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Abstract: As mentioned in the first part of this paper, our paper was motivated by two classical
papers on the representations of integers as sums of arithmetic progressions. One of them is
a paper by Sir Charles Wheatstone and the other is a paper by James Joseph Sylvester. Part I
of the paper, though including some extensions of Wheatstone’s work, was primarily devoted
to extensions of Sylvester’s Theorem. In this part of the paper, we will pay more attention on
the problems initiated by of Wheatstone on the representations of powers of integers as sums of
arithmetic progressions and the relationships among the representations for different powers of
the integer. However, a large part in this portion of the paper will be devoted to the extension of
a clever method recently introduced by S. B. Junaidu, A. Laradji, and A. Umar and the problems
related to the extension. This is because that this extension, not only will be our main tool for
study ing the relationships of the representations of different powers of an integer, but also seems
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to be interesting in its own right. In the process of doing this, we need to use a few results from
the first part of the paper. On the other hand, some of our results in this part will also provide
certain new information on the problems studied in the first part. However, for readers who are
interested primarily in the results of this part, we have repeated some basic facts from Part I of the
paper so that the reader can read this part independently from the first part.
Keywords: Representation by arithmetic progressions, Junaidu–Laradji–Umar process, Induce-
ment of representations, Complementary factors.
2020 Mathematics Subject Classification: 11B25, 11A41.

1 Introduction
It is well-known that the square of an integer can be represented as the sum of a sequence of
consecutive odd integers:

𝑛2 = 1 + 3 + · · ·+ (2𝑛− 1).

In a paper [6] published in 2010, S. B. Junaidu, A. Laradji, and A. Umar described a way of using
this representation to induce a similar representation of any higher power of 𝑛. Their method can
be explained by an example. For instance, 52 = 1+ 3 + 5 + 7 + 9. Consider any higher power of
5, say 54.

54 = (54 − 52) + 52

= 52(52 − 1) + (1 + 3 + 5 + 7 + 9)

= 5 · 5 · 24 + (1 + 3 + 5 + 7 + 9)

= 5 · 120 + (1 + 3 + 5 + 7 + 9)

= (120 + 1) + (120 + 3) + (120 + 5) + (120 + 7) + (120 + 9).

Thus, 54 can also be represented as a sum of 5 consecutive odd integers. This method can be
used for any power (≥ 2) of a positive integer. It is an interesting method, but can all such
representations for a higher power of 5 be induced this way? The answer is “No.” This is because
that, as shown by the above example, to induce a representation for higher power of 5 from that of
52, we need to add a certain number to each of the consecutive odd integers in order to get a sum for
a larger number, and thus, any induced representation must start with an initial term greater than 1.
But 54, being a square itself, can be represented as a sum of consecutive odd integers beginning
with 1. Consequently, it cannot be induced from such a representation for 52. In general, how
can we tell which representations for a higher power 𝑁𝑘 are induced from a representation from
that for 𝑁2? There are also other related questions. Does this inducement work from some other
power instead of a square? If so, from what power to what power? What about other kind of sums
instead of consecutive odd numbers? What about consecutive even integers? Or something more
general? To answer such questions, we will look at the problem in the framework of arithmetic
progressions. In the following, by a representation for a positive integer 𝑁 , we mean a way of
writing 𝑁 as the sum of an arithmetic progression. Two representations are said to be similar, if
both consist of the same number of terms 𝑟 and are for the same common difference 𝑑. We will
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find conditions under which a representation for a lower power of an integer can induce a similar
representation for a higher power and conditions for a representation of a higher power which is
induced from that of a lower power of the integer.

As we observed in Part I of this paper [4], the problem of representing the power of an integer
seems an interesting problem in its own right, since as early as 1844, Sir Charles Wheatstone, a
fellow of the Royal Society of London and a pioneer in developing telegraph, already published a
paper [8], investigating various ways of representing a power 𝑛𝑘 for 𝑘 ≤ 4 as sums of arithmetic
progressions. It turns out the extension we developed from Junaidu, Laradji and Umar is an
effective way of studying the representations of different power of an integer. In [4] we have made
some extensions of Wheatstone’s work. This part of the paper may be considered as a continuation
of the first part. In fact, some results of this part also provide new information for the first part
(see especially Theorem 3.2, Remark 3.3, and the observations in the last section of this paper).
On the other hand, to carry out the study of this paper, we need to rely on certain results of the
first part. However, for the convenience of readers who are interested in the results of this part of
the paper only, we have repeated some basic definitions. There are only three places in this paper
that depend on the first part. We have stated explicitly these results without proofs (Theorem 2.1,
Remarks 5.1 and 5.2). If the reader is willing to accept these results, he/she can read this paper
independently from the first part. For the past work, the reader might be interested in the essential
ideas of the two classical papers of Carlitz [2] and Horadam [5], though they are not directly
related to the results of this paper.

In the next section, we will collect some preliminaries that will be needed later. In Section 3,
we will establish conditions, under which, a representation of a power of an integer can induce a
similar representation for a higher power of the integer. In Section 4, we will consider the reverse
problem: what conditions allow us to determine which representations of a higher power of an
integer are induced from those for a lower power. In Section 5, we will apply the results of the
preceding sections to study the relationships between the representations of two different powers
of a prime. In our final section, we will make some observations, including how results of this
paper can provide information for the first part.

2 Preliminaries
We first state a theorem of Part I that will be needed later. It describes certain criteria for an
integer to have a representation. For its proof, see [4, Theorem 2.1]. In the following, if an integer
𝑁 = 𝑟𝑠, we will call 𝑟 and 𝑠 a pair of complementary factors in 𝑁 . For any positive integers
𝑎, 𝑟 and 𝑑, we will let 𝑆(𝑎, 𝑟, 𝑑) be the sum of the arithmetic progression beginning with the term
𝑎 ≥ 1, consisting of 𝑟 terms, and having the common difference 𝑑. We will require 𝑟 > 1 and
𝑑 > 0 to rule out the trivial progressions.

Theorem 2.1. Let 𝑁 be a positive integer. The existence of a representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑),
depending on whether 𝑟|𝑁 , can be characterized by exactly one of the following two cases:

1) 𝑟|𝑁 . In this case, either 𝑑 is even or 𝑟 is odd and 1
2
(𝑟−1)𝑑 < 𝑠, where 𝑠 is the complementary

factor of 𝑟 in 𝑁 . Conversely, if 𝑁 = 𝑟𝑠 for some integers 𝑟 and 𝑠 such that 𝑟 > 1 and
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1
2
(𝑟 − 1)𝑑 < 𝑠, then 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for some integer 𝑎 ≥ 1. Furthermore, in this case, the

first term 𝑎 of the representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) is 𝑎 = 𝑠− 1
2
(𝑟 − 1)𝑑.

