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Abstract: This is the first part of a two-part paper. Our paper was motivated by two classical
papers: A paper of Sir Charles Wheatstone published in 1844 on representing certain powers of
an integer as sums of arithmetic progressions and a paper of J. J. Sylvester published in 1882 for
determining the number of ways a positive integer can be represented as the sum of a sequence of
consecutive integers. There have been many attempts to extend Sylvester Theorem to the number
of representations for an integer as the sums of different types of sequences, including sums of
certain arithmetic progressions. In this part of the paper, we will make yet one more extension: We
will describe a procedure for computing the number of ways a positive integer can be represented
as the sums of all possible arithmetic progressions, together with an example to illustrate how
this procedure can be carried out. In the process of doing this, we will also give an extension of
Wheatstone’s work. In the second part of the paper, we will continue on the problems initiated
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by Wheatstone by studying certain relationships among the representations for different powers
of an integer as sums of arithmetic progressions.
Keywords: Arithmetic progressions, Sylvester theorem, Complementary factors.
2020 Mathematics Subject Classification: 11B25, 11A41.

1 Introduction
Motivated by the well-known fact that the square of a natural number can be represented as
the sum of consecutive odd integers, Sir Charles Wheatstone, a fellow of the Royal Society of
London and the inventor of the Wheatstone’s bridge for measuring electrical resistance, published
a paper [12] in 1844, showing various ways of representing the power 𝑁𝑘 of a positive integer
𝑁 as sums of arithmetic progressions for 𝑘 ≤ 4. In 1882, J. J. Sylvester stated in [11, Section
17, pp. 265-266] that the number of ways a positive integer 𝑁 may be represented as the sum
of consecutive positive integers is equal to the number of odd factors of 𝑁 that exceed 1 (see
also [6, Vol. 2, Chapter 3, p. 139]). This result is known as the Sylvester Theorem (see [2]).
A special consequence of this theorem is that a power of 2 cannot be represented as the sum
of any sequence of consecutive positive integers. In this two-part paper, we will deal with the
problems initiated in both Wheatstone’s and Sylvester’s work in the same framework of arithmetic
progressions, and extend both of their results.

Since the outset of the 20th century, many authors tried to extend Sylvester Theorem in different
ways. For instance, Thomas E. Mason in his paper of 1912 [9], allowed the consecutive integers
to include zero and negative terms. In 1930, Laurens E. Bush studied the problem of representing
a positive integer as sums of arithmetic progressions of a given common difference, for both
progressions of positive terms and for progressions including zero and negative terms (see [4]).
In particular, he extended Sylvester Theorem on the impossibility of representing a power of 2 as
the sum of any arithmetic progressions of an odd common difference ( [4, the corollary on top of
p. 356]). For more recent publications see [1–3, 5, 8], and [10]. However, in all these extensions,
the authors considered, as Bush did, the arithmetic progressions of a given common difference
𝑑. In Part I of this paper, we will try to build up a procedure for finding the number of ways a
positive integer 𝑁 can be represented as the sum of an arithmetic progression of positive terms
of any common difference 𝑑 ≥ 1. Our results require somewhat different methods. We believe
that our extension might be more in line with Sylvester’s original intention, since almost all the
80 pages of his paper [11] were devoted to the problem of partitioning of positive integers. To
investigate the ways a positive integer can be partitioned into terms of arithmetic progressions, we
should consider arithmetic progressions of all possible common differences.

To prepare for our investigations, we will first determine in Section 2, for a given positive
integer 𝑁 , the values of 𝑟 and 𝑑 for which 𝑁 can be represented as the sum of an arithmetic
progression consisting of 𝑟 terms that has 𝑑 as its common difference (Theorem 2.1). With this
theorem, we will extend Wheatstone’s work in Section 3 (see Theorems 3.1, 3.2 and 3.3) and lay
the foundation for our general procedure for determining the number of ways a positive integer 𝑁
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can be represented as the sums of different arithmetic progressions.The general procedure will be
described in Section 5, and an example for illustrating the procedure will be given in Section 5.
In part II of this paper [7], we will continue on the problems initiated by Wheatstone, by studying
certain relationships among the representations of different powers of an integer.

2 Generating the sum of an arithmetic progression
As indicated in the introductory section, the problem of representing an integer as sums of
arithmetic progressions has a long history. Some of our results in this section, though appear
in a new form, may have already been covered by, or can be proved easily from, the existing
publications. However, we will still give a self-contained account here since it would be easier for
the reader if all the relevant facts are collected in one place.

It is also because the results of the existing publications are not stated in a form suitable for
our purpose: We need to look for the sums of arithmetic progressions for which the parities of the
number of the terms 𝑟 and the common difference 𝑑 are important. The existing publications are
either too general or not going far enough.

In the following, by a representation of an integer 𝑁 , we mean a representation of 𝑁 as the
sum of an arithmetic progression. We will let 𝑆(𝑎, 𝑟, 𝑑) to represent the sum of an arithmetic
progression, beginning with the term 𝑎 ≥ 1, consisting of 𝑟 terms, and with a common difference
𝑑 . We will require 𝑑 > 0 and 𝑟 > 1 to rule out the trivial cases. We will call a pair of positive
factors 𝑟 and 𝑠 of 𝑁 complementary if 𝑟𝑠 = 𝑁 .

Theorem 2.1. Let 𝑁 be a positive integer. The existence of a representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑),
depending on whether 𝑟|𝑁 , can be characterized by exactly one of the following two cases:

1). 𝑟|𝑁 . In this case, either 𝑑 is even or 𝑟 is odd and 1
2
(𝑟 − 1)𝑑 < 𝑠, where 𝑠 is the

complementary factor of 𝑟 in 𝑁 . Conversely, if 𝑁 = 𝑟𝑠 for some integers 𝑟 and 𝑠 such that 𝑟 > 1

and 1
2
(𝑟 − 1)𝑑 < 𝑠, then 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for some integer 𝑎 ≥ 1. Furthermore, in this case, the

first term 𝑎 of the representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) is 𝑎 = 𝑠− 1
2
(𝑟 − 1)𝑑.

2). 𝑟 - 𝑁 . In this case, 𝑑 is odd and 𝑟 is even. Write 𝑟 = 2𝑟0, then 𝑟0|𝑁 . Let 𝑠0 be the
complementary factor of 𝑟0, then 𝑠0 is an odd integer with 𝑠0 > (2𝑟0 − 1)𝑑. Conversely, if 𝑟0
and 𝑠0 are a pair of complementary factors of 𝑁 satisfying the following conditions: a) 𝑟 = 2𝑟0
does not divide 𝑁 and b) 𝑠0 is an odd integer satisfying 𝑠0 > (2𝑟0 − 1)𝑑, then 𝑁 = 𝑆(𝑎, 𝑟, 𝑑)

for some integer 𝑎 ≥ 1. In this case, the first term of the representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) is
𝑎 = 1

2
[𝑠0 − (2𝑟0 − 1)𝑑].

Proof. We first show that if 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for some positive integers 𝑎, 𝑟, and 𝑑, then depending
on whether 𝑟|𝑁 or 𝑟 - 𝑁 , there are two possibilities as described in the theorem. Suppose
𝑁 = 𝑆(𝑎, 𝑟, 𝑑), i.e.,

𝑁 = 𝑎+ (𝑎+ 𝑑) + · · ·+ [𝑎+ (𝑟 − 1)𝑑]

= 𝑟𝑎+
1

2
𝑟(𝑟 − 1)𝑑

= 𝑟[𝑎+
1

2
(𝑟 − 1)𝑑].
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Note that 𝑟|𝑁 if and only if [𝑎+ 1
2
(𝑟 − 1)𝑑] is an integer. Since 𝑎 is an integer, 𝑟|𝑁 if and only if

either 𝑟 is odd or 𝑑 is even, and 𝑟 - 𝑁 if and only if 𝑟 is even and 𝑑 is odd.
In the case when 𝑟 is odd or 𝑑 is even, the complementary factor 𝑠 of 𝑟 is given by

𝑠 = [𝑎+ 1
2
(𝑟 − 1)𝑑]. Since 𝑎 ≥ 1, we must have 1

2
(𝑟 − 1)𝑑 < 𝑠.

