 − 1) (q3 − 1) = 218,

and hence q1, q2 and q3 are Fermat primes. This is impossible.

Case 1.2. a = 3. From (15), d ((q1 − 1) (q2 − 1) (q3 − 1)) = 21. If

(q1 − 1) (q2 − 1) (q3 − 1) = 220,

then q1, q2 and q3 are Fermat primes, which is impossible. Thus, we must have

(q1 − 1) (q2 − 1) (q3 − 1) = 26q2,

where q is odd prime, with (q1, q) = 1. By Lemma 2.1, 8q2 +1 and 2q2 +1 are composite,
and by Lemma 3.1, 2q + 1 and 24q + 1 are not simultaneously primes and the same for
22q + 1 and 23q + 1, so we conclude that n is of the form: n = 53(2q + 1)(8q + 1),
where q, 2q + 1 and 8q + 1 are prime numbers with q > 5. For example, if q = 11 then
n = 53 · 23 · 89.
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Case 2. Suppose that ((q2 − 1) (q3 − 1) , q1) = q1. We put q1 − 1 = 2xm1, q2 − 1 = 2yqt1m2

and q3 − 1 = 2zqt
′
1m3, where x, y, z ≥ 1, max(t, t′) ≥ 1 and (2p1,m1m2m3) = 1. Let us take

m = m1m2m3. It follows from (14) that

(18− d (m) (x+ y + z + 1)) a = d (m) (x+ y + z + 1) (t+ t′)− 9. (16)

As above, d (m) (x+ y + z + 1) cannot be ≥ 18. Thus, we distinguish the following subcases:

Case 2.1. d (m) (x+ y + z + 1) = 17. Thus, d (m) = 1 and so x + y + z = 16. Or
equivalently, m1 = m2 = m3 = 1, q1 is a Fermat prime and by (16), a = 17(t + t′) − 9.
Therefore, we get

n = q
17(t+t′)−9
1

(
2y · qt1 + 1

) (
2z · qt′1 + 1

)
,

where 2y · qt1 + 1 and 2z · qt′1 + 1 are primes with 2y · qt1 < 2z · qt′1 , and we have

(q1, y + z) ∈ {(3, 15), (5, 14), (17, 12), (257, 8)}.

For example, for q1 = 3, y = 2, z = 13, t = 2 and t′ = 5 we obtain n = 3110 ·37 ·1990657.

Case 2.2. d (m) (x+ y + z + 1) = 15. We will consider separately the two cases d (m) = 1

and d (m) = 3.

• d (m) = 1. Then x+ y+ z = 14, q1 is a Fermat prime and by (16), a = 5(t+ t′)− 3.
Thus, we have

n = q
5(t+t′)−3
1

(
2y · qt1 + 1

) (
2z · qt′1 + 1

)
,

where 2y · qt1 + 1 and 2z · qt′1 + 1 are primes with 2y · qt1 < 2z · qt′1 , and we have
(q1, y + z) ∈ {(3, 13), (5, 12), (17, 10), (257, 6)}. For example, for x = 1, y = 2,
z = 11, t = 1 and t′ = 2 we obtain n = 312 · 13 · 18433.

• d (m) = 3. Then x+y+z = 4 and m = q2, where q is an odd prime with (q1, q) = 1.
Thus, by (16), a = 5(t+ t′)− 3. In this case, n is one of the numbers:
◦ n = (2xq + 1)5(t+t′)−3 (2yqt1q + 1)

(
2zqt

′
1 + 1

)
, where 2xq + 1, 2yqt1q + 1 and

2zqt
′
1 +1 are primes. For example, for x = y = 1, z = 2, q = 3, t = 1 and t′ = 2,

we get n = 712 · 43 · 197.

◦ n = (2xq + 1)5(t+t′)−3 (2yqt1 + 1)
(
2zqt

′
1 q + 1

)
, where 2xq + 1, 2yqt1 + 1 and

2zqt
′
1 q + 1 are primes. For example, for x = z = 1, y = 2, q = 3, t = 1

and t′ = 1, we get n = 77 · 29 · 43.

◦ n = (2x + 1)5(t+t′)−3 (2yqt1q + 1)
(
2zqt

′
1 q + 1

)
, where 2x + 1, 2yqt1q + 1 and

2zqt
′
1 q + 1 are primes. For example, for x = z = 1, y = 2, q = 13, t = 0

and t′ = 1, we get n = 32 · 53 · 79.

◦ n = (2x + 1)5(t+t′)−3 (2yqt1q
2 + 1)

(
2zqt

′
1 + 1

)
, where 2x + 1, 2yqt1q

2 + 1 and
2zqt

′
1 +1 are primes. For example, for x = y = 1, z = 2, q = 5, t = 1 and t′ = 6,

we get n = 332 · 151 · 2917.

◦ n = (2x + 1)5(t+t′)−3 (2yqt1 + 1)
(
2zqt

′
1 q

2 + 1
)
, where 2x+1, 2yqt1+1 and 2zqt

′
1 q

2+

1 are primes. For example, for y = z = t = 1, x = 2, q = 3 and t′ = 0, we get
n = 52 · 11 · 19.
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Case 2.3. d (m) (x+ y + z + 1) = 13. Then d (m) = 1 and x + y + z = 12. Thus, m1 =

m2 = m3 = 1 and q1 is a Fermat prime. By (16), 5a = 13(t+ t′)− 9. That is,

n = (q1)
13(t+t′)−9

5
(
2yqt1 + 1

) (
2zqt

′

1 + 1
)

,

where 2x + 1, 2yqt1 + 1 and 2zqt
′
1 + 1 are primes with 2yqt1 < 2zqt

′
1 and 5 | 13(t + t′) − 9,

and we have (q1, y + z) ∈ {(3, 11), (5, 10), (17, 8), (257, 4)}. For example, for x = t = 1,
y = 5, z = 6 and t′ = 2 we get n = 36 · 97 · 577.

Case 2.4. d (m) (x+ y + z + 1) = 11. We also have m = 1 and x + y + z = 10. So, q1 is a
Fermat prime and by (16), 7a = 11(t+ t′)− 9. Thus,

n = q
11(t+t′)−9

7
1

(
2yqt1 + 1

) (
2zqt

′

1 + 1
)
,

where 2yqt1 + 1 and 2zqt
′
1 + 1 are primes with 2yqt1 < 2zqt

′
1 and 7 | 11(t + t′) − 9, and we

have (q1, x + y) ∈ {(3, 9), (5, 8), (17, 6)}. For example, for x = t = 1, y = 2, z = 7 and
t′ = 3 we have n = 35 · 13 · 3457.