2) 𝑟 - 𝑁 . In this case, 𝑑 is odd and 𝑟 is even. Write 𝑟 = 2𝑟0, then 𝑟0|𝑁 . Let 𝑠0 be the
complementary factor of 𝑟0, then 𝑠0 is an odd integer with 𝑠0 > (2𝑟0 − 1)𝑑. Conversely,
if 𝑟0 and 𝑠0 are a pair of complementary factors of 𝑁 satisfying the following conditions:
a) 𝑟 = 2𝑟0 does not divide 𝑁 and b) 𝑠0 is an odd integer satisfying 𝑠0 > (2𝑟0 − 1)𝑑, then
𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for some integer 𝑎 ≥ 1. In this case, the first term of the representation
𝑁 = 𝑆(𝑎, 𝑟, 𝑑) is 𝑎 = 1

2
[𝑠0 − (2𝑟0 − 1)𝑑].

To extend the method of Junaidu et al. to general arithmetic progressions, we first note that a
straight forward extension may not work. For instance, 14 = 2+3+4+5, a sum of 4 consecutive
integers. We cannot use this to generate a sum of 4 consecutive integers for 142(= 196). Since if

196 = 𝑎+ (𝑎+ 1) + (𝑎+ 2) + (𝑎+ 3) = 4𝑎+ 6,

a sum of 4 consecutive integers, then 190 = 4𝑎. But this is impossible since 190 is not a multiple
of 4. Clearly, some conditions are necessary.

Lemma 2.1. Let 𝑚 and 𝑛 be two positive integers with 𝑚 < 𝑛. If 𝑟 is an integer greater than 1

and 𝑟|(𝑛−𝑚), say (𝑛−𝑚) = 𝑟𝑞, then each representation 𝑚 = 𝑆(𝑎, 𝑟, 𝑑) can always induce a
representation 𝑛 = 𝑆(𝑎1, 𝑟, 𝑑), where 𝑎1 = 𝑎+ 𝑞.

Proof. Since 𝑟|(𝑛−𝑚), we may write (𝑛−𝑚) = 𝑟𝑞, for some positive integer 𝑞. Then from the
representation

𝑚 = 𝑆(𝑎, 𝑟, 𝑑)

= 𝑎+ (𝑎+ 𝑑) + · · ·+ [𝑎+ (𝑟 − 1)𝑑],

we may find a representation 𝑛 = 𝑆(𝑎1, 𝑟, 𝑑) as follows: let 𝑎1 = 𝑎+ 𝑞, then

𝑛 = (𝑛−𝑚) +𝑚

= 𝑟𝑞 + 𝑎+ (𝑎+ 𝑑) + · · ·+ [𝑎+ (𝑟 − 1)𝑑]

= (𝑎+ 𝑞) + [(𝑎+ 𝑞) + 𝑑] + · · ·+ [(𝑎+ 𝑞) + (𝑟 − 1)𝑑]

= 𝑎1 + (𝑎1 + 𝑑) + · · ·+ [𝑎1 + (𝑟 − 1)𝑑],

a representation for 𝑛 with 𝑎1 = 𝑎+ 𝑞.

Remark 2.1. The process used in the lemma above agrees with that used by Junaidu, Laradji,
and Umar. We will consider the inducement of representation for 𝑚 to 𝑛 through the relation
𝑛 = (𝑛 − 𝑚) + 𝑚 an extension of the method of Junaidu et al. In fact, 𝑟|(𝑛 − 𝑚) is not only
sufficient, but can easily be proved to be necessary for such an inducement. Finally, in the above
lemma, since 𝑎1 = 𝑎+ 𝑞, knowing one of these two representations, we can easily reproduce the
other. This is because that both representations share the same 𝑟 and 𝑑. The only information we
need to produce the entire arithmetic progression is the initial term 𝑎.
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The following theorem provides a simple condition for determining whether a representation
for a greater integer is induced from that of a smaller integer. It will be the main tool for us to
study the inducement relationship between representations of two different integers.

Theorem 2.2. Let𝑚 and 𝑛 be two positive integers with𝑚<𝑛. A representation𝑚=𝑆(𝑎1, 𝑟1, 𝑑1)

induces the representation 𝑛 = 𝑆(𝑎2, 𝑟2, 𝑑2) if and only if the two representations are similar, i.e.,
if and only if 𝑑1 = 𝑑2 and 𝑟1 = 𝑟2. Furthermore, when 𝑆(𝑎1, 𝑟1, 𝑑1) and 𝑆(𝑎2, 𝑟2, 𝑑2) are similar,
say 𝑟1 = 𝑟2 = 𝑟, then 𝑛−𝑚 = 𝑟(𝑎2 − 𝑎1).

Proof. Suppose 𝑚=𝑆(𝑎1, 𝑟1, 𝑑1) and 𝑛=𝑆(𝑎2, 𝑟2, 𝑑2), are two representations with 𝑑1= 𝑑2= 𝑑

and 𝑟1 = 𝑟2 = 𝑟. Then for 𝑖 = 1, or 2,

𝑆(𝑎𝑖, 𝑟, 𝑑) = 𝑎𝑖 + (𝑎𝑖 + 𝑑) + · · ·+ [𝑎𝑖 + (𝑟 − 1)𝑑] = 𝑟𝑎𝑖 +
1

2
(𝑟 − 1)𝑟𝑑.

Thus,
𝑛−𝑚 = 𝑆(𝑎2, 𝑟, 𝑑)− 𝑆(𝑎1, 𝑟, 𝑑) = 𝑟(𝑎2 − 𝑎1).

Thus, if 𝑑1 = 𝑑2 and 𝑟1 = 𝑟2, then 𝑟|(𝑛−𝑚), and by Lemma 2.1, the representation𝑚 = 𝑆(𝑎1, 𝑟, 𝑑)

induces a representation 𝑛 = 𝑆(𝑎0, 𝑟, 𝑑) for some positive integer 𝑎0. Since both 𝑆(𝑎2, 𝑟, 𝑑) and
𝑆(𝑎0, 𝑟, 𝑑) have the same common difference 𝑑, the same number of terms 𝑟, and the same sum
𝑛, these two arithmetic progressions must be identical. Thus, we have proved that if 𝑑1 = 𝑑2 and
𝑟1 = 𝑟2, then 𝑚 = 𝑆(𝑎1, 𝑟1, 𝑑1) induces 𝑛 = 𝑆(𝑎2, 𝑟2, 𝑑2). The converse that if 𝑚 = 𝑆(𝑎1, 𝑟1, 𝑑1)

induces the representation 𝑛 = 𝑆(𝑎2, 𝑟2, 𝑑2), then 𝑑1 = 𝑑2 and 𝑟1 = 𝑟2 are obvious since the
process for one representation to induce another, as described in Lemma 2.1, does not change the
values of either 𝑟 or 𝑑.

3 Inducing new representations from old
We now focus on the problems initiated by Wheatstone [8], representations for different powers
of a positive integer.

Theorem 3.1. Let 𝑛, 𝑗, 𝑘 and 𝑟 be positive integers such that 𝑛 and 𝑟 > 1 and 𝑗 < 𝑘.

1) For an odd 𝑛, every representation 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) induces a representation for 𝑛𝑘.
2) For an even 𝑛, a representation 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) can induce a representation for 𝑛𝑘 if and

only if 𝑟|𝑛𝑗 .