Conversely, let 𝑟 > 1 be a factor of 𝑁 with 𝑠 as its complementary factor, then for any integer
𝑑 ≥ 1 such that 𝑎) either 𝑟 is odd or 𝑑 is even and 𝑏) 1

2
(𝑟 − 1)𝑑 < 𝑠. We will show that there

exists a representation of 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) with the given integers 𝑟 and 𝑑 where 𝑎 is some integer
greater than or equal to 1. Since by the condition 𝑎), 1

2
(𝑟− 1)𝑑 is a positive integer. By condition

𝑏), 𝑎 = 𝑠− 1
2
(𝑟 − 1)𝑑 is also a positive integer. Then

𝑎+ (𝑎+ 𝑑) + (𝑎+ 2𝑑) + · · ·+ (𝑎+ (𝑟 − 1)𝑑) = 𝑟𝑎+
𝑟(𝑟 − 1)

2
𝑑

= 𝑟[𝑎+
1

2
(𝑟 − 1)𝑑]

= 𝑟[𝑠− 1

2
(𝑟 − 1)𝑑+

1

2
(𝑟 − 1)𝑑]

= 𝑟𝑠

= 𝑁.

Thus, 𝑁 = 𝑆(𝑎, 𝑟, 𝑑). In this case, the first term of 𝑆(𝑎, 𝑟, 𝑑) is 𝑎 = 𝑠− 1
2
(𝑟 − 1)𝑑.

Now, consider the case when 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for some positive integers 𝑎, 𝑟 and 𝑑 such that
𝑟 - 𝑁 . From the proof above, 𝑟 is even and 𝑑 is odd. In this case, let 𝑟 = 2𝑟0 for some positive
integer 𝑟0, and let 𝑀 and 𝑀 + 𝑑 be the two middle terms in the sum 𝑆(𝑎, 𝑟, 𝑑). These two middle
terms add up to 2𝑀 + 𝑑. The two terms closest to these two middle terms, 𝑀 − 𝑑 and 𝑀 + 2𝑑,
again have a sum of 2𝑀 + 𝑑. If we collect all the terms of the sum in pairs, one preceding the
terms already considered and one succeeding them, there are 𝑟0 such pairs, each of which has
a sum of 2𝑀 + 𝑑. Thus, 𝑁 = 𝑟0(2𝑀 + 𝑑), and hence, 𝑟0|𝑁 , with its complementary factor
𝑠0 = (2𝑀 + 𝑑). From this, we conclude that 𝑠0 is odd and 𝑀 = 1

2
(𝑠0 − 𝑑). Since 𝑀 is the 𝑟0th

term in the progression, 𝑀 = 𝑎 + (𝑟0 − 1)𝑑 or 𝑎 = 𝑀 − (𝑟0 − 1)𝑑. Since 𝑎 > 0, we must have
𝑀 > (𝑟0 − 1)𝑑. Now substitute 1

2
(𝑠0 − 𝑑) for 𝑀 in this inequality and also in the equality for 𝑎

and simplify, we will get both (2𝑟0 − 1)𝑑 < 𝑠0 and 𝑎 = 1
2
[𝑠0 − (2𝑟0 − 1)𝑑].

Conversely, let positive integers 𝑟 = 2𝑟0 and 𝑑 be given such that 𝑑 is odd and 𝑁 = 𝑟0𝑠0,
where 𝑠0 is an odd integer and (2𝑟0 − 1)𝑑 < 𝑠0. Note that in this case, 𝑟 - 𝑁 . This is because that
since 𝑁 = 𝑟0𝑠0 = 𝑟(𝑠0/2) but 𝑠0 is an odd integer. Let 𝑎 = 1

2
[𝑠0 − (2𝑟0 − 1)𝑑]. Note that 𝑎 is a

positive integer and then

𝑎+ (𝑎+ 𝑑) + (𝑎+ 2𝑑) + · · ·+ (𝑎+ (𝑟 − 1)𝑑) = 𝑟𝑎+
𝑟(𝑟 − 1)

2
𝑑

= 𝑟
[︀
𝑎+ 1

2
(𝑟 − 1)𝑑

]︀
= 2𝑟0

[︀
1
2
(𝑠0 − (2𝑟0 − 1)𝑑) + 1

2
(2𝑟0 − 1)𝑑

]︀
= 𝑟0𝑠0

= 𝑁.

Again, 𝑁 = 𝑆(𝑎, 𝑟, 𝑑), and in this case, 𝑎 = 1
2
[𝑠0 − (2𝑟0 − 1)𝑑].
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As a corollary of this theorem, we will give a stronger form of Bush’s extension of the
forbidden representations for the powers of 2, not only for odd common differences, but also for
odd numbers of terms. This result will be extended further in our Corollary 3.1, which will impose
more restrictions on the arithmetic progressions whose sums can be a power of 2.

Corollary 2.1. None of the representations for a power 2𝑘, with 𝑘 ≥ 1, can have an odd common
difference d or can consists of an odd number of terms.

Proof. Consider a power 2𝑘 with 𝑘 ≥ 1. If 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑), we claim that 𝑟 and 𝑑 must both be
even. First note that 𝑟 cannot be an odd integer. This is because by Theorem 2.1, if 𝑟 is odd, then
𝑟|2𝑘. Since we do not allow the trivial case of 𝑟 = 1, 𝑟 = 2𝑗 for some positive integer 𝑗, and thus,
𝑟 is even. Say, 𝑟 = 2𝑟0. Now, if 𝑑 is odd, by the proof of Theorem 2.1, 2𝑘 = 𝑟0𝑠0, for some odd
integer 𝑠0 > (2𝑟0 − 1)𝑑. This is impossible. We conclude that 𝑑 is even.

3 Representing the power of a prime as the sum
of an arithmetic progression

For a positive integer 𝑁 , we will let #(𝑁, 𝑟) be the number of ways that 𝑁 may have a
representation consisting of 𝑟 terms, and let #(𝑁) be the sum of #(𝑁, 𝑟) for all possible 𝑟 > 1.
In this section, we will first show how Wheatstone’s work in [12] can be extended. We will
then compute, for a given power 𝑝𝑘 of a prime 𝑝, the possible values of 𝑟 for which 𝑝𝑘 can be
represented as the sum of an arithmetic progression consisting of 𝑟 terms. We will then determine
both #(𝑝𝑘, 𝑟) for all such 𝑟 and #(𝑝𝑘). These computations can also be considered as extensions
of Wheatstone’s work, and they will also be used in building our general procedures.

The main result in [12] is the observation that for a positive integer 𝑁 , any power 𝑁𝑘, 𝑘 ≥ 2,
can always be represented as the sum of an arithmetic progression consisting of𝑁 terms. However,
instead a proof, Wheatstone only showed some examples for 𝑘 ≤ 4: with 2 examples for 𝑘 = 2

and 4, and 3 examples for 𝑘 = 3 (there is a second example for 𝑘 = 2, but it involves fractions).
No mentioning of the number of ways this can be done. In our next theorem, we will prove
Wheatstone’s Theorem, together with a computation for the number of ways this can be done and
for the construction method for these representations.

Theorem 3.1. Let 𝑁 and 𝑘 be any two integers ≥ 2. 𝑁𝑘 always has a representation consisting
of 𝑁 terms. In fact, #(𝑁𝑘, 𝑁) =

⌊︁
2𝑁𝑘−1

𝑁−1

⌋︁
. Each integer 1, 2, . . . ,

⌊︁
2𝑁𝑘−1

𝑁−1

⌋︁
gives rise to a value

of 𝑑 for such an expression, and for each such 𝑑, the arithmetic progression can be constructed by
letting the initial term 𝑎 be 𝑎 = 𝑁𝑘−1 − 1

2
(𝑁 − 1)𝑑.

Proof. Let 𝑁 and 𝑘 be two integers specified by the theorem. Since 𝑁 |𝑁𝑘, the cofactor for 𝑁 is
𝑠 = 𝑁𝑘−1. By the equivalence

1

2
(𝑁 − 1)𝑑 < 𝑁𝑘−1 ⇔ 𝑑 <

2𝑁𝑘−1

𝑁 − 1

and the fact that 𝑑 is an integer, we may claim that, by Theorem 2.1, there exists a representation
of 𝑁𝐾 consisting of 𝑁 terms if and only if 𝑑 ≤

⌊︁
2𝑁𝑘−1

𝑁−1

⌋︁
. But for an 𝑁 and 𝑘 ≥ 2, it is certainly
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true that
⌊︁
2𝑁𝑘−1

𝑁−1

⌋︁
≥ 1. Thus, for each 𝑑 = 1, 2, . . . ,

⌊︁
2𝑁𝑘−1

𝑁−1

⌋︁
, there is a representation of 𝑁𝑘 of

𝑁 terms. By Theorem 2.1 again, for each such 𝑑, the initial term of the representation is given
by 𝑎 = 𝑁𝑘−1 − 1

2
(𝑁 − 1)𝑑. The arithmetic progression can easily be constructed by keeping

adding 𝑑 to each successive term beginning with 𝑎 until all the 𝑁 terms of the progression are
obtained.