Case 2.5. d (m) (x+ y + z + 1) = 9. Here, we must have d (m) = 1 and x+y+z = 8, from
which it follows that m = 1 and q1 is a Fermat prime. Thus, by (16), a = t+ t′−1. Hence,

n = qt+t′−1
1

(
2yqt1 + 1

) (
2zqt

′

1 + 1
)
,

where 2yqt1 + 1 and 2zqt
′
1 + 1 are primes with 2yqt1 < 2zqt

′
1 , and we have

(q1, x+ y) ∈ {(3, 7), (5, 6), (17, 4)}.

For example, for x = t = 1, y = 2, z = 5 and t′ = 4 we have n = 34 · 13 · 2593.

Case 2.6. d (m) (x+ y + z + 1) = 7. As above m = 1 and x + y + z = 6. By (16),
11a = 7(t+ t′)− 9. That is,

n = q
(7(t+t′)−9)/11
1

(
2yqt1 + 1

) (
2zqt

′

1 + 1
)
,

where 2yqt1 + 1 and 2zqt
′
1 + 1 are primes with 2yqt1 < 2zqt

′
1 and 11 | 7(t + t′) − 9, and we

have (q1, x + y) ∈ {(3, 5), (5, 4)}. For example, for x = y = 1, z = t′ = 4 and t = 2 we
get n = 33 · 19 · 1297.

Case 2.7. d (m) (x+ y + z + 1) = 5. We must have m = 1 and x + y + z = 4. By (16), we
deduce that 13a = 5(t+ t′)− 9 , and so

n = q
5(t+t′)−9

13
1

(
2yqt1 + 1

) (
2zqt

′

1 + 1
)
,

where 2yqt1 + 1 and 2zqt
′
1 + 1 are primes with 2yqt1 < 2zqt

′
1 and 13 | 5(t + t′) − 9, and we

have (q1, x+ y) ∈ {(3, 3), (5, 2)}. For example, for x = t = 1, y = 1, z = 2 and t′ = 6 we
get n = 32 · 7 · 2917.
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Proposition 3.4. The only possible solutions of the form q1q
b
2q3, where b ≥ 2 and 3 ≤ q1<q2 < q3

are:

• 5(2q + 1)3(8q + 1), where q, 2q + 1, 8q + 1 are primes with (q, 2q + 1) = 1.

• q1q
17t−9
2 (2zqt2 + 1), where q1, q2 are Fermat primes and z, t are positive integers with

(q1, q2, z) ∈ {(3, 5, 13), (3, 17, 11), (3, 257, 7), (5, 17, 10), (5, 257, 6), (17, 257, 4)} and
2zqt2 + 1 is prime.

• n = q1q
5t−3
2 (2z · qt2 + 1), where q1, q2 are Fermat primes and z, t are positive integers

with (q1, q2, z) ∈ {(3, 5, 11), (3, 17, 9), (3, 257, 5), (5, 17, 8), (5, 257, 4), (17, 257, 2)} and
2zqt2 + 1 is prime.

• n = q1q
13t−9

5
2 (2z · qt2 + 1), where q1, q2 are Fermat primes and z, t are positive integers

with (q1, q2, z) ∈ {(3, 5, 9), (3, 17, 7), (3, 257, 3), (5, 17, 6), (5, 257, 2)} and 2zqt2 + 1 is
prime.

• n = q1q
11t−9

7
2 (2z · qt2 + 1), where q1, q2 are Fermat primes and z, t are positive integers

with (q1, q2, z) ∈ {(3, 5, 7), (3, 17, 5), (3, 257, 1), (5, 17, 4)} and 2zqt2 + 1 is prime.

• n = q1q
t−1
2 (2z · qt2 + 1), where q1, q2 are Fermat primes and z, t are positive integers with

(q1, q2, z) ∈ {(3, 5, 5), (3, 17, 3), (5, 17, 2)} and 2zqt2 + 1 is prime.

• n = q1q
7t−9
11

2 (2z · qt2 + 1), where q1, q2 are Fermat primes and z, t are positive integers with
(q1, q2, z) ∈ {(3, 5, 3), (3, 17, 1)} and 2zqt2 + 1 is prime.

• n = (2x + 1) (2yq + 1)5t−3 (2z(2yq + 1)tq + 1), where q, 2x+1, 2yq+1, 2z(2yq+1)tq+1

are primes.

• n = (2x + 1) (2yq2 + 1)
5t−3

(2z(2yq2 + 1)t + 1), where q, 2x + 1, 2yq2 + 1 and 2z(2yq2 +

1)t + 1 are primes.

• n = 3 · 55t−3 (2 · 5tq2 + 1), where q and 2 · 5tq2 are primes.

• n = 3 · 5 5t−9
13 (2 · 5t + 1), where 2 · 5t + 1 is prime.

Proof. Let n = q1q
b
2q3, where b ≥ 2 and 3 ≤ q1 < q2 < q3. Assume further that n ∈ S. It follows

that
9 (2b+ 1) = d

(
(q1 − 1) (q2 − 1) (q3 − 1) qb−1

2

)
. (17)

There are two cases:
Case 1. Assume that ((q3 − 1) , q2) = 1. By (17), we have

9 = (d ((q1 − 1) (q2 − 1) (q3 − 1))− 18) b. (18)

We distinguish the following subcases:
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Case 1.1. b = 9. From (18), d ((q1 − 1) (q2 − 1) (q3 − 1)) = 19. We must have

(q1 − 1) (q2 − 1) (q3 − 1) = 218,

and hence q1, q2 and q3 are Fermat numbers. This is impossible.

Case 1.2. b = 3. By (18), d ((q1 − 1)(q2 − 1)(q3 − 1)) = 21. If (q1 − 1)(q2 − 1)(q3 − 1) =

220, then q1, q2 and q3 are Fermat numbers, which is impossible. Thus, we must have

(q1 − 1) (q2 − 1) (q3 − 1) = 26q2,

where q is odd prime with (q2, q) = 1. By Lemma 2.1, 8q2 + 1 and 2q2 + 1 are composite
and by Lemma 3.1, 2q + 1 and 24q + 1 are not simultaneously primes. A similar argument
holds for 22q + 1 and 23q + 1 , so we conclude that n is of the form:

n = 5(2q + 1)3(8q + 1),

where 2q + 1 and 8q + 1 are simultaneously primes. For example, if q = 5 then n =

5 · 113 · 41.