Proof. Let 𝑛, 𝑗, 𝑘 and 𝑟 be positive integers as specified in the theorem. Consider a representation
𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) for an odd positive integer 𝑛. By Lemma 2.1, if 𝑟|𝑛𝑗 , the representation
𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) can always induce a similar representation for any higher power 𝑛𝑘. Now assume
that 𝑟 - 𝑛. By Theorem 2.1, the representation 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) must be of the kind where 𝑑 is
odd and 𝑟 is even. Write 𝑟 = 2𝑟0, then 𝑟0|𝑛𝑗 . Also, since 𝑛 is odd, 𝑛𝑘−𝑗 − 1 is even. Thus,
𝑟 = 2𝑟0 and 𝑛𝑘 − 𝑛𝑗 = 𝑛𝑗(𝑛𝑘−𝑗 − 1) implies that 𝑟|(𝑛𝑘 − 𝑛𝑗). By Lemma 2.1, the representation
𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) can induce a similar representation for 𝑛𝑘. This proves the first assertion of the
theorem.
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Now, consider a representation 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) for an even positive integer 𝑛, say 𝑛 = 2𝑡𝑛0 for
some integer 𝑡 > 0. If 𝑟|𝑛𝑗 , the representation 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) can induce a similar representation
for any higher power 𝑛𝑘 by Lemma 2.1. Now consider the case that 𝑟 - 𝑛𝑗 . We claim that in
this case, it is impossible for 𝑛𝑘 to have a representation for the same 𝑟 and 𝑑. This is because
that since 𝑟 - 𝑛𝑗 and 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) for some integers 𝑎, 𝑟, and 𝑑, then by Theorem 2.1,
𝑟 must be even and 𝑑 is odd. Furthermore, if 𝑟 = 2𝑟0, then 𝑟0|𝑛𝑗 . Now suppose 𝑛𝑘 also has a
representation for the same 𝑟 and 𝑑. Since 𝑟 is even and 𝑑 is odd, by Theorem 2.1 again, 𝑟 - 𝑛𝑘.
But since 𝑛𝑘 = 𝑛𝑘−𝑗𝑛𝑗 = (2𝑡𝑛0)

𝑘−𝑗𝑛𝑗 and 𝑟 = 2𝑟0, clearly 𝑟|𝑛𝑘. Contradiction. Thus, if 𝑟 - 𝑛𝑗 ,
𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) cannot induce a representation for 𝑛𝑘.

For integers 𝑛 and 𝑟 greater than 1, we will let #(𝑛𝑘, 𝑟) be the number of ways 𝑛𝑘 can be
represented as the sum of an arithmetic progression consisting of 𝑟 terms, and #(𝑛𝑘) be the total
number of ways 𝑛𝑘 can be represented as the sum of an arithmetic progression for all possible 𝑟.

Corollary 3.1. Let 𝑛, 𝑘 and 𝑗 be positive integers such that 𝑗 < 𝑘. If 𝑛 is odd, for each 𝑟 > 1,
#(𝑛𝑘, 𝑟) > #(𝑛𝑗, 𝑟). If 𝑛 is even, for each 𝑟 > 1 such that 𝑟|𝑛𝑗 , #(𝑛𝑘, 𝑟) > #(𝑛𝑗, 𝑟).

Proof. This follows directly from Theorem 2.2 as soon as we can show that different representations
of𝑛𝑗 induces different representations of𝑛𝑘, but this is immediate since two arithmetic progressions
of the same 𝑟, 𝑑, and sum must be the identical.

Remark 3.1. From the theorem above, we can conclude that the only representation𝑛𝑗=𝑆(𝑎, 𝑟, 𝑑)

for a power of an integer 𝑛 > 1 that does not induce a representation of a higher power of 𝑛 are
those for which 𝑛 is even and 𝑟 - 𝑛, or equivalently, when 𝑛 and 𝑟 are both even and 𝑑 is odd. In
particular, the example 14 = 2 + 3 + 4 + 5 cited in the first section is only a special case of this,
since 14 = 2 + 3 + 4 + 5 is a representation for which 𝑟 and 𝑛 are even but 𝑑 is odd.

Remark 3.2. With the material developed so far, we can now answer some of the questions
mentioned in the introductory section on the inducement process for sums of consecutive odd
integers. First note that a sequence of consecutive odd integers is an arithmetic progression with
a common difference 𝑑 = 2 and any representation for a positive integer 𝑀 = 𝑆(𝑎, 𝑟, 2) must
have an 𝑟|𝑀 . This is because that if 𝑟 - 𝑀 , then by Theorem 2.1, 𝑟 is even and 𝑑 is odd. But for
𝑑 = 2, this cannot happen.

Now, consider the problem whether a representation for a power 𝑛𝑘, as a sum of 𝑟 consecutive
odd integers, is induced from a similar representation for a lower power 𝑛𝑗 . All we need, by
Theorem 2.2, is to see whether there exists a representation for 𝑛𝑗 of the same 𝑟 and 𝑑 = 2. If
such a representation exists, then its 𝑟 must divide 𝑛𝑗 as noted above. By Theorem 2.1 again, we
can check the existence of such an 𝑟 by finding the complementary factor 𝑠 for this 𝑟 in 𝑛𝑗 and see
whether it satisfies the inequality 𝑠 > 1

2
(𝑟 − 1)𝑑. If so, such a representation fir 𝑛𝑗 exists and it

induces the one for 𝑛𝑘.
If 𝑛 is a prime, we can say more, as shown by the following theorem. However, we will first

observe that any power 𝑝𝑘 of a prime 𝑝, with 𝑘 ≥ 2, cannot be the sum of a sequence of even
integers. This is clear if 𝑝 is an odd prime. Even if 𝑝 = 2, 2𝑘 cannot be a sum of consecutive even
integers. This is because that if 2𝑘 is such a sum, then 2𝑘−1 would have been a sum of consecutive
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integers, but as early as 1882, J. J. Sylvester already showed that this is impossible (see [7, Section
17, pp. 265–266], also [3, Vol. 2, Chapter 3, p. 139], and [1]). Thus, for representations for a
power of prime, we may use 𝑆(𝑎, 𝑟, 2) for the sum of a sequence of odd positive integers.

Theorem 3.2. Let 𝑝 be a prime and 𝑘 ≥ 2 be a positive integer.

1. A representation for 𝑝𝑘, as a sum of consecutive odd integers, is induced from a similar
representation from 𝑝2 if and only if the representation consists of 𝑝 terms.

2. For an odd 𝑘, all the representations 𝑝𝑘 = 𝑆(𝑎, 𝑟, 2) are induced from those for 𝑝𝑘−1.
3. For an even 𝑘, all except one, of the representations 𝑝𝑘 = 𝑆(𝑎, 𝑟, 2) are induced from those

for 𝑝𝑘−1. The only exception is the representation for 𝑝𝑘 as the sum of the consecutive odd
integers obtained when 𝑝𝑘 is considered as a square.

4. 𝑝𝑘 can be represented as a sum of consecutive odd integers in exactly ⌊𝑘/2⌋ many ways.