We now return to our computations of #(𝑝𝑘, 𝑟) and #(𝑝𝑘). First note that 1 and 2 cannot be
represented as a sum of any arithmetic progression consisting of more than one term, and thus,
#(𝑁) = 0 for 𝑁 = 1 or 2. The following lemma shows that any integer 𝑁 ≥ 3 can always be
represented as such a sum.

Lemma 3.1. Any integer 𝑁 ≥ 3 always has a representation consisting of two terms, and
#(𝑁, 2) =

⌊︀
1
2
(𝑁 − 1)

⌋︀
. Furthermore, the difference 𝑑 between these two terms is of the same

parity as that of 𝑁 : If 𝑁 is odd, 𝑑 may take the values of 1, 3, . . . , 𝑁 − 2. If 𝑁 is even, 𝑑 may
take the values of 2, 4, . . . , 𝑁 − 2.

Proof. Let an integer 𝑁 ≥ 3 be given. 𝑁 has a representation consisting of two terms if and only
if 𝑁 = 𝑎 + (𝑎 + 𝑑), where 𝑎 is the first term of the progression and 𝑑 is the common difference.
This condition is equivalent to 𝑑 = 𝑁 − 2𝑎 for some integer 𝑎 ≥ 1. From this, we conclude that
a necessary and sufficient condition for 𝑑 to be an integer ≥ 1 is 𝑎 < 𝑁/2. Thus, 𝑎 can be any
integer 1, 2, . . . ,

⌊︀
1
2
(𝑁 − 1)

⌋︀
and 𝑑 = 𝑁 − 2𝑎. Consequently, #(𝑁, 2) =

⌊︀
1
2
(𝑁 − 1)

⌋︀
.

Since 𝑑 = 𝑁 − 2𝑎, the common difference 𝑑 is of the same parity as that of 𝑁 . Thus, if 𝑁 is
odd, 𝑑 may take the values of 1, 3, . . . , 𝑁 − 2. If 𝑁 is even, 𝑑 may take the values of 2, 4, . . . ,
𝑁 − 2.

We might observe in passing that since we do not allow 𝑟 = 1, for any positive integer 𝑁 ≥ 3,
the shortest length 𝑟 for 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) is 𝑟 = 2. We now study the problem of determining the
number of ways the power of a prime can be represented as sums of arithmetic progressions. We
now begin with the prime 𝑝 = 2. As noted above that 2 cannot be represented as a sum of any
arithmetic progression consisting of more than one term. We now consider the representations
2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for 𝑘 > 1.

Theorem 3.2. For 𝑘 > 1, 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) if and only if 𝑟 = 2𝑗 for some integer 𝑗, with
1 ≤ 𝑗 ≤ ⌊𝑘/2⌋. For each such 𝑗, let 𝑙𝑗 be the integer such that 0 ≤ 𝑙𝑗 < 𝑗 and 𝑘 ≡ 𝑙𝑗 (mod 𝑗).
There are 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
different ways for 2𝑘 = 𝑆(𝑎, 2𝑗, 𝑑). Each of these representations corresponds

to an even integer 𝑑 = 2𝑑0 with 𝑑0 being one of the integers 1, 2, . . . , 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
, and the initial term

of the representation for such a 𝑑0 is given by 𝑎 = 2𝑘−𝑗 − (2𝑗 − 1)𝑑0. The arithmetic progression
can then be found by adding repeatedly 𝑑(= 2𝑑0) to 𝑎 until we obtain all the 2𝑗 terms of the
progression. In particular,

#(2𝑘) =

⌊𝑘/2⌋∑︁
𝑗=1

2𝑘−𝑗 − 2𝑙𝑗

2𝑗 − 1
. (1)

Furthermore, the longest 𝑟 in the representation of 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) is for 𝑟 = 2⌊𝑘/2⌋.
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Proof. Consider a power 2𝑘 with 𝑘 ≥ 2. If 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑), by Corollary 2.1, 𝑑 must be even.
Write 𝑑 = 2𝑑0 for some positive integer 𝑑0. By Theorem 2.1, 𝑟|2𝑘. Since 𝑟 > 1, 𝑟 = 2𝑗 for some
positive integer 𝑗, and 𝑠 = 2𝑘−𝑗 , where 𝑠 is the complementary factor of 𝑟 in 2𝑘. The condition
1
2
(𝑟 − 1)𝑑 < 𝑠 now becomes (2𝑗 − 1)𝑑0 < 2𝑘−𝑗 . In particular, (2𝑗 − 1) < 2𝑘−𝑗 . This implies

that 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋. Now, let 𝑙𝑗 be the integer such that 0 ≤ 𝑙𝑗 < 𝑗 and 𝑘 ≡ 𝑙𝑗 (mod 𝑗), then
0 ≤ 𝑙𝑗 < 𝑗 ≤ ⌊𝑘/2⌋. From (2𝑗 − 1)𝑑0 < 2𝑘−𝑗 , we have

𝑑0 <
2𝑘−𝑗

2𝑗 − 1
=

2𝑘−𝑗 − 2𝑙𝑗 + 2𝑙𝑗

2𝑗 − 1
= 2𝑙𝑗

(︂
2𝑘−𝑗−𝑙𝑗 − 1

2𝑗 − 1

)︂
+

2𝑙𝑗

2𝑗 − 1
. (2)

We contend that the first term, 2𝑙𝑗
(︁

2𝑘−𝑗−𝑙𝑗−1
2𝑗−1

)︁
, is an integer and the second term, 2𝑙𝑗

2𝑗−1
, is less than

or equal to 1. This is because that since 𝑘 ≡ 𝑙𝑗 (mod 𝑗) and 𝑗 ≤ ⌊𝑘/2⌋, 𝑘 − 𝑗 − 𝑙𝑗 is a positive
multiple of 𝑗, and thus, 2𝑗 − 1 is a factor of 2𝑘−𝑗−𝑙𝑗 − 1. As for the term 2𝑙𝑗

2𝑗−1
, we first consider

the case that 𝑙𝑗 = 0. In this case, 2𝑙𝑗

2𝑗−1
= 1

2𝑗−1
≤ 1. Now, assume that 𝑙𝑗 > 0 and 2𝑙𝑗 > 1. Since

𝑗 > 𝑙𝑗, 2𝑗−𝑙𝑗 − 1 ≥ 1 and

2𝑗 − 2𝑙𝑗 = 2𝑙𝑗(2𝑗−𝑙𝑗 − 1) ≥ 2𝑙𝑗 > 1, or, 2𝑗 − 1 > 2𝑙𝑗 . (3)

Thus, 0 < 2𝑙𝑗

2𝑗−1
< 1 when 𝑙𝑗 > 0. Now, since both 𝑑0 and 2𝑙𝑗

(︁
2𝑘−𝑗−𝑙𝑗−1

2𝑗−1

)︁
are integers, and

0 < 2𝑙𝑗

2𝑗−1
≤ 1, from the inequality (2), we may conclude that 𝑑0 ≤ 2𝑙𝑗

(︁
2𝑘−𝑗−𝑙𝑗−1

2𝑗−1

)︁
= 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
.

In fact, it is not difficult to show that
1

2
(𝑟 − 1)𝑑 < 𝑠 ⇔ 𝑑0 ≤

2𝑘−𝑗 − 2𝑙𝑗

2𝑗 − 1
. (4)

According to Theorem 2.1, 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for some 𝑟 = 2𝑗 if and only if 𝑑0 is less than or
equal to 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
, and each of these values of 𝑑0 will give rise to a different representation of

2𝑘 = 𝑆(𝑎, 2𝑗, 2𝑑0). Thus, there are exactly 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
different ways to write 2𝑘 = 𝑆(𝑎, 2𝑗, 𝑑) with

this 𝑗, or #(2𝑘, 2𝑗) = 2𝑘−𝑗−2𝑙𝑗

2𝑗−1
for 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋. The formula for the first term 𝑎 of the

progression follows from Theorem 2.1. Collecting #(2𝑘, 2𝑗) for all such 𝑗, we have the Formula
(1). This finishes the proof.

