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Abstract: The divisors of a natural number are very important for several areas of mathematics,
representing a promising field in number theory. This work sought to analyze new relations
involving the divisors of natural numbers, extending them to prime numbers. These are relations
that may have an interesting application for counting the number of divisors of any natural number
and understanding the behavior of prime numbers. They are not a primality test, but they can be a
possible tool for this and could also be useful for understanding the Riemann’s zeta function that
is strongly linked to the distribution of prime numbers.
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1 Introduction

The divisors establish, together with the divisor function, a link with the Riemann’s zeta function,
Eisenstein’s series, Lambert’s series, Euler’s totient function among others [6]. Ordinary integers
were studied by [2] who used integer divisors and their representation in prime factors in the
definition and [5] studied the averages between the divisors of whole numbers, bringing some
very interesting results.

One of the most intriguing problems in number theory is finding the divisors of an integer
or its number as this will have implications for cryptography and other areas of knowledge. The
divisors of an integer are important because they also relate to the partition of an integer [1].

Copyright © 2023 by the Author. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



Given the importance of understanding the behavior of the divisors of any natural number,
we establish as the objective of this work the analysis of some relations involving these divisors,
extending the analyzes to the prime numbers.

2 Results

Theorem 1. Let N ∈ N with D divisors d1, d2, . . . , dD being d1 = 1 and dD = N and d1 < d2 <

· · · < dD. If H = d11 + d22 + · · ·+ dDD, we can say that

⌊logN H⌋ = D. (1)

Proof. Let us remember two properties of floor function:

⌊k + x⌋ = k + ⌊x⌋, ∀k ∈ Z,
⌊logp (x · y)⌋ = ⌊logp x+ logp y⌋, if x, y > 0.

If N is a prime number (two divisors) we have:

⌊logN (1 +N2)⌋ =
⌊
logN N2 ·

( 1

N2
+ 1

)⌋
=

⌊
logN N2 + logN

( 1

N2
+ 1

)⌋
= 2 +

⌊
logN

( 1

N2
+ 1

)⌋
.

If z = 1
N2 + 1, we have 1 < z < N and we conclude that ⌊logN z⌋ = 0 because, by [7]

⌊logb x⌋ = ⌊logb ⌊x⌋⌋ =⇒ ⌊logN z⌋ = ⌊logN ⌊z⌋⌋ = ⌊logN 1⌋ = 0.

Therefore we have:
⌊logN (1 +N2)⌋ = 2 + 0 = 2 = D.

If we do this for any natural number, we have:

H = d11 + d22 + · · ·+ dDD = dDD ·
( d11
dDD

+
d22
dDD

+ · · ·+ 1
)
.

Using the previous reasoning, we can do:

⌊logN H⌋ =
⌊
logN dDD ·

( d11
dDD

+
d22
dDD

+ · · ·+ 1
)⌋

=
⌊
logN dDD + logN

( d11
dDD

+
d22
dDD

+ · · ·+ 1
)⌋

= D +
⌊
logN

( d11
dDD

+
d22
dDD

+ · · ·+ 1
)⌋

.

However, if z =
d11
dDD

+
d22
dDD

+ · · ·+ 1, we have 1 < z < N and we conclude that:

⌊logN z⌋ = 0 =⇒ ⌊logN H⌋ = D + 0 = D.

This completes the proof.
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Graphically we confirm this hypothesis (see Figure 1).

Figure 1. Visualization of f(N) = ⌊logN (1 +N2)⌋ when N is a prime number

Therefore, it is seen that the expression does not depend on the value of N (and its divisors).
The result of the expression will always be equal to the number of divisors of N .

Example 1. If we use N = 12, whose divisors are 1, 2, 3, 4, 6, 12,

H = 11 + 22 + 33 + 44 + 65 + 126 = 2994048,

⌊log12 2994048⌋ = ⌊6.001085⌋ = 6 = D.

Theorem 2. Let N ∈ N with D divisors d1, d2, . . . , dD being d1 = 1 and dD = N and let
d1 < d2 < · · · < dD. If H = d11 + d22 + · · ·+ dDD and P = d1 · d2 · d3 · · · dD, then we have:

⌊logPH⌋ = 2. (2)

Proof. We know that P = N
D
2 and ⌊logN H⌋ = ⌊D + logN z⌋, with 1 < z < N =⇒ logN H =

D + logN z. Therefore:

⌊logPH⌋ =
⌊
log

N
D
2
H
⌋

=
⌊ 2

D
· logNH

⌋
=

⌊ 2

D
· (D + logN z)

⌋
=

⌊
2 +

2

D
· logN z

⌋
= 2 +

⌊ 2

D
· logN z

⌋
= 2 + 0

= 2.