Proof. 1. As noted in the Remark 3.2, any representation for 𝑝2 = 𝑆(𝑎, 𝑟, 2) can only have
an 𝑟 such that 𝑟|𝑝2. Since 𝑟 > 1, 𝑟 = 𝑝 or 𝑝2. But 𝑟 = 𝑝2 cannot satisfy the condition
𝑠 > 1

2
(𝑟 − 1)𝑑 required in Theorem 2.1. Thus, the only possible value for 𝑟 is when 𝑟 = 𝑝.

On the other hand, 𝑝2 does have a representation as the sum of consecutive odd integers
consisting of 𝑟 = 𝑝 terms, namely, the standard representation of a square as the sum
of consecutive odd integers. Thus, by Theorem 2.2, a representation for 𝑝𝑘, as a sum of
consecutive odd integers, is induced from a similar representation from 𝑝2 if and only if the
representation consists of 𝑟 = 𝑝 terms.

2, 3. For the assertions 2 and 3, since 𝑑 = 2 is even, we need only consider representations for
which 𝑟|𝑝𝑘. By Theorem 2.1, for this 𝑟 to appear in a representation for 𝑝𝑘 if and only if
𝑠 > 1

2
(𝑟 − 1)𝑑. For the values of 𝑠, 𝑟 and 𝑑, this condition becomes 𝑝𝑘−𝑗 > 𝑝𝑗 − 1. Since

both 𝑝𝑘 and 𝑝𝑗 are integers, this is equivalent to 𝑝𝑘−𝑗 ≥ 𝑝𝑗 , or 𝑝𝑘−2𝑗 ≥ 1, or 𝑗 ≤ 𝑘
2
.

If in the above argument, we replace 𝑘 by 𝑘 − 1, we may conclude that 𝑝𝑘−1 = 𝑆(𝑎′, 𝑟, 2)

for some integer 𝑎′ and with 𝑟 = 𝑝𝑗 , if and only if 𝑗 ≤ 𝑘−1
2

.

However, since 𝑗 is an integer, for an odd integer 𝑘,

𝑗 ≤ 𝑘

2
⇔ 𝑗 ≤ 𝑘 − 1

2
.

Thus, for 𝑑 = 2, 𝑟 appears in a representation for 𝑝𝑘 if and only if it appears in a representation
for 𝑝𝑘−1. This proves the assertion 2.

Now, consider the case that 𝑘 is even. Then 𝑘
2
= 𝑘−1

2
+ 1. Thus, There is one more

representation for 𝑝𝑘 than for 𝑝𝑘−1. As we observed in the introductory section that
any induced representation begins with an initial term greater than 1. Thus, the one
representation for 𝑝𝑘 that is not induced from the lower power is the representation when 𝑝𝑘

is considered as a square. This proves the assertion 3.
4. As for the assertion 4, since by the proof of the first assertion, there is exactly one way to

represent 𝑝2 as a sum of consecutive odd integers, the representation consisting of 𝑝 terms.
From the assertions 2 and 3, each time the power of 𝑝 increases from an even power to
the next odd power there is no change in the number of such representations, but when the
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power increase from an odd to an even one, the number of ways increase by one. Thus, for
a general power 𝑝𝑘, the total number of way is given by the number of even integers ≤ 𝑘, or
⌊𝑘/2⌋.

Remark 3.3. In the introductory section, we mentioned that the inducement relationships of this
paper may provide new information for Part I of this paper. Theorem 3.2, especially its fourth
assertion, is a good example.

4 Which sums for a power are induced
from that of a lower power?

In the last section, we have determined when a representation of a power 𝑛𝑗 can induce a similar
representation for a higher power 𝑛𝑘. We now determine which representations of 𝑛𝑘 are induced
from that of a lower power 𝑛𝑗 .

Lemma 4.1. Let 𝑛 ≥ 2 be an integer. Suppose 𝑗, ℎ and 𝑘 are three positive integers such that
𝑗 < ℎ < 𝑘. If a representation for 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) can induce a representation for 𝑛𝑘, it can do
this in two different ways: either directly from 𝑛𝑗 to 𝑛𝑘 or from 𝑛𝑗 through an intermediate power
𝑛ℎ, and then to 𝑛𝑘. These two representations are identical. In fact, for a power 𝑛𝑘, for 𝑘 ≥ 2 all
the representations of 𝑛𝑘 induced from a lower power 𝑛𝑗 are among those induced from 𝑛𝑘−1.

Proof. If a representation 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) can induce a representation for a higher power of 𝑛,
by Theorem 3.1, either 𝑛 is odd, or when 𝑛 is even but 𝑟|𝑛𝑗 . These conditions still hold for any
representation induced from 𝑛𝑗 = 𝑆(𝑎, 𝑟, 𝑑) for a higher power, say 𝑛ℎ. Thus, the representation
for 𝑛ℎ can itself induce a representation for a higher power 𝑛𝑘. The representation for 𝑛𝑘 induced
from 𝑛𝑗 through 𝑛ℎ should be identical to that induced directly from 𝑛𝑗 . This is because that both
of the induced representations for 𝑛𝑘 have the same values of 𝑑 and 𝑟. Furthermore, they have the
same sum 𝑛𝑘. Thus, they are identical.

Theorem 4.1. Consider a representation 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑), where 𝑛 and 𝑘 are both ≥ 2. There are
two possibilities:

1) Either 𝑟 is odd or 𝑑 is even. 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑) is induced from a representation for a lower
power of𝑛 if and only if 𝑟|𝑛𝑘−1 and the beginning term 𝑎 in the representation𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑)

satisfy the inequality 𝑎 > (𝑛− 1)𝑠2, where 𝑠2 is the complementary factor of 𝑟 in 𝑛𝑘−1.

2) 𝑟 is even and 𝑑 is odd. There are two further possibilities: a) 𝑛 is even. In this case, none
of the representations of 𝑛𝑘 is induced from those of a lower power of 𝑛, and b) 𝑛 is odd. In
this case, let 𝑟0 = 𝑟/2. The representation 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑) is induced from a representation
for a lower power of 𝑛 if and only if 𝑟0|𝑛𝑘−1 and 𝑎 > 1

2
(𝑛− 1)𝑠2, where 𝑟0𝑠2 = 𝑛𝑘−1.

Proof. From Lemma 4.1 and Theorem 2.2, the representation 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑) is induced from
that for a lower power of 𝑛 if and only if there is a representation for 𝑛𝑘−1 = 𝑆(𝑎1, 𝑟, 𝑑) with
the same 𝑟 and 𝑑. Such a representation 𝑆(𝑎1, 𝑟, 𝑑), if exists, will induce the representation of
𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑).
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Consider the case that either 𝑟 is odd or 𝑑 is even. Suppose the representation 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑)

is induced from a representation 𝑛𝑘−1 = 𝑆(𝑎1, 𝑟, 𝑑). Then since either 𝑟 is odd or 𝑑 is even, 𝑟|𝑛𝑘−1

by Theorem 2.1, and hence, 𝑟|𝑛𝑘. Let 𝑠1 and 𝑠2 be the complementary factors of 𝑟 with respect
to 𝑛𝑘 and 𝑛𝑘−1, respectively. By Theorem 2.2,

𝑟𝑠1 − 𝑟𝑠2 = 𝑛𝑘 − 𝑛𝑘−1 = 𝑟(𝑎− 𝑎1) (1)

From 𝑟𝑠1 = 𝑛𝑘 and 𝑟𝑠2 = 𝑛𝑘−1, we have 𝑠1 = 𝑛𝑠2. From this and Equation (1), we conclude that
𝑎 = (𝑛− 1)𝑠2 + 𝑎1. Since 𝑎1 ≥ 1, 𝑎 > (𝑛− 1)𝑠2.