Corollary 3.1. Let 𝑘 ≥ 2 be an integer. If 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for some arithmetic progression, then
both 𝑟 and 𝑑 are even. Furthermore, all the term of 𝑆(𝑎, 𝑟, 𝑑) are of the same parity, and these
terms are even if and only if the common difference 𝑑 ≡ 0 (𝑚𝑜𝑑 4).

Proof. By Corollary 2.1, if 𝑘 ≥ 2 and 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑), then both 𝑟 and 𝑑 are even. All terms of an
arithmetic progression with an even 𝑑 must be of the same parity. Thus, if 2𝑘 = 𝑆(𝑎, 𝑟, 𝑑), all the
terms of 𝑆(𝑎, 𝑟, 𝑑) are all even or are all odd, depending on whether its first term 𝑎 is even or odd.
But 𝑎 = 2𝑘−𝑗 − (2𝑗 − 1)𝑑0. Thus, 𝑎 is even if and only if 𝑑0 is even. But 𝑑 = 2𝑑0. Consequently,
all the terms of 𝑆(𝑎, 𝑟, 𝑑) are even if and only if 𝑑 ≡ 0(𝑚𝑜𝑑 4).

Remark 3.1. Our Theorem 3.2, together with Corollary 3.1, may be considered as an extension
of Sylvester Theorem for the powers of 2 since they specify not only what kind of arithmetic
progressions can have a sum which is a power of 2, but also how many of them can there be for
a given power of 2. We now consider the case of 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑), and our next theorem can be
considered as an extension of Sylvester Theorem for powers of an odd prime.
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Theorem 3.3. Let p be an odd prime and 𝑘 an integer ≥ 1. Depending on whether 𝑟|𝑝𝑘 or not,
there are two types of representations for 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑):

1. 𝑟|𝑝𝑘. The only way for 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑) with 𝑟|𝑝𝑘 is when 𝑘 > 1 and 𝑟 = 𝑝𝑗 for some 𝑗

such that 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋. For each such 𝑗, let 𝑙𝑗 be the integer such that 0 ≤ 𝑙𝑗 < 𝑗

and 𝑘 ≡ 𝑙𝑗 (mod 𝑗). There are 2
(︁

𝑝𝑘−𝑗−𝑝𝑙𝑗

𝑝𝑗−1

)︁
many ways for 𝑝𝑘 = 𝑆(𝑎, 𝑝𝑗, 𝑑). Each of

the integers 1, 2, 3, . . . , 2
(︁

𝑝𝑘−𝑗−𝑝𝑙𝑗

𝑝𝑗−1

)︁
gives rise to a value of 𝑑 for a different arithmetic

progression whose sum equals to 𝑝𝑘, and the initial term 𝑎 of the progression for this 𝑑 is
given by 𝑎 = 𝑝𝑘−𝑗 − 1

2
(𝑝𝑗 − 1)𝑑.

2. 𝑟 - 𝑝𝑘. In this case, 𝑟 = 2𝑝𝑗 for some 𝑗 with 0 ≤ 𝑗 < ⌊𝑘/2⌋. Each odd integer ≤
⌊︁
𝑝𝑘−𝑗−1
2𝑝𝑗−1

⌋︁
gives rise to a value of 𝑑 for a distinct representation 𝑝𝑘 = 𝑆(𝑎, 2𝑝𝑗, 𝑑). These are the only
possible values for 𝑑 for this 𝑟 = 2𝑝𝑗 . For each of these representations, the initial term
𝑎 is given by 𝑎 = 1

2
(𝑝𝑘−𝑗 − (2𝑝𝑗 − 1)𝑑). Thus, #(𝑝𝑘, 2𝑝𝑗) =

⌊︁
1
2

(︁
𝑝𝑘−𝑗−1
2𝑝𝑗−1

+ 1
)︁⌋︁

, where
0 ≤ 𝑗 < ⌊𝑘/2⌋.

Collecting all the terms above, we have

#(𝑝𝑘) =

⌊︂
1

2
(𝑝𝑘 − 1)

⌋︂
+

⌊𝑘/2⌋∑︁
𝑗=1

(︂
2

(︂
𝑝𝑘−𝑗 − 𝑝𝑙𝑗

𝑝𝑗 − 1

)︂
+

⌊︂
1

2

(︂
𝑝𝑘−𝑗 − 1

2𝑝𝑗 − 1
+ 1

)︂⌋︂)︂
. (5)

where the summation is zero if 𝑘 = 1.
Proof. 1. Consider a power 𝑝𝑘 for an odd prime 𝑝 and an integer 𝑟 > 1 such that 𝑟|𝑝𝑘. Then

𝑟 = 𝑝𝑗 for some 𝑗 ≥ 1, we claim that if 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for such an 𝑟, then 𝑘 > 1 and 𝑟 = 𝑝𝑗

for an integer 𝑗 with 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋. This is because that if 𝑠 be the complementary factor
of 𝑟 in 𝑝𝑘, then 𝑠 = 𝑝𝑘−𝑗 , and by Theorem 2.1, 𝑠 > 1

2
(𝑟 − 1)𝑑. Thus, 2𝑝𝑘−𝑗 > (𝑝𝑗 − 1), or

2𝑝𝑘−𝑗 ≥ 𝑝𝑗 , or 𝑝𝑘−2𝑗 ≥ 1
2
. Since 𝑝 is an odd prime, we must have 2𝑗 ≤ 𝑘 or 𝑗 ≤ ⌊𝑘/2⌋. In

particular, 𝑘 > 1 and 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋.

Now, let 𝑗 be an integer such that 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋. For 𝑟 = 𝑝𝑗 and 𝑠 = 𝑝𝑘−𝑗 . 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑)

if and only if 1
2
(𝑟−1)𝑑 < 𝑠, or (𝑝𝑗 −1)𝑑 < 2𝑝𝑘−𝑗 . Let 𝑙𝑗 be the integer such that 0 ≤ 𝑙𝑗 < 𝑗

and 𝑘 ≡ 𝑙𝑗 (mod 𝑗). We have

𝑑 <
2𝑝𝑘−𝑗

𝑝𝑗 − 1
=

2(𝑝𝑘−𝑗 − 𝑝𝑙𝑗 + 𝑝𝑙𝑗)

𝑝𝑗 − 1
= 2𝑝𝑙𝑗

(︂
𝑝𝑘−𝑗−𝑙𝑗 − 1

𝑝𝑗 − 1

)︂
+

2𝑝𝑙𝑗

𝑝𝑗 − 1
. (6)

As in the proof of Theorem 3.2, 2𝑝𝑙𝑗
(︁

𝑝𝑘−𝑗−𝑙𝑗−1
𝑝𝑗−1

)︁
is an integer. We now show that 0 <

2𝑝𝑙𝑗

𝑝𝑗−1
≤ 1. Since 𝑝 is an odd prime and 0 ≤ 𝑙𝑗 < 𝑗, we have 𝑝𝑗−2𝑝𝑙𝑗 = 𝑝𝑙𝑗(𝑝𝑗−𝑙𝑗 −2) ≥ 1 or

𝑝𝑗−1 ≥ 2𝑝𝑙𝑗 . This shows that 2𝑝𝑙𝑗

𝑝𝑗−1
≤ 1. From (6), we conclude that 𝑑 ≤ 2𝑝𝑙𝑗

(︁
𝑝𝑘−𝑗−𝑙𝑗−1

𝑝𝑗−1

)︁
. It

is not difficult to show that 𝑑 ≤ 2𝑝𝑙𝑗
(︁

𝑝𝑘−𝑗−𝑙𝑗−1
𝑝𝑗−1

)︁
is equivalent to the condition 1

2
(𝑟−1)𝑑 < 𝑠.