Case 2. Assume that ((q3 − 1) , q2) = q2. We put q1 − 1 = 2xm1, q2 − 1 = 2ym2 and q3 − 1 =

2zqt2m3, where x, y, z ≥ 1, t ≥ 1 and (2q2,m1m2m3) = 1. Put m = m1m2m3. It follows from
(17) that

(18− d (m) (x+ y + z + 1)) b = (d (m) (x+ y + z + 1) t− 9) . (19)

Note that d (m) (x+ y + z + 1) cannot ≥ 18. Thus, we distinguish the following subcases:

Case 2.1. d (m) (x+ y + z + 1) = 17. Then d (m) = 1, and so x + y + z = 16. Or
equivalently, m1 = m2 = m3 = 1, q1 and q2 are Fermat numbers and by (19), b = 17t− 9.
Therefore, n = q1q

17t−9
2 (2zqt2 + 1), where 2zqt2 + 1 is prime with

(q1, q2, z) ∈ {(3, 5, 13), (3, 17, 11), (3, 257, 7), (5, 17, 10), (5, 257, 6), (17, 257, 4)}.

For example, for x = 1, y = 2, z = 13, t = 1 we have n = 3 · 58 · 40961.

Case 2.2. d (m) (x+ y + z + 1) = 15. We will consider separately the two cases d (m) = 1

and d (m) = 3.

• When d (m) = 1. Then x + y + z = 14, q1 and q2 are Fermat numbers and by (19),
b = 5t− 3. Thus, n = q1q

5t−3
2 (2z · qt2 + 1), where 2z · qt2 + 1 is prime with

(q1, q2, z) ∈ {(3, 5, 11), (3, 17, 9), (3, 257, 5), (5, 17, 8), (5, 257, 4), (17, 257, 2)}.

For example, for x = 1 , y = 2, z = 11, we have t = 15 which is the first value with
this property. That is, n = 3 · 572 · 62500000000001.

• When d (m) = 3. Then x + y + z = 4 and m = q2, where q is an odd prime with
(q2, q) = 1. Thus, by (19), b = 5t− 3. Hence,

◦ n = (2x + 1) (2yq + 1)5t−3 (2zqt2q + 1). For example, for x = z = 1, y = 2 and
t = 1 we have n = 3 · 132 · 79.

◦ n = (2x + 1) (2yq2 + 1)
5t−3

(2zqt2 + 1). For example, for x = y = 1, z = 2 and
t = 3 we have n = 3 · 1912 · 27437.
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◦ n = (2x + 1) (2y + 1)5t−3 (2zqt2q
2 + 1), we must have x = z = 1, y = 2,

hence n = (3) (5)5t−3 (2 · 5tq2 + 1). For example for q = 7 and t = 1 we get
n = 3 · 52 · 491.

Case 2.3. d (m) (x+ y + z + 1) = 13. Then d (m) = 1 and x + y + z = 12. Thus, m1 =

m2 = m3 = 1 and q1, q2 are Fermat primes. By (19), 5b = 13t− 9. That is,

n = q1q
(13t−9)/5
2

(
2z · qt2 + 1

)
,

where 5 | 13t− 9 and 2z · qt2 + 1 is prime and we have

(q1, q2, z) ∈ {(3, 5, 9), (3, 17, 7), (3, 257, 5), (5, 17, 6), (5, 257, 2)}.

Case 2.4. d (m) (x+ y + z + 1) = 11. We also have m = 1 and x+y+z = 10. So, q1 and q2
are Fermat numbers and by (19), 7b = 11t− 9. Thus, n = q1q

(11t−9)/7
2 (2z · qt2 + 1), where

7 | 11t− 9 and 2z · qt2 + 1 is prime and

(q1, q2, z) ∈ {(3, 5, 7), (3, 17, 5), (3, 257, 1), (5, 17, 4)}.

For example, if x = 1, y = 2, z = 7 and t = 333 then n = 3 · 5522 · (27 · 5333 + 1).

Case 2.5. d (m) (x+ y + z + 1) = 9. Here, we must have m = 1 and x + y + z = 8, from
which it follows that q1 and q2 are Fermat primes. Thus, by (19), b = t− 1 and so

n = q1q
t−1
2

(
2z · qt2 + 1

)
,

where 2z · qt2 + 1 is prime and (q1, q2, z) ∈ {(3, 5, 5), (3, 17, 3), (5, 17, 2)}. For example,
for x = 1, y = 2, z = 5. For t = 3 , we get n = 3 · 52 · 4001.

Case 2.6. d (m) (x+ y + z + 1) = 7. Obviously m = 1 and x + y + z = 6. By (16),
11b = 7t − 9. That is, n = q1q

(7t−9)/11
2 (2z · qt2 + 1), where 11 | 7t − 9 and 2z · qt2 + 1 is

prime and we have
(q1, q2, z) ∈ {(3, 5, 3), (3, 17, 1)}.

Case 2.7. d (m) (x+ y + z + 1) = 5. We must have m = 1 and x + y + z = 4. By (19),
we deduce that 13b = 5t − 9, and so n = 3 · 5(5t−9)/13 (2 · 5t + 1), where 13 | 5t − 9 and
2 · 5t + 1 is prime. After computation, t = 3699 is the first value with this property. That
is, n = 3 · 51422 · (2 · 53699 + 1).

Proposition 3.5. The only solutions of the form q1q2q
c
3, where c ≥ 2 and 3 ≤ q1 < q2 < q3 are:

3 · 5 · 733, 3 · 17 · 193 and 5 (2q + 1) (8q + 1)3, where q, 2q + 1 and 8q + 1 are primes.

Proof. Let n = q1q2q
c
3, where c ≥ 2 and 3 ≤ q1 < q2 < q3. Since n ∈ S, then

9 = (d ((q1 − 1) (q2 − 1) (q3 − 1))− 18) c. (20)

We distinguish the following two cases:
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Case 1. c = 9 and d ((q1 − 1) (q2 − 1) (q3 − 1)) = 19. It follows that

(q1 − 1) (q2 − 1) (q3 − 1) = 218

and so q1, q2, q3 are Fermat numbers, which is impossible.