Conversely, if 𝑟|𝑛𝑘−1 and the beginning term 𝑎 of a representation 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑) satisfy the
condition 𝑎 > (𝑛−1)𝑠2, where 𝑠2 is the complementary factor 𝑟 in 𝑛𝑘−1. Write 𝑎 = (𝑛−1)𝑠2+𝑎1,

for some positive integer 𝑎1. Then in the representation 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑),
𝑛𝑘 = 𝑎+ (𝑎+ 𝑑) + (𝑎+ 2𝑑) + · · ·+ (𝑎+ (𝑟 − 1)𝑑)

= ((𝑛− 1)𝑠2 + 𝑎1) + [((𝑛− 1)𝑠2 + 𝑎1) + 𝑑] + · · ·+ [((𝑛− 1)𝑠2 + 𝑎1) + (𝑟 − 1)𝑑)]

= 𝑟(𝑛− 1)𝑠2 + [𝑎1 + (𝑎1 + 𝑑) + (𝑎1 + 2𝑑) + · · ·+ (𝑎1 + (𝑟 − 1)𝑑)

= (𝑛− 1)𝑛𝑘−1 + [𝑎1 + (𝑎1 + 𝑑) + (𝑎1 + 2𝑑) + · · ·+ (𝑎1 + (𝑟 − 1)𝑑)]

= 𝑛𝑘 − 𝑛𝑘−1 + [𝑎1 + (𝑎1 + 𝑑) + (𝑎1 + 2𝑑) + · · ·+ (𝑎1 + (𝑟 − 1)𝑑)].

From this we may conclude that [𝑎1+(𝑎1+𝑑)+(𝑎1+2𝑑)+· · ·+(𝑎1+(𝑟−1)𝑑)] is a representation
of 𝑛𝑘−1. Note that this representation will induce 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑).

Now, consider the case that 𝑟 is even and 𝑑 is odd. First consider the case that 𝑛 is even.
In this case, none of the representations of 𝑛𝑘 can be induced from those of a lower power of 𝑛
because if there is any representation of 𝑛𝑘−1 with these 𝑟 and 𝑑, then this representation is one
for which 𝑛 and 𝑟 are both even and 𝑑 is odd. From Remark 3.1, we see that it cannot induce any
representation for a higher power 𝑛𝑘.

Finally, consider the case that 𝑟 = 2𝑟0 is even, 𝑑 and 𝑛 are both odd. If 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑) is
induced from a representation 𝑛𝑘−1 = 𝑆(𝑎1, 𝑟, 𝑑), then 𝑟0 must divide both 𝑛𝑘 and 𝑛𝑗 . Suppose
𝑟0𝑠1 = 𝑛𝑘 and 𝑟0𝑠2 = 𝑛𝑘−1, we conclude that 𝑠1 = 𝑛𝑠2. Similar to the above, we have

𝑟0𝑠1 − 𝑟0𝑠2 = 𝑛𝑘 − 𝑛𝑘−1 = 2𝑟0(𝑎− 𝑎1). (2)

From this and 𝑠1 = 𝑛𝑠2, we conclude that 𝑎 = 1
2
(𝑛− 1)𝑠2 + 𝑎1, or 𝑎 > 1

2
(𝑛− 1)𝑠2.

Conversely, if 𝑟0|𝑛𝑘−1 and if the beginning term 𝑎 of a representation 𝑛𝑘 = 𝑆(𝑎, 2𝑟0, 𝑑)

satisfy the condition 𝑎 > 1
2
(𝑛 − 1)𝑠2, where 𝑠2 is the complementary factor of 𝑟0 in 𝑛𝑘−1. Let

𝑎1 = 𝑎− 1
2
(𝑛− 1)𝑠2. Note that 𝑎1 is a positive integer since 𝑛 is an odd integer and 𝑛 > 1. Thus,

𝑎 = 1
2
(𝑛− 1)𝑠2 + 𝑎1. Then in the representation 𝑛𝑘 = 𝑆(𝑎, 2𝑟0, 𝑑),

𝑛𝑘 = 𝑎+ (𝑎+ 𝑑) + (𝑎+ 2𝑑) + · · ·+ (𝑎+ (2𝑟0 − 1)𝑑)

= (1
2
(𝑛− 1)𝑠2 + 𝑎1) + [(1

2
(𝑛− 1)𝑠2 + 𝑎1) + 𝑑] + · · ·+ [(1

2
(𝑛− 1)𝑠2 + 𝑎1) + (2𝑟0 − 1)𝑑)]

= 1
2
(2𝑟0)(𝑛− 1)𝑠2 + [𝑎1 + (𝑎1 + 𝑑) + (𝑎1 + 2𝑑) + · · ·+ (𝑎1 + (2𝑟0 − 1)𝑑)]

= (𝑛− 1)𝑛𝑘−1 + [𝑎1 + (𝑎1 + 𝑑) + (𝑎1 + 2𝑑) + · · ·+ (𝑎1 + (𝑟 − 1)𝑑)]

= 𝑛𝑘 − 𝑛𝑘−1 + [𝑎1 + (𝑎1 + 𝑑) + (𝑎1 + 2𝑑) + · · ·+ (𝑎1 + (𝑟 − 1)𝑑)].

From this we conclude that [𝑎1 +(𝑎1 + 𝑑)+ (𝑎1 +2𝑑)+ · · ·+(𝑎1 +(𝑟− 1)𝑑)] is a representation
of 𝑛𝑘−1 that gives rise to the representation 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑).
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Remark 4.1. If 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑) is induced from a representation of 𝑛𝑘−1, we may actually
construct this representation of 𝑛𝑘−1. This representation has the same 𝑟 and 𝑑, and from the
theorem above, we can easily find its initial term 𝑎1. We will show in more detail how this is done
in the examples in the next section.

5 Powers of primes as sums of arithmetic progressions
In this section, we will apply our theory to compare the representations of different powers of
an integer. In Part I of this paper, we have shown how to find all the representations for a given
positive integer. We can now look at these representations for a given power of the integer and
see which of them can induce a similar representation for a higher power of the integer and which
are induced from a similar one for a lower power, and thus, compare the representations for the
different powers of the integer. Since it is a little complicated to describe all the representations
for the powers of a general positive integer, we will restrict our attention to representations of
powers of a prime. The procedure is basically the same for a general positive integer (see the third
observation in the last section).

Since our theorems specify different conditions for an even or odd integer, we will separate
the case when the prime is 2 from the cases of odd primes. First consider the case when 𝑛 = 2𝑘.
Recall that#(2𝑘, 𝑟) is the number of representations 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for a particular value of 𝑟, and
#(2𝑘) is the total number of ways that 2𝑘 can be represented as sums of arithmetic progressions.