Thus, there are exactly 2𝑝𝑙𝑗
(︁

𝑝𝑘−𝑗−𝑙𝑗−1
𝑝𝑗−1

)︁
, or 2

(︁
𝑝𝑘−𝑗−𝑝𝑙𝑗

𝑝𝑗−1

)︁
, many ways for 𝑝𝑘 = 𝑆(𝑎, 𝑝𝑗, 𝑑)

with each of the integers 1, 2, . . . , 2
(︁

𝑝𝑘−𝑗−𝑝𝑙𝑗

𝑝𝑗−1

)︁
giving rise to a value of 𝑑 for a different

arithmetic progression, and the corresponding initial term 𝑎 of the arithmetic progression
for this 𝑑 is 𝑎 = 𝑝𝑘−𝑗 − 1

2
(𝑝𝑗 − 1)𝑑. This finishes the proof of Part 1 of the theorem.
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2. Now assume that 𝑟 is an integer such that 𝑟 - 𝑝𝑘. If 𝑝𝑘 = 𝑆(𝑎, 𝑟, 𝑑) for such an 𝑟, then by
Theorem 2.1, 𝑟 = 2𝑟0 for some positive factor 𝑟0 of 𝑝𝑘 and 𝑑 is an odd positive integer.
Thus, 𝑟0 = 𝑝𝑗 for some integer 𝑗 with 0 ≤ 𝑗 ≤ 𝑘, and its complementary factor is given by
𝑠0 = 𝑝𝑘−𝑗 . By Theorem 2.1 again, 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for 𝑟 = 2𝑝𝑗 if and only if (2𝑟0−1)𝑑 < 𝑠0,
or (2𝑝𝑗 − 1)𝑑 < 𝑝𝑘−𝑗 . From this we may conclude that 𝑗 < ⌊𝑘/2⌋. Thus, for each such 𝑗,
there is a representation for 𝑝𝑘 = 𝑆(𝑎, 2𝑝𝑗, 𝑑) for each positive odd integer 𝑑 satisfying

𝑑 <
𝑝𝑘−𝑗

2𝑝𝑗 − 1
or 𝑑 ≤

⌊︂
𝑝𝑘−𝑗 − 1

2𝑝𝑗 − 1

⌋︂
.

Furthermore, for each such 𝑑, the beginning term 𝑎 = 1
2
[𝑝𝑘−𝑗 − (2𝑝𝑗 − 1)𝑑]. Note that the

number of the odd integers less than or equal to
⌊︁
𝑝𝑘−𝑗−1
2𝑝𝑗−1

⌋︁
is given by

⌊︁
1
2

(︁
𝑝𝑘−𝑗−1
2𝑝𝑗−1

+ 1
)︁⌋︁

.
Hence,

#(𝑝𝑘, 2𝑝𝑗) =

⌊︂
1

2

(︂
𝑝𝑘−𝑗 − 1

2𝑝𝑗 − 1
+ 1

)︂⌋︂
for each 𝑗 with 0 ≤ 𝑗 < ⌊𝑘/2⌋.

Note that when 𝑗 = 0, the above formula becomes #(𝑝𝑘, 2) = ⌊1
2
(𝑝𝑘 − 1)⌋, which agrees

with the value given by Lemma 3.1.
The above two cases exhaust all the possible values of 𝑟. We can collect all the terms from the
above two parts and get a formula for #(𝑝𝑘). Note that the formula in Part 1 is for 1 ≤ 𝑗 ≤ ⌊𝑘/2⌋,
but for that in Part 2 is for 0 ≤ 𝑗 < ⌊𝑘/2⌋. We may combine the two formulas under the same
summation sign for 𝑗 ranging from 1 to ⌊𝑘/2⌋ by leaving out the term in Part 2 for 𝑗 = 0 from the
summation, and noting that the formula in Part 2 for 𝑗 = ⌊𝑘/2⌋ is automatically zero.

4 Representing a positive integer as sums
of arithmetic progressions. I: A procedure

A similar procedure for computing the number of representations for a general positive integer 𝑁
can also be established. This procedure is based on the prime factors of 𝑁 since if 𝑁 = 𝑆(𝑎, 𝑟, 𝑑),
either 𝑟 is a factor of 𝑁 , or 𝑟 = 2𝑟0 and 𝑟0 is a factor of 𝑁 . Given a positive integer 𝑁 , we will
factor 𝑁 into a product of powers of primes: 𝑁 = 𝑝𝑘11 𝑝𝑘22 . . . 𝑝𝑘𝑛𝑛 . We will show how to compute
#(𝑁, 𝑟) for all the possible values of 𝑟, for which either 𝑟 is a product of the powers of the prime
factors of 𝑁 , or 𝑟 = 2𝑟0 and 𝑟0 is a product of the powers of the prime factors of 𝑁 . Collecting
all such #(𝑁, 𝑟), we will get the number #(𝑁).

We start with the cases for #(𝑁, 𝑟) when 𝑟 = 𝑝𝑖
𝑗 or 𝑟 = 2𝑝𝑖

𝑗 , for each prime factor 𝑝𝑖 of 𝑁
(Theorem 4.1 and 4.2). We will then build a computational procedure for 𝑟 or 𝑟0 being the product
of powers of two or more prime factors of 𝑁 . This allows us to find #(𝑁, 𝑟) for all the possible
values of 𝑟. Since the procedure is similar when 𝑟 or 𝑟0 is the product of the powers of two or
more prime factors of 𝑁 , we will describe, as the typical case, the product of powers of three
distinct prime factors of 𝑁 (Theorem 4.3).

We now begin with powers of a single prime factor. As noted before, 1 and 2 cannot be written
as the sum of any arithmetic progression. We now determine whether an integer 𝑁 ≥ 3 can be
written as a sum 𝑆(𝑎, 𝑟, 𝑑) when 𝑟 is a power of 2, and if so, how many ways can this be done.
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Theorem 4.1. Let 𝑁 ≥ 3 be an integer. Depending on whether 𝑁 is odd or even, we consider
two cases:

1. If 𝑁 is odd, the only way for 𝑁 = 𝑆(𝑎, 2𝑗, 𝑑) for a positive integer 𝑗 is when 𝑗 = 1 and
#(𝑁, 2) = 1

2
(𝑁 − 1).

2. If 𝑁 is even, say 𝑁 = 2𝑘𝑁0, for some positive integers 𝑘 and 𝑁0 such that 𝑁0 is odd, we
need to consider two further cases:

A) For each integer 𝑗 such that 1 ≤ 𝑗 ≤ 𝑘, there are representations 𝑁 = 𝑆(𝑎, 2𝑗, 𝑑) if
and only if 𝑑(= 2𝑑0) is even and

⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
≥ 1. In such a case, each positive integer

from 1 to
⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
gives rise to a value of 𝑑0 for a representation 𝑁 = 𝑆(𝑎, 2𝑗, 2𝑑0),

and
#(𝑁, 2𝑗) =

⌊︂
2𝑘−𝑗𝑁0 − 1

2𝑗 − 1

⌋︂
for each 1 ≤ 𝑗 ≤ 𝑘. (7)

For each 𝑑0 specified above, the beginning term 𝑎 = 2𝑘−𝑗𝑁0 − (2𝑗 − 1)𝑑0. The
progression itself can then be found from these 𝑎 and 𝑑(= 2𝑑0).

B) 𝑁 = 𝑆(𝑎, 2𝑗, 𝑑) can also happen when 𝑗 > 𝑘. For this to happen, we must have
𝑗 = 𝑘 + 1 and

⌊︁
𝑁0−1
2𝑘+1−1

⌋︁
≥ 1. In such a case, each odd positive integer from 1 to⌊︁

𝑁0−1
2𝑘+1−1

⌋︁
gives rise to a value of 𝑑 for a different representation of 𝑁 , and

#(𝑁, 2𝑘+1) =

⌊︂
1

2

(︂
𝑁0 − 1

2𝑘+1 − 1
+ 1

)︂⌋︂
. (8)

For each of these arithmetic progressions, 𝑎 = 1
2
(𝑁0 − (2𝑗 − 1)𝑑).

Proof. 1. Let 𝑁 ≥ 3 be an odd integer and 𝑟 = 2𝑗 for a positive integer 𝑗. We first show that
𝑁 = 𝑆(𝑎, 𝑟, 𝑑) then 𝑗 = 1. This is because that since 𝑁 is odd, 𝑟 - 𝑁 . The only possibility
for 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) is, by Theorem 2.1, for 𝑟 = 2𝑟0 and 𝑟0|𝑁 . But 𝑟0 = 1

2
𝑟 = 2𝑗−1. Thus,

𝑟0|𝑁 implies that 𝑗 = 1, and 𝑟 = 2. The rest follows from Lemma 3.1.

2. Let 𝑁 ≥ 3 be an even integer. Write 𝑁 = 2𝑘𝑁0 for some odd integer 𝑁0. We now consider
the case that 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for 𝑟 = 2𝑗 for some positive integer 𝑗.