Case 2. c = 3 and d ((q1 − 1) (q2 − 1)(q3 − 1)) = 21.As above, if (q1 − 1)(q2 − 1)(q3 − 1) = 220,
then q1, q2, q3 are also Fermat number, which is impossible. But, if (q1 − 1)(q2 − 1)(q3 − 1) =

26q2, with q is odd prime, then by applying Lemma 3.1, 2q+1 and 16q+1 are not simultaneously
primes (the same for 4q + 1 and 8q + 1). Then n is one of the numbers:

◦ n = 3 · 5 · (8q2 + 1)
3, where 8q2 +1 is prime. By Lemma 2.1, q = 3 is the only prime with

this property, hence n = 3 · 5 · 733.
◦ n = 3 · 17 · (2q2 + 1)

3, where 2q2 + 1 is prime. From Lemma 2.1, q = 3 is the only prime
with this property, hence n = 3 · 17 · 193.

◦ n = 5 · (2q + 1) (8q + 1)3, where 2q + 1 and 8q + 1 are prime numbers. The first primes
with these properties are q = 5, 11, 29, 131, 179, 239, 431, 491, . . . .

3.3 n is not square-free with n even

Now, assume that n is not square-free with n is even. Here, we characterize all even solutions
having only one power prime.

Proposition 3.6. The only possible solutions of the form 2apq, where a ≥ 2 and 3 ≤ p < q are:

• 217(x+y)−9(2xm1+1)(2ym2+1), where 2xm1+1, 2ym2+1 are primes with 2xm1 < 2ym2

and m1m2 = r16 such that r is an odd prime.

• 25(x+y)−3(2xm1 +1)(2ym2 +1), where 2xm1 +1, 2ym2 +1 are primes with 2xm1 < 2ym2

and m1m2 = r14 or m1m2 = r41r
2
2 such that r, r1, r2 are odd primes.

• 2
13(x+y)−9

5 (2xm1+1)(2ym2+1), where 2xm1+1, 2ym2+1 are primes with 2xm1 < 2ym2

and m1m2 = r12 such that r is an odd prime.

• 2
11(x+y)−9

7 (2xm1+1)(2ym2+1), where 2xm1+1, 2ym2+1 are primes with 2xm1 < 2ym2

and m1m2 = r10 such that r is an odd prime.

• 2(x+y)−1(2xm1 + 1)(2ym2 + 1), where 2xm1 + 1, 2ym2 + 1 are primes with 2xm1 < 2ym2

and m1m2 = r8 or m1m2 = r21r
2
2 such that r, r1, r2 are odd primes.

• 2
7(x+y)−9

11 (2xm1 + 1)(2ym2 + 1), where 2xm1 + 1, 2ym2 + 1 are primes with 2xm1 < 2ym2

and where m1m2 = r6 such that r is an odd prime.

• 2
5(x+y)−9

13 (2xm1 + 1)(2ym2 + 1), where 2xm1 + 1, 2ym2 + 1 are primes with 2xm1 < 2ym2

and m1m2 = r4, such that r is an odd prime.

• 2
(x+y)−3

5 (2xm1 + 1)(2ym2 + 1), where 2xm1 + 1, 2ym2 + 1 are primes with 2xm1 < 2ym2

and m1m2 = r2 such that r is an odd prime.

• 2
(x+y)−1

9 (2x + 1)(2y + 1), where 2x + 1 and 2y + 1 are primes with x < y.
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Proof. Let n = 2apq, where a ≥ 2 and 3 ≤ p < q. Since n ∈ S, then

9 (2a+ 1) = d
(
(p− 1) (q − 1) 2a−1

)
. (21)

We put p− 1 = 2xm1, q− 1 = 2ym2, where x, y ≥ 1 and (2,m1m2) = 1, it follow from (21) that

(18− d(m1m2))a = d(m1m2)(x+ y)− 9. (22)

We observe that d(m1m2) is odd and cannot be ≥ 18, so we distinguish the following cases:
Case 1. d(m1m2) = 17. It follows that m1m2 = r16, where r ≥ 3 is prime and so, by (22),

a = 17(x + y) − 9. Then n = 217(x+y)−9(2xm1 + 1)(2ym2 + 1), where 2xm1 + 1 and
2ym2 + 1 are primes with 2xm1 < 2ym2. For example, for m1 = r, m2 = r15, y = 2,
x = 2 and r = 3, we get n = 259 · 13 · 57395629.

Case 2. d(m1m2) = 15. It follows that m1m2 = r14 or m1m2 = r41r
2
2, where r1 and r2 are

distinct odd primes and by (22), a = 5(x+ y)− 3. Therefore,

n = 25(x+y)−3(2xm1 + 1)(2ym2 + 1),

where 2xm1 + 1 and 2ym2 + 1 are primes with 2xm1 < 2ym2. For example, for m1 = 52,
m2 = 34, x = 2, y = 1, r1 = 5 and r2 = 3 we have = 212 · 101 · 163.

Case 3. d(m1m2) = 13. It follows that m1m2 = r12, where r ≥ 3 is prime and by (22),
5a = 13(x + y) − 9. Thus we obtain n = 2(13(x+y)−9)/5(2xm1 + 1)(2ym2 + 1), where
5|13(x+ y)− 9, 2xm1 + 1 and 2ym2 + 1 are primes with 2xm1 < 2ym2. For example, for
x = 1, y = 2 and m1 = m2 = 36 we obtain n = 26 · 1459 · 2917.

Case 4. d(m1m2) = 11. Therefore, m1m2 = r10, where r ≥ 3 is prime. From (22), 7a =

11(x + y) − 9. Hence, n = 2(11(x+y)−9)/7(2xm1 + 1)(2ym2 + 1), where 7|11(x + y) − 9,
2xm1 + 1 and 2ym2 + 1 are primes with 2xm1 < 2ym2. For example, for x = 2, y = 16,

m1 = 36 and m2 = 34 we obtain n = 227 · 2917 · 5308 417.

Case 5. d(m1m2) = 9. It follows that m1m2 = r8 or m1m2 = r21r
2
2, where r1 and r2 are distinct

odd primes. By (22), a = (x+ y)− 1. Hence, n = 2(x+y)−1(2xm1 + 1)(2ym2 + 1), where
2xm1 +1 and 2ym2 +1 are primes with 2xm1 < 2ym2. For example, for x = 1, y = 4 and
m1 = m2 = 34 we have n = 24 · 163 · 1297. Also, for x = 1, y = 2, m1 = 32 and m2 = 52

we get n = 22 · 19 · 101.