Remark 5.1. In Part I of the paper, we showed that there is a representations 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) if
and only if 𝑟 = 2𝑗 for some integer 𝑗, with 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋. For each such 𝑗, let 𝑙𝑗 be the integer
such that 0 ≤ 𝑙𝑗 < 𝑗 and 𝑘 ≡ 𝑙𝑗 (mod 𝑗), and #(2𝑘, 2𝑗) = 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
. Each of these representations

corresponds to an even integer 𝑑 = 2𝑑0 with 𝑑0 being one of the integers 1, 2, . . . , 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
, and the

initial term of the representation for such a 𝑑0 is given by 𝑎 = 2𝑘−𝑗 − (2𝑗 − 1)𝑑0. The arithmetic
progression can then be found by adding repeatedly 𝑑(= 2𝑑0) to 𝑎 until we obtain all the 2𝑗 terms
of the progression. In particular,

#(2𝑘) =

⌊𝑘/2⌋∑︁
𝑗=1

2𝑘−𝑗 − 2𝑙𝑗

2𝑗 − 1
. (3)

Furthermore, the longest 𝑟 in the representation of 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) is for 𝑟 = 2⌊𝑘/2⌋. For a proof,
see [4, Theorem 3.2]. We repeat this result here for the convenience of readers who are interested
in this part of the paper only.

Theorem 5.1. Consider a power 2𝑘, where 𝑘 ≥ 1. All the representations in the summation of
Formula (3) can induce a representation for 2𝑘+1. When 𝑘 is even, none of the representations of
the length 𝑟 = 2

𝑘
2 are induced from those of 2𝑘−1.

For a general 𝑘 > 1, regardless whether it is even or odd, for any 𝑗, with 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋,
the representation 2𝑘 = 𝑆(𝑎, 2𝑗, 2𝑑0) is induced from a representation of 2𝑘−1 if and only if 𝑑0
satisfies the inequality 𝑑0 ≤ 2𝑘−𝑗−1−2𝑙

′
1

2𝑗−1
, where 𝑙′1 is the integer such that 0 ≤ 𝑙′1 < 𝑗 and 𝑘−1 ≡ 𝑙′1

(mod 𝑗).
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Thus, among all the representations 2𝑘 = 𝑆(𝑎, 2𝑗, 2𝑑0), the ones for which 𝑑0 = 1, 2, . . . ,
2𝑘−𝑗−1−2𝑙

′
1

2𝑗−1
are induced from that for 2𝑘−1, and for 𝑑0 =

(︁
2𝑘−𝑗−1−2𝑙

′
1

2𝑗−1
+ 1

)︁
, . . . , 2

𝑘−𝑗−2𝑙𝑗

2𝑗−1
are not

induced from that for 2𝑘−1

Proof. First note that all the representations in the Formula (3) are from the representations whose
length 𝑟 divides 2𝑘, and thus, by the second assertion of Theorem 3.1, all these representations can
induce a representation for 2𝑘+1. Now, consider the case for an even 𝑘. We contend that none of
the representations of length 𝑟 = 2

𝑘
2 are induced from any representation for 2𝑘−1. This is because,

by Remark 5.1, any representation for 2𝑘−1 can only have a length 𝑟 = 2𝑗 with 𝑗 ≤ ⌊(𝑘 − 1)/2⌋.
Thus, there can not be any representation for 2𝑘−1 of 𝑟 = 2

𝑘
2 .

Now, consider the case for a general 𝑘 > 1 and a representation 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for 𝑟 = 2𝑗

with 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋ and 𝑑 = 2𝑑0 for some integer 𝑑0. This representation is induced from one
for 2𝑘−1, by Theorem 2.2, if and only if there is a representation 2𝑘−1 = 𝑆(𝑎, 𝑟, 2𝑑0) of the same
𝑟 and 𝑑0. But by Remark 5.1, such a representation for 2𝑘−1 exists if and if this 𝑑0 is an integer
between 1 and 2𝑘−𝑗−1−2𝑙

′
1

2𝑗−1
, where 𝑙′1 is the integer such that 0 ≤ 𝑙′1 < 𝑗 and 𝑘 − 1 ≡ 𝑙′1 (mod 𝑗).

The final assertion then follows from this and Remark 5.1.

Example 5.1. We now apply our results to the representations of 28 = 256. By Theorem 5.1,
28 = 𝑆(𝑎, 𝑟, 𝑑) can be true only for 𝑟 = 2𝑗 for 𝑗 = 1, 2, 3 and 4. We can compute the number
of ways to represent 28 by Formula (3): First determine the value of 𝑙𝑗 for each 𝑗. These can be
determined easily since 8 ≡ 0 (mod 1, 2, 4) and 8 ≡ 2 (mod 3). Thus

#(28) =
4∑︁

𝑗=1

2𝑘−𝑗 − 2𝑙𝑗

2𝑗 − 1
=

27 − 1

2− 1
+

26 − 1

22 − 1
+

25 − 22

23 − 1
+

24 − 1

24 − 1
= 127+21+4+1 = 153. (4)

Since for each of these representation, 𝑟|28, by the second assertion of Theorem 3.1, all these
representations of 28 can induce a representation of 29.

A similar computation will show that #(27) = 63 + 10 + 1 = 74. By the same reason, each
of these 74 representations for 27 will induce a distinct representation for 28. Among the 153
representation of 28, there are exactly 74 of them that are induced from that of 27. In fact, we can
determine which are these representations and which of them are induced from that of 27.

For instance, for the 4 representations of 28 for 𝑟 = 23, or for 𝑗 = 3, since 𝑑0 ≤ 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
= 4, we

have 𝑑0 = 1, 2, 3, 4. For each of these 𝑑0, the first term of the progression is 𝑎 = 2𝑘−𝑗 − (2𝑗 −1)𝑑0
= 25 − 7𝑑0. Thus, we have the following 4 representations of 28 as the sums of arithmetic
progression consisting of 8 terms:

for 𝑑 = 2𝑑0 = 2 𝑎 = 25 : 25 + 27 + 29 + 31 + 33 + 35 + 37 + 39 = 256 = 28,

for 𝑑 = 2𝑑0 = 4 𝑎 = 18 : 18 + 22 + 26 + 30 + 34 + 38 + 42 + 46 = 256 = 28,

for 𝑑 = 2𝑑0 = 6 𝑎 = 11 : 11 + 17 + 23 + 29 + 35 + 41 + 47 + 53 = 256 = 28,

for 𝑑 = 2𝑑0 = 8 𝑎 = 4 : 4 + 12 + 20 + 28 + 36 + 44 + 52 + 60 = 256 = 28.

On the other hand, since 2𝑘−1−𝑗−2𝑙1
2𝑗−1

= 24−2
23−1

= 2, among the four representations above, only
the two representations for 𝑑0 = 1 and 2 (or 𝑑 = 2 and 4) are induced from those of 27. In fact,
these two are induced, respectively, by
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for 𝑑 = 2𝑑0 = 2 𝑎 = 9 : 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 = 128 = 27,

for 𝑑 = 2𝑑0 = 4 𝑎 = 2 : 2 + 6 + 10 + 14 + 18 + 22 + 26 + 30 = 128 = 27.