This completes the proof.
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Graphically from N ≥ 2, we have:

Figure 2. Visualization of logP H .

Theorem 3. If pn is the n-th prime number, Hn = p11+ p22+ p33+ · · ·+ pnn, Bn = p1 · p2 · p3 · · · pn,
we have

⌊logBn
Hn⌋ = 1 (3)

Proof. We will use the previous ideas. We know that prime numbers are infinite [4] and that they
differ from at least 1 unit (2 and 3 are the only examples), 2 units (for example, 3 and 5) and so
on. Let us take some prime numbers greater than 2 and follow the previous steps.

H1 = 21 = 21 · (1 + 0)

H2 = 21 + 32 = 32 · (1 + 21

32
) ≈ 32 · (1 + 0.222)

H3 = 21 + 32 + 53 = 53 · (1 + 21

53
+

32

53
) ≈ 53 · (1 + 0.088)

H4 = 21 + 32 + 53 + 74 = 74 · (1 + 21

74
+

32

74
+

53

74
) ≈ 74 · (1 + 0.0566).

Note that the value inside the parentheses (we will indicate by z) decreases and approaches 1
as we make n large, with z = 1.222... it is the largest among all. This is easy to see since the ratio
between any prime number and its successor prime is always in the range ]0, 1[. Furthermore, in
reason, the antecedent is raised to a power lower than the power of the consequent. In other
words:

0 <
pn−1
n−1

pnn
=

(
pn−1

pn

)n−1

pn
< 1.

But if the ratio between any prime number and the successor prime is at ]0, 1[, it is easy to
conclude that the ratio between any other prime number pk(k ∈ [1, n]) and the power pnn will also
be in ]0, 1[. Thus, we can express Hn as being:
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Hn = p11 + p22 + p33 + · · ·+ pnn = pnn ·
(p11
pnn

+
p22
pnn

+
p33
pnn

+ · · ·+ 1
)
.

If z =
p11
pnn

+
p22
pnn

+
p33
pnn

+ · · ·+ 1, we have 1 < z < Bn, with z → 1 if n → ∞. So:

⌊logBn
Hn⌋ =

⌊
logBn

pnn ·
(p11
pnn

+
p22
pnn

+
p33
pnn

+ · · ·+ 1
)⌋

= ⌊logBn
pnn + logBn

z⌋ (4)

In the floor function we have:

⌊x+ y⌋ =

{
⌊x⌋+ ⌊y⌋, if 0 ≤ {x}+ {y} < 1

⌊x⌋+ ⌊y⌋+ 1, if 1 ≤ {x}+ {y} < 2
. (5)

We saw at the beginning of this proof that the decimal part of z decreases as n grows, with
the largest {z} = 0.2222... occurring with H2. So, {log6 1.2222} = 0.111996 and {logB2

p22} =

{log6 9} = 0.22629... . We would then have 0 ≤ 0.2222 + 0.22629 < 1 → 0 ≤ 0.44849 < 1.
The maximum of {logBn

pn
n} occurs when n = 5. In this case, we have {z} = 0.002017 and

{logB5
p55} = {log2310 161051} = 0.54803, where we get that 0 ≤ 0.550047 < 1.

When we used the largest {z} and the largest {logBn
pnn} we obtained values in the range

0 ≤ {x} + {y} < 1. So it is easy to deduce that all other cases will also be in this range. Thus,
in the case of ⌊logBn

Hn⌋ = ⌊logBn
pnn + logBn

z⌋ and remembering that ⌊logBn
z⌋ = 0, already

than 1 < z < Bn, we will use the first condition (⌊x+ y⌋ = ⌊x⌋+ ⌊y⌋), which results in:

⌊logBn
Hn⌋ = ⌊logBn

pnn⌋+ ⌊logBn
z⌋

= ⌊n · logBn
pn⌋

= ⌊n · logp1·p2···pn pn⌋

=
⌊ n

logpn p1 + logpn p2 + · · ·+ 1

⌋
.

We can see that 1 ≤ logpn p1 + logpn p2 + · · ·+ 1 < n, which results in:

1 ≤ n

logpn p1 + logpn p2 + · · ·+ 1
< n.