Case 6. d(m1m2) = 7. That is, m1m2 = r6, where r ≥ 3 is prime, and by (22), 11a =

7(x + y) − 9. Hence, n = 2(7(x+y)−9)/11(2xm1 + 1)(2ym2 + 1), where 11|7(x + y) − 9,
(2xm1+1) and (2ym2+1) are primes with 2xm1 < 2ym2 . For example, for x = 2, y = 4,
m1 = 32 and m2 = 34 we get n = 23 · 37 · 1297.

Case 7. d(m1m2) = 5. Then m1m2 = r4, where r ≥ 3 is prime and by (22), 13a = 5(x+y)−9.
Hence, n = 2(5(x+y)−9)/13(2xm1 + 1)(2ym2 + 1), where 13|5(x + y) − 9, (2xm1 + 1)

and (2ym2 + 1) are primes with 2xm1 < 2ym2 . For example, for x = 1, y = 6 and
m1 = m2 = 32 we have n = 22 · 19 · 577.

Case 8. d(m1m2) = 3. Then m1m2 = r2, where r ≥ 3 is prime. By (22), 5a = (x + y) − 3.
Hence, n = 2((x+y)−3)/5(2xm1+1)(2ym2+1), where 5|(x+y)−3, 2xm1+1 and 2ym2+1

are primes with 2xm1 < 2ym2. For example, for x = 1 , y = 12 and m1 = 1, m2 = 112

we have n = 22 · 3 · 495617.
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Case 9. d(m1m2) = 1. That m1 = m2 = 1 and by (22), 9a = (x+ y)− 1. Hence,

n = 2(x+y−1)/9(2x + 1)(2y + 1),

where 9|(x+ y)− 1, (2x + 1) and (2y + 1) are Fermat primes with 2x + 1 < 2y + 1.

Proposition 3.7. The only possible solutions of the form 2pbq, where b ≥ 2 and 3 ≤ p < q are:

• 2F 9
1F4, 2F 3

2F4, 2 · 193 · 163.

• 2 · 53(24r2 + 1), where r and 24r2 + 1 are primes.

• 2 · 173(22r2 + 1), where r and 22r2 + 1 are primes.

• 2(2r + 1)3(25r + 1), where r, 2r + 1 and 25r + 1 are primes.

• 2(2r + 1)3(2r5 + 1), where r, 2r + 1 and 2r5 + 1 are primes.

• 2(2x + 1)17t−9(2y(2x + 1)t + 1), where 2x + 1, 2y(2x + 1)t + 1 are primes and x, y are
positive integers with x+ y = 16.

• 2(2x+1)5t−3(2y(2x+1)t+1), where 2x+1, 2y(2x+1)t+1 are primes and x, y are positive
integers with x+ y = 14.

• 2 · 35t−3(23 · 3t · r2 + 1), where r and 23 · 3t · r2 + 1 are primes with (3, r) = 1.

• 2 · 55t−3(22 · 5t · r2 + 1), where r and 23 · 5t · r2 + 1 are primes with (5, r) = 1.

• 2(2r + 1)5t−3(23r(2r + 1)t + 1), where r, 2r + 1 and 23r(2r + 1)t + 1 are primes.

• 2(4r + 1)5t−3(22r(4r + 1)t + 1), where r, 4r + 1 and 22r(4r + 1)t + 1 are primes.

• 2(8r + 1)5t−3(2r(8r + 1)t + 1), where r, 8r + 1 and 2r(8r + 1)t + 1 are primes.

• 2(4r2 + 1)5t−3(4(4r2 + 1)t + 1), where r, 4r2 + 1 and 4(4r2 + 1)t + 1 are primes.

• 2 · 35t−3(2 · 3t · r4 + 1), where r and 2 · 3t · r4 + 1 are primes with (3, r) = 1.

• 2(2r + 1)5t−3(2r3(2r + 1)t + 1), where r, 2r + 1 and 2r3(2r + 1)t + 1 are primes.

• 2 · 195t−3(2 · 19tr2 + 1), where r and 2 · 19tr2 + 1 are primes with (19, r) = 1.

• 2(2r3 + 1)5t−3(2r(2r3 + 1)t + 1), where r, 2r3 + 1 and 2r(2r3 + 1)t + 1 are primes.

• 2(2r4 + 1)5t−3(2(2r4 + 1)t + 1), where r, 2r4 + 1 and 2(2r4 + 1)t + 1 are primes.

• 2(2x + 1)
13t−9

5 (2y(2x + 1)t + 1), where 2x + 1, 2y(2x + 1)t + 1 are primes and x, y, t are
positive integers with x+ y = 12.

• 2(2x + 1)
11t−9

7 (2y(2x + 1)t + 1), where 2x + 1, 2y(2x + 1)t + 1 are primes and x, y, t are
positive integers with x+ y = 10.

• 2(2x + 1)t−1(2y(2x + 1)t + 1), where 2x + 1, 2y(2x + 1)t + 1 are primes and x, y, t are
positive integers with x+ y = 8.

• 2 · 3t−1(2 · 3tr2 + 1) where r and 2 · 3tr2 + 1 are primes with (3, r) = 1.

• 2(2r + 1)t−1(2r(2r + 1)t + 1), where r, 2r + 1 and 2r(2r + 1)t + 1 are primes.

• 2(2x + 1)
7t−9
11 (2y(2x + 1)t + 1) where 2x + 1, 2y(2x + 1)t + 1 are primes and x, y, t are

positive integers with x+ y = 6.

• 2(2x + 1)
5t−9
13 (2y(2x + 1)t + 1), where 2x + 1, 2y(2x + 1)t + 1 are primes and x, y, t are

positive integers with x+ y = 4.
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Proof. Let n = 2pbq, where b ≥ 2 and 3 ≤ p < q. Since n ∈ S, we have

9 (2b+ 1) = d
(
(p− 1) (q − 1) pb−1

)
(23)

Case 1. Assume that (q − 1, p) = 1. It follows from (23) that 9 = (d ((p− 1) (q − 1))− 18) b.
We distinguish the following subcases:

Case 1.1. b = 9 and d ((p− 1) (q − 1)) = 19 . Thus we must have (p− 1) (q − 1) = 218 and
p, q are Fermat primes. Hence, n = 2F 9

1F4.

Case 1.2. b = 3 and d ((p− 1) (q − 1)) = 21 . Here we have the following possibilities:

• (p− 1) (q − 1) = 220 and p, q are Fermat number. As above, n = 2F 3
2F4.