These are the only two representations for 27 consisting of 𝑟 = 8 terms.
In Lemma 2.1, we observed that if the representation 𝑚 = 𝑆(𝑎, 𝑟, 𝑑) induces a representation

𝑛 = 𝑆(𝑎1, 𝑟, 𝑑), then we have the following relations: if 𝑞 = 𝑎1 − 𝑎 then 𝑛 −𝑚 = 𝑟𝑞. We may
now check this relation for the examples here. For instance, the difference for the first terms for
𝑑 = 2 and 𝑟 = 23 = 8 is

𝑎1 − 𝑎 = 25− 9 = 16 = 𝑞 and 𝑟𝑞 = 8× 16 = 128 = 28 − 27 = 𝑛−𝑚.

This indeed confirms our observation.

Remark 5.2. We now consider the powers 𝑝𝑘 for an odd prime 𝑝. In the first part of the paper,
we showed how to find all the representations 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for such a power by dividing all the
possibilities into two types depending on whether 𝑟|𝑝𝑘 or not [4, Theorem 3.3]. Specifically:

1) 𝑟|𝑝𝑘. The only way for 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑) with 𝑟|𝑝𝑘 is when 𝑘 > 1 and 𝑟 = 𝑝𝑗 for some 𝑗

such that 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋. For each such 𝑗, let 𝑙𝑗 be the integer such that 0 ≤ 𝑙𝑗 < 𝑗

and 𝑘 ≡ 𝑙𝑗 (mod 𝑗). There are 2
(︁

𝑝𝑘−𝑗−𝑝𝑙𝑗

𝑝𝑗−1

)︁
different ways for 𝑝𝑘 = 𝑆(𝑎, 𝑝𝑗, 𝑑). Each

of the integers 1, 2, 3, . . . , 2
(︁

𝑝𝑘−𝑗−𝑝𝑙𝑗

𝑝𝑗−1

)︁
gives rise to a value of 𝑑 for a different arithmetic

progression whose sum equals to 𝑝𝑘, and the initial term 𝑎 of the progression for this 𝑑 is
given by 𝑎 = 𝑝𝑘−𝑗 − 1

2
(𝑝𝑗 − 1)𝑑.

2) 𝑟 - 𝑝𝑘. In this case, 𝑟 = 2𝑝𝑗 for some 𝑗 with 0 ≤ 𝑗 < ⌊𝑘/2⌋. Each odd integer ≤
⌊︁
𝑝𝑘−𝑗−1
2𝑝𝑗−1

⌋︁
gives rise to a value of 𝑑 for a distinct representation 𝑝𝑘 = 𝑆(𝑎, 2𝑝𝑗, 𝑑). These are the only
possible values for 𝑑 for this 𝑟 = 2𝑝𝑗 . For each of these representations, the initial term
𝑎 is given by 𝑎 = 1

2
(𝑝𝑘−𝑗 − (2𝑝𝑗 − 1)𝑑). Thus, #(𝑝𝑘, 2𝑝𝑗) =

⌊︁
1
2

(︁
𝑝𝑘−𝑗−1
2𝑝𝑗−1

+ 1
)︁⌋︁

, where
0 ≤ 𝑗 < ⌊𝑘/2⌋.

We are now ready to deal with the case for the powers of an odd prime.

Theorem 5.2. Consider 𝑝𝑘 for an odd prime 𝑝 and for 𝑘 ≥ 1. Every representation for
𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑) can induce a representation for 𝑝𝑘+1. Now, consider the representations
𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for 𝑘 > 1.

1) For the case 𝑟|𝑝𝑘, or when 𝑟 = 𝑝𝑗 , with 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋, the representation 𝑝𝑘 = 𝑆(𝑎, 𝑝𝑗, 𝑑)

is induced from a representation for 𝑝𝑘−1 if and only if 𝑑 ≤ 2
(︁

𝑝𝑘−1−𝑗−𝑝𝑙
′
1

𝑝𝑗−1

)︁
, where 𝑙′1 is the

integer such that 0 ≤ 𝑙′1 < 𝑗 and that 𝑘 − 1 ≡ 𝑙′1(mod 𝑗).
2) For the case 𝑟 - 𝑝𝑘, or for 𝑟 = 2𝑝𝑗 , where 0 ≤ 𝑗 ≤ ⌊𝑘/2⌋, the representation 𝑝𝑘 =

𝑆(𝑎, 2𝑝𝑗, 𝑑) is induced from a representation of 𝑝𝑘−1 if and only if 𝑑 is an odd integer
≤

⌊︁
𝑝𝑘−1−𝑗−1
2𝑝𝑗−1

⌋︁
.

In each of the two cases, we can also determine which of the representations are induced from a
lower power of 𝑝 by specifying the value of 𝑑 as in the case for 𝑝 = 2.
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Proof. Consider the power 𝑝𝑘 for an odd prime 𝑝. By the first assertion of Theorem 3.1, every
representation for 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑) can induce a representation for 𝑝𝑘+1.

The proofs for both assertions follow from Remark 5.2 in a similar way that Theorem 5.1
follows from Remark 5.1, and will be omitted here.

Example 5.2. Consider 𝑝𝑘 = 75. In this case, ⌊𝑘/2⌋ = 2.
Case 1. 𝑟|𝑝𝑘.
In this case, 𝑟 = 𝑝𝑗 with 𝑗 = 1 or 2. From 5 ≡ 𝑙𝑗 (mod 𝑗), we have 𝑙𝑗 = 0, for 𝑗 = 1, and
𝑙𝑗 = 1, for 𝑗 = 2. The number of ways for 75 = 16807 to be represented as the sums of arithmetic
progressions in this case is

2∑︁
𝑗=1

2

(︂
75−𝑗 − 7𝑙𝑗

7𝑗 − 1

)︂
= 2

(︂
74 − 1

7− 1

)︂
+ 2

(︂
73 − 7

72 − 1

)︂
= 800 + 14 = 814. (5)

All these can induce a representation for 76. A similar computation will show that there are

2∑︁
𝑗=1

2

(︂
74−𝑗 − 7𝑙𝑗

7𝑗 − 1

)︂
= 2

(︂
73 − 1

7− 1

)︂
+ 2

(︂
72 − 1

72 − 1

)︂
= 686 + 2 = 688 (6)

representations for 74. Of the 814 representations for 75 for an 𝑟|75, or when 𝑟 is odd, 814−688 =

126 of them are not induced from a representation of 74. Of the 800 cases for 𝑗 = 1, for instance,
the values for 𝑑 = 1, 2, . . . , 800, and for each of these 𝑑, 𝑎 = 74 − 1

2
(7 − 1)𝑑 = 2401 − 3𝑑.