A) Suppose that 1 ≤ 𝑗 ≤ 𝑘. In this case 𝑟 = 2𝑗 divides 𝑁 . Since 𝑟 is even, by Theorem
2.1, if 𝑁 = 𝑆(𝑎, 𝑟, 𝑑), then 𝑑 must be even. Write 𝑑 = 2𝑑0 for some positive integer
𝑑0. By Theorem 2.1 again, 𝑁 = 𝑆(𝑎, 2𝑗, 2𝑑0) if and only if (2𝑗 − 1)𝑑0 < 𝑠, where
𝑠 = 2𝑘−𝑗𝑁0 is the complementary factor of 2𝑗 in 𝑁 . Thus, there is a representation
𝑁 = 𝑆(𝑎, 2𝑗, 2𝑑0) for each integer 𝑑0 satisfying the inequality 𝑑0 < 𝑠

2𝑗−1
, or 𝑑0 <

2𝑘−𝑗𝑁0

2𝑗−1
. In particular,

⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
≥ 1. In such a case, we may conclude that each

positive integer from 1 to
⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
gives rise to a value of 𝑑0 for a representation of

𝑁 , and Formula (7) follows. The formula 𝑎 = 2𝑘−𝑗𝑁0 − (2𝑗 − 1)𝑑0 also follows from
Theorem 2.1.
Note that we do not need to worry about whether the condition

⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
≥ 1 in

(7), for if it is not satisfied, this term in (7) would automatically be zero. We also note
that when 𝑗 = 1,

⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
= ⌊2𝑘−1𝑁0 − 1⌋ = ⌊𝑁

2
− 1⌋. Since 𝑁 = 2𝑘𝑁0 is even,

250



𝑁 − 1 is odd, and ⌊1
2
(𝑁 − 1)⌋ = ⌊1

2
(𝑁 − 2)⌋ = ⌊𝑁

2
− 1⌋. Thus, Formula (7) reduces

to #(𝑁, 2) =
⌊︀
1
2
(𝑁 − 1)

⌋︀
, which agrees with Lemma 3.1. This finishes the proof of

2(A).
B) Consider the case when 𝑗 > 𝑘. In this case 𝑟 = 2𝑗 does not divide 𝑁 . By Theorem

2.1, we must have 𝑟 = 2𝑟0 and 𝑟0 = 2𝑗−1 is a factor of 𝑁 = 2𝑘𝑁0. Consequently,
we must have 𝑗 = 𝑘 + 1. Since 𝑟 - 𝑁 , by Theorem 2.1, 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) if and only
if 𝑑 is odd and (2𝑟0 − 1)𝑑 < 𝑠0, where 𝑠0 = 𝑁0 is the complementary factor of 𝑟0
in 𝑁 . Thus, for each odd integer 𝑑 satisfying the inequality 𝑑 < 𝑁0

2𝑘+1−1
, there is a

representation of 𝑁 = 𝑆(𝑎, 𝑟, 𝑑). Thus, we must require
⌊︁

𝑁0−1
2𝑘+1−1

⌋︁
≥ 1. If this is the

case, each odd integer from 1 to
⌊︁

𝑁0−1
2𝑘+1−1

⌋︁
gives rise to a value of 𝑑 for an arithmetic

progression, and Formula (8) follows.
The rest of the assertions in (B) are then immediate. Again, we do not need to worry
about the condition

⌊︁
𝑁0−1
2𝑘+1−1

⌋︁
≥ 1 for Formula (8), for if the condition is not satisfied,

i.e., suppose
0 ≤ 𝑁0 − 1

2𝑘+1 − 1
< 1 ⇒ 1 ≤ 𝑁0 − 1

2𝑘+1 − 1
+ 1 < 2.

Consequently,
⌊︁
1
2

(︁
𝑁0−1
2𝑘+1−1

+ 1
)︁⌋︁

= 0. This finishes the proof of the theorem.

Theorem 4.2. Consider a representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for a positive integer 𝑁 = 𝑝𝑘𝑁0 where
𝑝 is an odd prime, and 𝑘 and 𝑁0 are positive integers such that 𝑁0 is relatively prime to 𝑝.

1. The only case for 𝑟 = 𝑝𝑗 for some integer 𝑗 is for 1 ≤ 𝑗 ≤ 𝑘 and
⌊︁
2𝑝𝑘−𝑗𝑁0−1

𝑝𝑗−1

⌋︁
≥ 1. For

such a 𝑗, #(𝑁, 𝑝𝑗) =
⌊︁
2𝑝𝑘−𝑗𝑁0−1

𝑝𝑗−1

⌋︁
. Each of the integers from 1 to

⌊︁
2𝑝𝑘−𝑗𝑁0−1

𝑝𝑗−1

⌋︁
gives rise to

a value of 𝑑 for a different representation of 𝑁 . For each such 𝑑, the initial term is given by
𝑎 = 𝑝𝑘−𝑗𝑁0 − 1

2
(𝑝𝑗 − 1)𝑑. The progression itself can then be found from these 𝑎 and 𝑑.

2. Now consider the case for 𝑟 = 2𝑝𝑗 . For this part of the theorem, we may assume that 𝑁 is
an odd integer since the case 𝑁 is even can be covered in the Part 1 of Theorem 4.3 (see
also Remark 4.1) when 𝑟 is a product of the powers of two or more primes, including 2.

In this case, 𝑟 = 2𝑝𝑗 for some integer 𝑗 can happen if and only if 0 ≤ 𝑗 ≤ 𝑘

and
⌊︁
𝑝𝑘−𝑗𝑁0−1

2𝑝𝑗−1

⌋︁
≥ 1. If these conditions are satisfied, for each such 𝑗 there will be a

representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑), with 𝑟 = 2𝑝𝑗 , and #(𝑁, 2𝑝𝑗) =
⌊︁
1
2

(︁
𝑝𝑘−𝑗𝑁0−1

2𝑝𝑗−1
+ 1

)︁⌋︁
. Each

of the odd integers from 1 to
⌊︁
𝑝𝑘−𝑗𝑁0−1

2𝑝𝑗−1

⌋︁
gives rise to a value of 𝑑 for such a representation,

and for each of these 𝑑, the beginning term 𝑎 = 1
2
[𝑝𝑘−𝑗𝑁0 − (2𝑝𝑗 − 1)𝑑].

The above two cases exhaust all the possibilities for 𝑝𝑘𝑁0 = 𝑆(𝑎, 𝑟, 𝑑) for 𝑟 = 𝑝𝑗 or 𝑟 = 2𝑝𝑗 for
all possible integer 𝑗.

Proof. Consider a representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for a positive integer 𝑁 = 𝑝𝑘𝑁0, where 𝑝, 𝑘,
and 𝑁0 are as specified in the theorem.

1. If 𝑟 = 𝑝𝑗 for some integer 𝑗. Since 𝑟 is odd, 𝑟|𝑁 by Theorem 2.1, and hence, 1 ≤ 𝑗 ≤ 𝑘.
By Theorem 2.1 again, 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for 𝑟 = 𝑝𝑗 if and only if the complementary factor 𝑠
of 𝑟 satisfies 𝑠 > 1

2
(𝑟− 1)𝑑, or 2𝑝𝑘−𝑗𝑁0 > (𝑝𝑗 − 1)𝑑. This condition is satisfied if and only

if 𝑑 is a positive integer such that
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𝑑 <
2𝑝𝑘−𝑗𝑁0

𝑝𝑗 − 1
or 𝑑 ≤

⌊︂
2𝑝𝑘−𝑗𝑁0 − 1

𝑝𝑗 − 1

⌋︂
.

In particular,
⌊︁
2𝑝𝑘−𝑗𝑁0−1

𝑝𝑗−1

⌋︁
≥ 1. Thus, 𝑁 = 𝑆(𝑎, 𝑝𝑗, 𝑑) for 𝑑 = 1, 2, . . . ,

⌊︁
2𝑝𝑘−𝑗𝑁0−1

𝑝𝑗−1

⌋︁
, and

consequently,

#(𝑁, 𝑝𝑗) =

⌊︂
2𝑝𝑘−𝑗𝑁0 − 1

𝑝𝑗 − 1

⌋︂
.

Note that for certain values of 𝑗, 𝑘, 𝑝, and 𝑁0 the inequality 2𝑝𝑘−𝑗𝑁0 > (𝑝𝑗 − 1)𝑑 is not
satisfied for any positive integer 𝑑 (for instance, when 𝑝 = 3, 𝑗 = 𝑘 = 2 and𝑁0 = 1), but this
does not invalidate the formula for #(𝑁, 𝑝𝑗) since in such cases (2𝑝𝑘−𝑗𝑁0 − 1) < (𝑝𝑗 − 1)

and #(𝑁, 𝑝𝑗) is zero, and thus, when (2𝑝𝑘−𝑗𝑁0 − 1) < (𝑝𝑗 − 1), or when 𝑠 ≤ 1
2
(𝑟 − 1)𝑑,

there is no such representation for 𝑁 . The formula for #(𝑁) is still valid.