• (p− 1) (q − 1) = 26r2, where r ≥ 3 is prime. By Lemma 2.1, 22 ·r+1 and 24 ·r2+1

cannot be simultaneously primes. Thus, n is one of the numbers:
◦ n = 2 · 53(24r2+1), where 24 · r2+1 is prime. For example, for r = 29 we have
n = 2 · 53 · 13457.

◦ n = 2 · 173(22r2+1), where 22 · r2+1 is prime. For example, for r = 3 we have
n = 2 · 173 · 37.

◦ n = 2(2r + 1)3(25r + 1), where 2 · r + 1 and 25 · r + 1 are both prime. For
example, for r = 3 we have n = 2 · 73 · 97.

• (p− 1) (q − 1) = 22r6, where r ≥ 3 is prime with (r, q) = 1. Thus, n is one of the
numbers:
◦ n = 2(2 · r + 1)3(2 · r5 + 1), where 2 · r + 1 and 2r5 + 1 are both prime. For

example, for r = 3 we get n = 2 · 73 · 487.
◦ n = 2(2 · r2 + 1)3(2 · r4 + 1), where 2 · r2 + 1 and 2 · r4 + 1 are both prime. By

Lemma 2.1, r = 3 is the only solution for this case, hence we get n = 2·193 ·163.

Case 2. Assume that (q − 1, p) = p. We put p− 1 = 2xm1 and q − 1 = 2yptm2, where x, y ≥ 1,
t ≥ 1 and (2p,m1m2) = 1. Let m = m1m2, it follows from (23) that

(18− d (m) (x+ y + 1)) b = (d (m) (x+ y + 1) t− 9) . (24)

We observe that d (m) (x+ y + 1) is odd and cannot be ≥ 18, so we have the following
possibilities:

Case 2.1. d (m) (x+ y + 1) = 17. That is, m = 1 and x + y = 16. So, p is a Fermat prime.
By (24), b = 17t − 9 and therefore n = 2(2x + 1)17t−9(2y(2x + 1)t + 1), where (2x + 1)

and (2y(2x + 1)t + 1) are primes. For example, for x = 1, t = 4 and y = 15 we have n =

2 · 359 · 2654209.

Case 2.2. d (m) (x+ y + 1) = 15. There are three possibilities:
• d (m) = 1 and x + y = 14. So, m1 = m2 = 1 and p is a Fermat prime. By (24),
b = 5t − 3, in which case n = 2(2x + 1)5t−3(2y(2x + 1)t + 1), where 2x + 1 and
2y(2x + 1)t + 1 are primes. For example, for x = 1, y = 13, t = 5 we have n =

2 · 322 · 1990657.

• d (m) = 3 and x + y = 4. Therefore, m = r2, where r ≥ 3 is prime. From (24),
b = 5t−3. By Lemma 2.1, 2 ·73t+1 is composite. Also, by Remark 2.2, the number
23 · 19t + 1 is composite. Thus, n is one of the numbers:
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◦ n = 2 · 35t−3(23 · 3t · r2 + 1), where 23 · 3t · r2 + 1 is prime. For example, for
r = 7 and t = 2 we obtain n = 2 · 37 · 3529.

◦ n = 2 · 55t−3(22 · 5t · r2 + 1), where 22 · 5t · r2 + 1 is prime. For example, for
r = 7 and t = 4 we obtain n = 2 · 517 · 122501.

◦ n = 2(2r + 1)5t−3(23 · r · (2r + 1)t + 1), where 2r + 1 and 23 · r · (2r + 1)t + 1

are primes. For example, for r = t = 3 we have n = 2 · 712 · 8233.

◦ n = 2(4r + 1)5t−3(22 · r · (4r + 1)t + 1), where 4r + 1 and 22 · r · (4r + 1)t + 1

are primes. For example, for r = 3 and t = 1 we have n = 2 · 132 · 157.

◦ n = 2(8r + 1)5t−3(2 · r · (8r + 1)t + 1), where 8r + 1 and 2 · r · (8r + 1)t + 1

are primes. For example, for r = 5 and t = 2 we get n = 2 · 417 · 16811.

◦ n = 2(4r2 + 1)5t−3(4 · (4r2 + 1)t + 1), where 4r2 + 1 and 4 · r · (4r2 + 1)t + 1

are primes. For example, for r = 7 and t = 6, we get n = 2 · 19727 ·
233806913236517.

• d (m) = 5 and x = y = 1. Thus m = r4, where r ≥ 3 is prime. It follows from (24)
that b = 5t− 3. Therefore, by Lemma 2.1, n is one of the numbers:
◦ n = 2 · 35t−3(2 · 3t · r4 + 1), where 2 · 3t · r4 + 1 is prime. For example, if r = 5

and t = 2 then n = 2 · 37 · 11251.
◦ n = 2(2r + 1)5t−3(2 · r3 · (2r + 1)t + 1), where 2r + 1 and 2 · r3 · (2r + 1)t + 1

are primes. For example, for r = 3 and t = 1 we have n = 2 · 72 · 379.
◦ n = 2 ·195t−3(2 ·19t ·r2+1), where 2 ·19t ·r2+1 is prime. For example, if r = 3

and t = 29, then n = 2 · 19142 · 218336795902605993201009018384568383223.

◦ n = 2(2r3 +1)5t−3(2 · r · (2r3 +1)t +1), where 2r3 +1 and 2 · r · (2r3 +1)t +1

are primes. For example, if r = 5 and t = 12, then

n = 2 · 25157 · 625294570645574159995353780011.

◦ n = 2(2r4 + 1)5t−3(2 · (2r4 + 1)t + 1), where 2r4 + 1 and 2 · (2r4 + 1)t + 1 are
primes.

Case 2.3. d (m) (x+ y + 1) = 13. It follows that m = 1 and x + y = 12, which gives that p
is a Fermat prime. By (24), 5b = 13t− 9 and so n = 2(2x + 1)(13t−9)/5(2y(2x + 1)t + 1),
where 2x + 1 and 2y(2x + 1)t + 1 are primes, with 5|13t− 9.

Case 2.4. d (m) (x+ y + 1) = 11. Obviously, m = 1 and x + y = 12. So, p is a Fermat
prime. By (24), 7b = 11t− 9 and therefore n = 2(2x +1)(11t−9)/7(2y(2x +1)t +1), where
2x + 1 and 2y(2x + 1)t + 1 are both prime, with 7|11t− 9.