The range for being induced from that for 74 is when 𝑑 ≤ 2
(︁

𝑝4−1−𝑝0

7−1

)︁
= 114. Thus, for

𝑑 = 1, 2, . . . , 114, the representation for 75 are induced from a similar representation for 74, but
for 𝑑 = 115, 116, . . . , 800, the representation for 75 are not induced from any representation of 74.
For instance,

for 𝑑 = 1 𝑎 = 2398 : 2398 + 2399 + 2400 + 2401 + 2402 + 2403 + 2404 = 75,

for 𝑑 = 114 𝑎 = 2059 : 2059 + 2173 + 2287 + 2401 + 2515 + 2629 + 2743 = 75,

These are induced, respectively, by

for 𝑑 = 1 𝑎 = 340 : 340 + 341 + 342 + 343 + 344 + 345 + 346 = 74,

for 𝑑 = 114 𝑎 = 1 : 1 + 115 + 229 + 343 + 457 + 571 + 685 = 74,

and these 114 representations are the only way that 74 can be represented as sums of arithmetic
progressions consisting of 7 terms.
Case 2. 𝑟 - 𝑝𝑘.
In this case, each of the arithmetic progression consists of 𝑟 = 2𝑝𝑗 terms. For each 𝑗 = 0, 1 or 2,
the difference 𝑑 is an odd integer less than

⌊︁
75−𝑗−1
2×7𝑗−1

⌋︁
.

For 𝑗 = 0,
⌊︁
75−1
2−1

⌋︁
= 16806, and 𝑑 = 1, 3, . . . , 16805. There are 8403 values for 𝑑.

For 𝑗 = 1,
⌊︁

74−1
2×7−1

⌋︁
= 184, and 𝑑 = 1, 3, . . . , 183. There are 92 values for 𝑑.

For 𝑗 = 2,
⌊︁

73−1
2×49−1

⌋︁
= 3, and 𝑑 = 1 and 3. There are 2 values for 𝑑.
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There are a total of 8497 different representations for 75 as sums of arithmetic progressions
with 𝑟 - 75, or when 𝑟 is even. All of these 8497 representations can induce a representation for
76. To find out how many among these 8497 representations are induce from representations for
74, we need to compute the corresponding representations for 74:

For 𝑗 = 0,
⌊︁
74−1
2−1

⌋︁
= 2400, and 𝑑 = 1, 3, . . . , 2399. There are 1200 values for 𝑑.

For 𝑗 = 1,
⌊︁

73−1
2×7−1

⌋︁
= 26, and 𝑑 = 1, 3, . . . , 25. There are 13 values for 𝑑.

For 𝑗 = 2,
⌊︁

72−1
2×49−1

⌋︁
= 0, and there is no value for 𝑑 in this case.

Thus, among the 8497 representations for 75, only 1200 + 13 = 1213 of them are induced from
representations for 74. Again, we may determine specifically which of the 8497 representations,
are induce from those of 74. Among the 8403 representations of 75, with 𝑟 = 2, (the ones with
𝑑 ≤ 16805), only those with 𝑑 ≤ 2399 are induced from a representation of 74. Among the 92
representations of 75 with 𝑟 = 14, only those with 𝑑 ≤ 25 are induced from representations of 74.
Finally, none of the representations of 75 with 𝑟 = 98 are induced from any representations of 74.

Combining both 𝑟 = odd and 𝑟 = even cases, we have the following conclusions: There are
814+8497 = 9311 different ways to represent 75 as sums of arithmetic progressions. The shortest
of them consists of 2 terms and the longest consists of 98 terms. Each of these representations can
induce a distinct representation for 76. Among these 9311 representations, only 688+1213 = 1901

are induced from a representation of 74.

In Part I of the paper, we have extended Wheatstone’s results in [8] by finding all the
representations for the power of an integer. In this part, we have now shown that there are
close relationships among the representations for different powers of the integer, at least when the
integer is a prime, and the above example shows in detail how to find such relationships.

6 A few observations
In the introductory section of this paper, we wrote that the study of the inducement of representations
can provide some new information to the first part of the paper. As we have mentioned, Theorem
3.2 is a good example for this. We now make a few more general observations, some of which
may also show the kind of new information the inducement of representations can provide:

Observation 1. When one representation induces another, they have the same length 𝑟 and
of the same common difference 𝑑. These are among the main characteristics of an arithmetic
progression. Thus, inducements of representations allows us to identify representations for two
different powers of an integer to share these characteristics. For instance, since we know that
it is possible to represent 75 as the sum of an arithmetic progression consisting of 7 terms
with a common difference 𝑑 = 112, every higher power of 7 can also be represented this way.
Furthermore, since different representations will induce different representations, if we know, for
example, there are 800 ways to represent 75 as a sum of arithmetic progression consisting of 7
terms, there are at least this many ways to represent any higher power of 7 as sums of arithmetic
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progressions consisting of 7 terms. In fact, each of these 800 representations for a higher power
of 7 can be constructed easily using either Lemma 2.1 or Remark 2.1. On the other hand, if a
representation is not induced from that of a lower power, say the representation 75 with 𝑟 = 7 and
𝑑 = 115, there can not be any such representation for 7𝑗 for 𝑗 = 1, 2, 3 or 4.

Observation 2. The necessary and sufficient conditions for a representation 𝑛𝑘 = 𝑆(𝑎, 𝑟, 𝑑) to be
induced from that for a lower power of 𝑛, as indicated by Theorem 4.1, are formulated in terms of
the initial term 𝑎 of the representation: they need to satisfy certain inequalities. However, when
the integer is a prime, the conditions can be reformulated in terms of 𝑑, as we did in Theorems
5.1 and 5.2. The reason for this shift was because that for all the possible representations for a
power 𝑝𝑘 of a prime, the permissible values of 𝑑, unlike those of 𝑎, will always take the values of
consecutive integers, or consecutive even or odd integers, and thus, easier for us to count how many
they are. For instance, as we showed in Example 5.2, for the representations of 75 with 𝑟 = 7,
since 𝑑 ≤ 2

(︁
73−1
7−1

)︁
= 800, there are exactly 800 such representations with 𝑑 taking the values,

respectively, 1, 2, . . . , 800. Furthermore, we also showed that among these 800 representations,
the condition for the representations that are induced from similar representations for 74 is for
𝑑 ≤ 114. We could then conclude immediately that for the 800 representations for 75, the first
114 representations are induced from a similar representation for a lower power of 7.

The value of 𝑑 for a particular arithmetic progression is the size of the gaps between two
successive terms in the progression. It is intuitively clear that when 𝑑 increases, the gap may
become too great for a given number to be its sum. For instance, as Example 5.2 shows, when the
size of 𝑑 increases to 115, its sum is big for 74. On the other hand, 75 can still be the sum of the
progressions when 𝑑 goes up to 800. This also explains that in Part I of the paper, when we tried
to compute the number of ways an integer can be written as a sum of an arithmetic progressions,
the numbers in all the theorems were invariably bounded by the sizes of 𝑑.

Observation 3. In this paper, we computed the inducements among the representations for the
powers of a prime only. Can we do the same for a general integer? The answer is “Yes." The
computations can be carried out as follows: Consider the representations for two integers 𝑀

and 𝑁 . To see which, if any, of the representations of 𝑀 can induce, or is induced from, a
representation of 𝑁 all we need is to use the procedures described in the Part I and see whether
the representations for 𝑀 and for 𝑁 have any representations that are of the same 𝑟 and 𝑑. To
make a specific computation, though the ideas are straightforward, the procedures are messy and
the computations, tedious.
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