Between 1 and n there can be several integers. For what⌊ n

logpn p1 + logpn p2 + · · ·+ 1

⌋
≥ 2.

We should have

logpn p1 + logpn p2 + · · ·+ 1 ≤ n

2
→ p1 · p2 · · · pn ≤ p

n
2
n .

If n = 1, we have p1 ≤ p
1
2
1 → 1 ≤ 1

2
, that is false. Therefore, we see that (4) cannot be greater

than 2. So the largest integer that satisfies (4) is 1, that is:

⌊logBn
Hn⌋ =

⌊ n

logpn p1 + logpn p2 + · · ·+ 1

⌋
= 1. (6)

This completes the proof.
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That can be viewed graphically in Figure 3.

Figure 3. Visualization of logBn
Hn.

We conclude that for the calculation of logBn
Hn just use n · logBn

pn as a good approximation
and if n → ∞ have logBn

Hn ≈ n · logBn
pn, that is, Hn ≈ pnn. Based on all of this, we state that:

lim
n→∞

p11 + p22 + · · ·+ pnn
pnn

= 1 and lim
n→∞

n

1 + logpn (p1 · p2 · · · pn−1)
≈ 1.

Theorem 4. If N ∈ N > 1 has D divisors d(N) = (d1, d2, d3, . . . , dD), then

logN

D∏
i=1

dii ≈
2

3
· TD, (7)

where TD is a termial of D with TD = D(D+1)
2

.

Example 2. If N = 10, d(10) = (1, 2, 5, 10), then

logN

D∏
i=1

dii = log10 (1
1 · 22 · 53 · 104) ≈ 6.69,

2

3
· T4 =

2

3
· 4(4 + 1)

2
≈ 6.66.

Proof. If N has D = 2 divisors, then it is a prime number and it will be easy to see that
d(N) = (1, N) and therefore:

logN

2∏
i=1

dii = logN (11 ·N2) = 2 =
2

3
· 2(2 + 1)

2
.

If N has D = 3 divisors, it will be equal to the square of a prime number a, that is,
d(N) = (1, a, a2), where N = a2 and therefore:

logN

3∏
i=1

dii = loga2 (1
1 · a2 · a6) = 4 =

2

3
· 3(3 + 1)

2
.

It is important to emphasize that every number with three divisors is square of a prime
number but not every perfect square number has three divisors. Example, N = 16 = 42 but
d(16) = (1, 2, 4, 8, 16).
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In general, if N = an, that is, a is a prime number, then the number N has D = n+ 1 divisors
that are d(N) = (1, a, a2, a3, . . . , an) and therefore:

logN

n+1∏
i=1

dii = logan (1
1 · a2 · a6 · a12 · a20 · · · an(n+1)

= logan a
2+6+12+20+···+n(n+1)

= logan a
2·
(
1+3+6+10+···+n(n+1)

2

)
=

2 ·
(
1 + 3 + 6 + 10 + · · ·+ n(n+1)

2

)
n

.

We can see that 1 + 3 + 6 + 10 + · · · + n(n+1)
2

is the sum of the n first termials (triangular
numbers), that is:

1 + 3 + 6 + 10 + · · ·+ n(n+ 1)

2
=

n(n+ 1)(n+ 2)

6
.

Therefore:

logN

n+1∏
i=1

dii =
2 · n(n+1)(n+2)

6

n
=

2

3
· (n+ 1)(n+ 1 + 1)

2
=

2

3
· Tn+1.

This completes the proof.

Although we have proved the theorem for the power of a prime number, it is emphasized that
a rigorous and generic demonstration of this theorem is open. However, if we graph logN

∏D
i=1 d

i
i

and 2
3
· TD for the numbers of 2 to 60 (Figure 4) we visually confirm that the graphs practically

coincide (with tiny differences in some points), which indicates the possibility of this theorem
being true.

Figure 4. Visualization of logN
∏D

i=1 d
i
i (red points) and 2

3
· TD (black points) from 2 to 60.
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These relationships may be useful for future work on how to determine the number of divisors
for any number. So, if we know that a number has two divisors, it is evident that it is prime.

3 Conclusion

New relationships were analyzed involving natural number dividers that could serve as a tool for
studying the number of these dividers. The relations have been extended to prime numbers and
this may be useful in the analysis of the Riemann zeta function, cryptography and other areas
involving the study of divisors.
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