Case 2.5. d (m) (x+ y + 1) = 9. There are two possibilities to consider:
• d (m) = 1 and so x + y = 8. Thus, m1 = m2 = 1 and q2 is a Fermat prime By (24),
b = t−1, from which it follows that n = 2(2x+1)t−1(2y(2x+1)t+1), where 2x+1

and 2y(2x + 1)t + 1 are prime. For example, for x = 2, y = 6 and t = 14 we have
n = 2 · 513 · 390625000001.

• d (m) = 3 and x + y = 2. So, m1m2 = r2, where r is odd prime and (p, r) = 1,
x = y = 1 and b = t − 1. Therefore, by Lemma 2.1, it follows that n is one of the
numbers:
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◦ n = 2 · 3t−1(2 · 3t · r2 + 1), where 2 · 3t · r2 + 1 is prime. For example, for r = 5

and t = 4 we get n = 2 · 33 · 4051.
◦ n = 2(2r+ 1)t−1(2 · r · (2r+ 1)t + 1), where 2r+ 1 and 2 · r · (2r+ 1)t + 1 are

primes. For example for r = 3 and t = 4, we have n = 2 · 73 · 14407.
◦ n = 2 ·19t−1(2 ·19t+1). By Lemma 2.1, the number 2 ·19t+1 is divisible by 3.

Case 2.6. d (m) (x+ y + 1) = 7, it follows that d (m) = 1, and (x+ y + 1) = 7. So, m1 =

m2 = 1, p is Fermat numbers, x+ y = 6. From (24), 11b = 7t− 9 and hence

n = 2(2x + 1)(7t−9)/11(2y(2x + 1)t + 1),

where 2x+1 and 2y(2x+1)t+1 are primes, with 11|7t−9. For example, for x = 4, y = 2

and t = 6 we have n = 2 · 173 · 96550277.

Case 2.7. d (m) (x+ y + 1) = 5. It follows that m1 = m2 = 1 and x + y = 4. So, p is a
Fermat prime and by (24), 13b = 5t−9. Therefore, n = 2(2x+1)(5t−9)/13(2y(2x+1)t+1),
where (2x+1) and (2y(2x+1)t+1 are both prime with 13|5t−9. For example, for x = 1,
y = 3 and t = 7 we have n = 2 · 32 · 17497.

Proposition 3.8. The only possible solutions of the form 2pqc, with c ≥ 2 and 3 ≤ p < q are:
• 2F1F

9
4 , 2F2F

3
4 , 2 · 3 · 14593, 2 · 19 · 1633.

• 2 · 5 · (24r2 + 1)3, where r and 24r2 + 1 are odd primes.

• 2 · 17 · (22r2 + 1)3, where r and 22r2 + 1 are odd primes.

• 2(4r + 1)(24r + 1)3, where r, 4r + 1 and 24r + 1 are odd primes.

• 2(2r + 1)(2r5 + 1)3, where r, 2r + 1 and 2r5 + 1 are odd primes.

Proof. Let n = 2pqc where c ≥ 2 and 3 ≤ p < q. Since n ∈ S, we have

9 = (d ((p− 1) (q − 1))− 18) c.

We distinguish the following cases:

Case 1. d ((p− 1) (q − 1)) = 19 and c = 9. It follows that (p− 1) (q − 1) = 218 and so p, q are
Fermat primes. Then n = 2F1F

9
4 is the only solution.

Case 2. d ((p− 1) (q − 1)) = 21 and c = 3. Here (p− 1) (q − 1) is either 220, 26 · r2 or 22 · r6

where r ≥ 3 is prime. We study these subcases separately.

Case 2.1. (p− 1) (q − 1) = 220. Then p, q are Fermat primes, in which case n = 2F2F
3
4 .

Case 2.2. (p− 1)(q − 1) = 26 · r2. Then n is one of the numbers:

◦ n = 2 · 5(24 · r2 + 1)3, where 24 · r2 + 1 is also prime. For example, for r = 5 we
have n = 2 · 5 · 4013.

◦ n = 2 · 17(22 · r2 + 1)3, where 22 · r2 + 1 is prime. For example, for r = 3 we get
n = 2 · 17 · 373.

◦ n = 2(22 · r+ 1)(24 · r+ 1)3, where 22 · r+ 1 and 24 · r+ 1 are prime. For example,
for r = 7 we get n = 2 · 29 · 1133.
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Case 2.3. (p− 1) (q − 1) = 22 · r6. Then n is one of the numbers:

◦ n = 2 · 3(2 · r6 + 1)3, where 2 · r6 + 1 is prime. By Lemma 2.1, r = 3 is the only
possible value, i.e., n = 2 · 3 · 14593.

◦ n = 2(2 · r2 + 1)(2 · r4 + 1)3, where 2 · r2 + 1 and 2 · r4 + 1 are primes. By Lemma
2.1, we get r = 3 and so n = 2 · 19 · 1633.

◦ n = 2(2 · r + 1)(2 · r5 + 1)3, where r, 2 · r + 1 and 2 · r5 + 1 are primes. The first
primes r with these properties are r = 3, 23, 29, 53, 251, 443, 953, . . . .

4 Are there infinitely many n such that d
(
n2
)
= d (φ (n))?

The crucial question that remains: Is the set S infinite? The answer to this question seems difficult
because we have, in the previous section, a system of polynomials in which, for a given prime p,
each polynomial must takes in p a value which is also a prime number.

Recall that Dickson’s Conjecture was formulated by Leonard Dickson in [5]: Let s ≥ 1 and
let fi (x) = ai · x + bi with ai, bi integers, bi ≥ 1 for i = 1, 2, . . . , s. If there does not exist any
integer n > 1 dividing all the products f1 (k) f2 (k) · · · fs (k), for every integer k, then there exist
infinitely many natural numbers m such that all numbers f1 (m) , f2 (m) , . . . , fs (m) are prime.

As in [3], let us take the system of integer valued polynomials whose leading coefficients are
positive: 

f1 (x) = x,

f2 (x) = 4x+ 1,

f3 (x) = 16x+ 1.

Assume further that there exists an integer n > 1 which is a common divisor for the integers

f1 (k) f2 (k) f3 (k) , for k ∈ Z.