2. Now assume that 𝑁 is an odd integer. If 𝑟 = 2𝑝𝑗 , then 𝑟 - 𝑁 . In this case, 𝑟0 = 𝑟
2
= 𝑝𝑗 does

divide 𝑁 , and hence, 0 ≤ 𝑗 ≤ 𝑘. The complementary factor for 𝑟0 is then 𝑠0 = 𝑝𝑘−𝑗𝑁0.
By Theorem 2.1 again, 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) for 𝑟 = 2𝑝𝑗 if and only if (2𝑟0 − 1)𝑑 < 𝑠0, or
(2𝑝𝑗 − 1)𝑑 < 𝑝𝑘−𝑗𝑁0. Thus, there is a representation 𝑁 = 𝑆(𝑎, 2𝑝𝑗, 𝑑) for each positive
odd integer 𝑑 satisfying

𝑑 <
𝑝𝑘−𝑗𝑁0

2𝑝𝑗 − 1
or 𝑑 ≤

⌊︂
𝑝𝑘−𝑗𝑁0 − 1

2𝑝𝑗 − 1

⌋︂
.

In particular,
⌊︁
𝑝𝑘−𝑗𝑁0−1

2𝑝𝑗−1

⌋︁
≥ 1. Again as before, the number of such representations is

#(𝑁, 2𝑝𝑗) =

⌊︂
1

2

(︂
𝑝𝑘−𝑗𝑁0 − 1

2𝑝𝑗 − 1
+ 1

)︂⌋︂
.

The rest of the theorem is immediate.

Remark 4.1. We now consider a general positive integer 𝑁 = 𝑝𝑘11 𝑝𝑘22 . . . 𝑝𝑘𝑛𝑛 𝑁0, where 𝑁0 is
relatively prime to all the prime factors 𝑝𝑖’s. We will describe a way that 𝑁 can be represented
as sums of arithmetic progressions 𝑆(𝑎, 𝑟, 𝑑). The computations are all similar when 𝑟 or 𝑟0 is
a product of powers of two or more prime factors of 𝑁 . In the theorem, we will describe only
a typical case: when 𝑁 = 𝑝𝑘1𝑞𝑘2𝑡𝑘3𝑁0, where 𝑝, 𝑞, 𝑡, are three distinct primes, all of which are
relatively prime to 𝑁0, and 𝑟 or 𝑟0 also involves these three primes with positive powers. The
same procedure can be used when more, or fewer, number of prime factors of 𝑁 are involved.
This procedure allows us to compute the number #(𝑁, 𝑟) for any factor 𝑟 of 𝑁 . By collecting all
these #(𝑁, 𝑟), we can then get #(𝑁) itself.

Theorem 4.3. Consider a positive integer of the form 𝑁 = 𝑝𝑘1𝑞𝑘2𝑡𝑘3𝑁0, where 𝑝, 𝑞, 𝑡 are three
distinct primes, each 𝑘𝑖 > 0, and 𝑁0 is a positive integer relatively prime to 𝑝, 𝑞 and 𝑡. Our
procedure depends on whether 𝑁 is even or odd:

1. 𝑁 is an even integer. In this case, let 𝑝 = 2 and write 𝑁 = 2𝑘1𝑞𝑘2𝑡𝑘3𝑁0. The number of
ways for the representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑), where 𝑟 of the form 𝑟 = 2𝑗1𝑞𝑗2𝑡𝑗3 , depends on
two further cases: whether 𝑟|𝑁 or 𝑟 - 𝑁 :
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1A. If 𝑟|𝑁 , there is a representation for each even integer

𝑑 ≤
⌊︂
2𝑘1−𝑗1+1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

2𝑗1𝑞𝑗2𝑡𝑗3 − 1

⌋︂
.

For each of such 𝑑, the first term 𝑎 is 𝑎 = 2𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1
2
(2𝑗1𝑞𝑗2𝑡𝑗3 − 1)𝑑.

1B. If 𝑟 - 𝑁 , then 𝑗1 = 𝑘1 + 1 and there is a representation for each odd integer

𝑑 ≤
⌊︂
𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

2𝑘1+1𝑞𝑗2𝑡𝑗3 − 1

⌋︂
.

For each of such 𝑑, the first term is 𝑎 = 1
2
[𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − (2𝑘1+1𝑞𝑗2𝑡𝑗3 − 1)𝑑].

Thus, the number of ways when 𝑁 is an even integer and for 𝑟 of the form 𝑟 = 2𝑗1𝑞𝑗2𝑡𝑗3 for
some nonzero powers 𝑗1, 𝑗2 and 𝑗3 is
𝑘1∑︁

𝑗1=1

𝑘2∑︁
𝑗2=1

𝑘3∑︁
𝑗3=1

⌊︂
1

2

(︂
2𝑘1−𝑗1+1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

2𝑗1𝑞𝑗2𝑡𝑗3 − 1

)︂⌋︂
+

𝑘2∑︁
𝑗2=1

𝑘3∑︁
𝑗3=1

⌊︂
1

2

(︂
𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

2𝑘1+1𝑞𝑗2𝑡𝑗3 − 1
+1

)︂⌋︂
. (9)

2. 𝑁 is still even, but 𝑟 = 𝑝𝑗1𝑞𝑗2𝑡𝑗3 is a product of powers of three odd primes. Since 𝑟 is odd,
𝑟|𝑁 and 𝑁 = 𝑝𝑘1𝑞𝑘2𝑡𝑘3𝑁0, where 𝑁0 is even and 𝑘𝑖 ≥ 𝑗𝑖 for each 𝑖 = 1, 2 or 3. In this
case, there a representation for each integer

𝑑 ≤
⌊︂
2𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1

⌋︂
.

For each of such 𝑑, the first term is 𝑎 = 𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1
2
(𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1) 𝑑, and

consequently, for 𝑟 = 𝑝𝑗1𝑞𝑗2𝑡𝑗3 ,

#(𝑁, 𝑟) =

⌊︂
2𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1

⌋︂
. (10)

3. 𝑁 = 𝑝𝑘1𝑞𝑘2𝑡𝑘3𝑁0 is an odd integer. In this case, 𝑝, 𝑞, 𝑡 and 𝑁0 are all odd. There are again
two possible ways for the representation 𝑁 = 𝑆(𝑎, 𝑟, 𝑑) either for 𝑟 of the form 𝑟 = 𝑝𝑗1𝑞𝑗2𝑡𝑗3

or for 𝑟 of the form 𝑟 = 2𝑝𝑗1𝑞𝑗2𝑡𝑗3 , depending on whether 𝑟|𝑁 or 𝑟 - 𝑁 :

3A) 𝑟|𝑁 . Then 𝑟 = 𝑝𝑗1𝑞𝑗2𝑡𝑗3 , where 1 ≤ 𝑗𝑖 ≤ 𝑘𝑖 for each 𝑖 = 1, 2 or 3. There is a
representation for each integer

𝑑 ≤
⌊︂
2𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1

⌋︂
.

For each of such 𝑑, the first term is 𝑎 = 𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1
2
(𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1) 𝑑.

3B) 𝑟 - 𝑁 . In this case, 𝑟 = 2𝑝𝑗1𝑞𝑗2𝑡𝑗3 , where 1 ≤ 𝑗𝑖 ≤ 𝑘𝑖 for each 𝑖. In this case, there is
a representation for each odd integer

𝑑 ≤
⌊︂
𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

2𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1

⌋︂
.

For each of such 𝑑, the first term is 𝑎 = 1
2
[𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − (2𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1)𝑑].
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Combining these two cases, we have for an odd integer 𝑁 = 𝑝𝑘1𝑞𝑘2𝑡𝑘3𝑁0 the number of
possible representation for 𝑟 = 𝑝𝑗1𝑞𝑗2𝑡𝑗3 , or of the form 𝑟 = 2𝑝𝑗1𝑞𝑗2𝑡𝑗3 , is given by

𝑘1∑︁
𝑗1=1

𝑘2∑︁
𝑗2=1

𝑘3∑︁
𝑗3=1

(︂⌊︂
2𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1

⌋︂
+

⌊︂
1

2

(︂
𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1

2𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1
+ 1

)︂⌋︂)︂
. (11)

Proof. In each case, for a given 𝑟 or 𝑟0, we use the condition 1
2
(𝑟− 1)𝑑 < 𝑠 or (2𝑟0 − 1)𝑑 < 𝑠0 to

determine the allowable values for 𝑑 for the number of possible representations for𝑁 = 𝑆(𝑎, 𝑟, 𝑑).
In carrying out the computations, we need to consider the restrictions, as described in Theorem
2.1, that when 𝑟|𝑁 , then either 𝑟 is odd or 𝑑 is even, but when 𝑟 - 𝑁 , 𝑟 is even and 𝑑 is odd.
Finally, when we compute the number of ways, if 𝑑 is an odd integer less than or equal to a given
number we have to add an 1 before taking the floor function of 1

2
of that number, but it the number

is for 𝑑 to be an even integer less than or equal to that number, we do not have to add an 1. The
arguments are all similar to what we did before and will be skipped here.