That is, n is a common divisor for the integers k (4k + 1) (16k + 1), k ∈ Z. Then n is a common
divisor for the integers (n + 1)(4n + 5)(16n + 17). Since n ∤ (n + 1), n divide 4n + 5 or n
divide 16n + 17. This means that n = 5 or n = 17. But either n = 5 or n = 17 does not divide
f1 (2) f2 (2) f3 (2) = 2 · 33 · 11. So there is no integer n > 1 which is a common divisor for the
integers f1 (k) f2 (k) f3 (k), k ∈ Z. Consequently, we have the following result:

Theorem 4.1. Assuming Dickson’s conjecture, there exist infinitely many primes p such that 4p+1

and 16p+ 1 are primes.

Corollary 4.1. There exist infinitely many positive integers n such that n ∈ S .

Proof. Recall that the integer n = p(4p + 1)(16p + 1) with p, 4p + 1 and 16p + 1 primes are in
S. Since, by the above theorem there exist infinitely many primes p such that 4p+ 1 and 16p+ 1

are primes. Thus, we have infinitely many integers n = p(4p+ 1)(16p+ 1) ∈ S.
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We also use Dickson’s conjecture to create families of prime numbers
f1 (x) = a1x+ 1

f2 (x) = a2x+ 1
...

fs (x) = asx+ 1

where a1, . . . , as are positive integers. We can easily check that the above polynomials verify
Dickson’s hypothesis. Indeed, suppose that there exists an integer n > 1 such that n is a common
divisor of all the integers f1 (k) f2 (k) · · · fs (k), k ∈ Z. Then n | f1 (0) f2 (0) · · · fs (0), i.e.,
n | 1 which implies that n = 1. Then there exist infinitely many positive integers n such that
f1 (n) , f2 (n) , . . . , fs (n) are simultaneously primes.

5 Miscellaneous examples

In the following, we present some examples of solutions that cannot be deduced from the previous
theorems and propositions.

Example 5.1. The set S contains the following numbers:

1. n = F a
1 ·F b

2 ·F3, n = F a
1 ·F2 ·F b

3 and n = F1 ·F a
2 ·F b

3 , where Fn is the n-th Fermat prime
and (a, b) = (3, 7) or (7, 3).

2. n = F a
1 ·F b

2 ·F3 ·F4, n = F a
1 ·F2 ·F b

3 ·F4, F a
1 ·F2 ·F3 ·F b

4 , F1 ·F a
2 ·F b

3 ·F4, F1 ·F a
2 ·F3 ·F b

4

and F1 · F2 · F a
3 · F b

4 , where (a, b) = (3, 7).

Example 5.2. We have:

1. Let p, q, r be distinct primes such that 2p + 1, 4q + 1 and 2pqr2 + 1 are prime. Then
n = 2 · 17 · (2p+ 1)(4q + 1)(2pqr2 + 1) ∈ S.

2. Let q1, q1, . . . , qk be distinct primes such that 4q1 + 1, . . . , 4qk + 1 and 4q1 · · · qk + 1 are
prime for some k ≥ 1. If n = 2 (4q1 + 1) · · · (4qk + 1) (4q1 · · · qk + 1) ∈ S, then k = 3.
For example, for (q1, q2, q3) = (7, 13, 57) we get

n = 2 (4q1 + 1) (4q2 + 1) (4q3 + 1) (4q1q2q3 + 1) = 2 · 29 · 53 · 229 · 20749 ∈ S.

3. If n ≥ 7 is the product of safe primes*, then n /∈ S.

Let q1, q1, . . . , qk be Sophie Germain primes for some k ≥ 1 such that 2q1 · · · qk + 1 is also
prime.

*A prime p is said to be a Sophie Germain prime if 2p+1 is also a prime, in which case, this last prime is called a
safe prime. It has been conjectured that there are infinitely many Sophie Germain primes, but this remains unproved,
see [9].
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Example 5.3. We have:
• If n = 2 · (2q1 + 1) · · · (2qk + 1) (2q1 · · · qk + 1) ∈ S, then k = 7. For example, if

(q1, q2, q3, q4, q5, q6, q7) = (3, 5, 11, 23, 29, 41, 131) ,

then n = 2 · (2q1 + 1) · · · (2q7 + 1) (2q1 · · · q7 + 1) = 253470367109666245154 ∈ S.
• If n = 2 · F0 · (2q1 + 1) · · · (2qk + 1) (2q1 · · · qk + 1) ∈ S, then k = 24. For example, let qi

(1 ≤ i ≤ 24) be the following Sophie Germain primes: 3, 5, 11, 23, 29, 41, 53, 83, 89, 113,
131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 719, 1439, 1481, 3413. After computation,
the number:

n = 2 · F0 · (2q1 + 1) · · · (2qk + 1) (2q1 · · · qk + 1)

= 2 · 3 · 7 · 11 · 23 · 47 · 59 · 83 · 107 · 167 · 179 · 227 · 263
· 347 · 359 · 383 · 467 · 479 · 503 · 563 · 587 · 719 · 1439 · 2879 · 2963
· 6827 · 668385166547574839150402388419262454473804930401971.

is an element of S.
• If n = 2 · F0 · F2 · (2q1 + 1) · · · (2qk + 1) (2q1 · · · qk + 1) ∈ S, then k = 74. Let us

take q1, q2, . . . , q73 be the first odd Sophie Germain primes. That is, (q1, q2, . . . , q73) =

(3, 5, . . . , 2945). Then the result holds for q74 = 3863.

• If n = 2 · F0 · F1 · F2 · (2q1 + 1) · · · (2qk + 1) (2q1 · · · qk + 1) ∈ S, then k = 234.

• If n = 2 · F0 · F1 · F2 · F3 · (2q1 + 1) · · · (2qk + 1) (2q1 · · · qk + 1) ∈ S, then k = 712.

• If n = 2 · F0 · F1 · F2 · F3 · F4 · (2q1 + 1) · · · (2qk + 1) (2q1 · · · qk + 1) ∈ S, then k = 2153.

6 Conclusion

As a conclusion, the different results that we have proved give rise to diophantine equations that
deserve to be studied. Here, we give some examples.

1. In Proposition 2.1, we need to find primes p such that 4p2 + 1 is also prime.

2. In Theorem 2.5, we need to solve the system:{
2 · 3t + 1 is prime
ab+ 2a+ 2b+ 1 = 3bt

,

where a, b, t are non-negative integers.

3. In Proposition 2.6, we need to solve the system:
p is prime
2tp4 + 1 is prime
t positive integer

.

4. In Proposition 2.8, we need to solve the system:
p is prime
2sp2 + 1 is prime
ab+ 2a+ 2b+ 1 = 3bs

,

where a, b, s are positive integers.
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