5 Representing a positive integer as sums
of arithmetic progressions. II: An example

To show how our method can be carried out, we now sketch a computation of #(𝑁), for
𝑁 = 233252 = 1800. We will first compute #(𝑁, 𝑟) for 𝑟 or 𝑟0 being the power of a single
prime factor of 𝑁 , and then, for 𝑟 or 𝑟0 being the product of powers for pairs of the prime factors
of 𝑁 , and so on, until all the factors of 𝑁 are accounted for.
1. #(1800, 𝑝𝑗) for some positive integer 𝑗.

1A. First consider the case for 𝑝 = 2 and 𝑟 = 2𝑗 for some integer 𝑗 ≥ 1.

(a) Suppose 2𝑗|𝑁 . In this case 1 ≤ 𝑗 ≤ 3. In the form of 𝑁 = 2𝑘𝑁0 of Theorem 4.1-Part

2A, 𝑁0 = 225. Thus, each integer from 1 to
⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
gives rise to a value of 𝑑0 for

an arithmetic progression. These are the only possible ways for 𝑁 = 𝑆(𝑎, 2𝑗, 2𝑑0) for
1 ≤ 𝑗 ≤ 𝑘. Hence, #(𝑁, 2𝑗) =

⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
=

⌊︁
23−𝑗225−1

2𝑗−1

⌋︁
. For each of these

𝑑0, the initial term of the progression is given by 𝑎 = 2𝑘−𝑗𝑁0 − (2𝑗 − 1)𝑑0 =

23−𝑗225− (2𝑗 − 1)𝑑0.

∙ 𝑗 = 1. #(𝑁, 2) = ⌊899⌋ = 899. To find these progressions, we can let 𝑑0 be any
of the integers 1, 2, . . . , 899, and for each of the𝑑0, let𝑎 = 22×225−𝑑0 = 900−𝑑0.
The progression will then consists of the two terms 𝑎 and 𝑎+ 2𝑑0.

∙ 𝑗 = 2. In this case, #(𝑁, 22) =
⌊︀
2×225−1

3

⌋︀
= 149. By a similar process, we

can find all these 149 progressions: for each 𝑑0 = 1, 2, . . . , 149 we let 𝑎 =

2 × 225 − 3𝑑0 = 450 − 3𝑑0, then keep adding 𝑑 = 2𝑑0 to 𝑎 until we obtain all
22 = 4 terms of the progression.

∙ 𝑗 = 3.
⌊︁
2𝑘−𝑗𝑁0−1

2𝑗−1

⌋︁
=

⌊︀
225−1

7

⌋︀
= 32. Thus, 𝑑0 = 1, 2, . . . , 32 and #(𝑁, 22) = 32.
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(b) For 𝑟 = 2𝑗 - 𝑁 , then since 𝑟
2
= 𝑟0 divides 𝑁 . We must have 𝑟0 = 23 and 𝑟 = 2𝑗 = 24,

and 𝑠0 = 𝑁0 = 225. By asserton 2(B) of Theorem 4.1, each odd positive integer from 1

to
⌊︀
𝑁0−1
2𝑗−1

⌋︀
=

⌊︀
224
15

⌋︀
= 14 gives rise to a value of 𝑑 for a distinct arithmetic progression,

consisting of 2𝑟0 = 16 terms. Thus, 𝑑 = 1, 3, . . . , 11, 13, and #(𝑁, 24) = 7.

Combining all the cases, we have #(1800, 2𝑗) = 899 + 149 + 32 + 7 = 1087. We stress
again that if needed, we can construct any of these 1087 arithmetic progressions by using
the values of 𝑟, the common difference 𝑑, and the first term 𝑎. This is also the case for any
of the arithmetic progressions counted below.

1B. The case for #(1800, 3𝑗) is similar. If 𝑟 = 3𝑗 , then 3𝑗|𝑁(= 233252 = 32𝑁0), where

𝑁0 = 200 and 𝑗 = 1 or 2. By Theorem 4.2, each of the integers from 1 to
⌊︁
2𝑝𝑘−𝑗𝑁0−1

𝑝𝑗−1

⌋︁
=⌊︁

400×32−𝑗−1
3𝑗−1

⌋︁
gives rise to a value of 𝑑 for a distinct arithmetic progression.

(a) For 𝑗 = 1, #(1800, 31) =
⌊︀
1199
2

⌋︀
= 599. There is a representation for 𝑟 = 3 for each

𝑑 = 1, 2, 3, . . . , 599.

(b) For 𝑗 = 2, #(1800, 32) =
⌊︀
399
8

⌋︀
= 49. There is a representation for 𝑟 = 9 for each

𝑑 = 1, 2, . . . , 49.

Combining the above two cases, we have that #(1800, 3𝑗) = 599+49 = 648. Note that we
need not compute #(𝑁, 2𝑝𝑗) described in Part (2) of Theorem 4.2 since here 𝑁0 is not an
odd integer and it is not the case that 𝑟 = 2𝑝𝑗 - 𝑁 .

1C. The case for #(1800, 5𝑗) is also similar. If 𝑟 = 5𝑗 , then 5𝑗|𝑁(= 233252 = 52𝑁0 = 52×72),

and 𝑗 = 1 or 2. Each of the integers from 1 to
⌊︁
144×52−𝑗−1

5𝑗−1

⌋︁
gives rise to a value of 𝑑 for a

different arithmetic progression.

(a) For 𝑗 = 1, #(1800, 5) =
⌊︀
719
4

⌋︀
= 179.

(b) For 𝑗 = 2, #(1800, 52) =
⌊︀
143
24

⌋︀
= 5.

Combining the above two cases, we have that #(1800, 5𝑗) = 179 + 5 = 184.

2. We now consider #(1800, 𝑟) for 𝑟 = 2𝑗13𝑗25𝑗3 , where at least two of 𝑗1, 𝑗2 and 𝑗3 are greater
than zero.
2A. For 𝑗1 = 0, 𝑟 = 3𝑗25𝑗3 . This is the case described in Equation (10), except that we have

only two prime powers instead of three. In this case 𝑟|𝑁 , and each of 𝑗2 and 𝑗3 can be 1

or 2. The complementary factor 𝑠 of 𝑟 will then be 𝑠 = 2332−𝑗252−𝑗3 and the condition
1
2
(𝑟 − 1)𝑑 < 𝑠 or 𝑑 < 2𝑠

𝑟−1
= 2432−𝑗252−𝑗3

3𝑗25𝑗3−1
. Thus, there is a representation for 𝑟 = 3𝑗25𝑗3 for

each value of 𝑑 = 1, 2, . . . ,
⌊︁
2432−𝑗252−𝑗3−1

3𝑗25𝑗3−1

⌋︁
, and for each such 𝑑, the corresponding initial

term is 𝑎 = 𝑝𝑘1−𝑗1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3𝑁0 − 1
2
(𝑝𝑗1𝑞𝑗2𝑡𝑗3 − 1) 𝑑.

(a) (𝑗2, 𝑗3) = (1, 1), 𝑟 = 3𝑗25𝑗3 = 15, and
⌊︁
2432−𝑗252−𝑗3−1

3𝑗25𝑗3−1

⌋︁
=

⌊︀
239
14

⌋︀
= 17.

(b) (𝑗2, 𝑗3) = (2, 1), 𝑟 = 3𝑗25𝑗3 = 45, and
⌊︁
2432−𝑗252−𝑗3−1

3𝑗25𝑗3−1

⌋︁
=

⌊︀
80
44

⌋︀
= 1.
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(c) (𝑗2, 𝑗3) = (1, 2), and (𝑗2, 𝑗3) = (2, 2); 2432−𝑗252−𝑗3 < 3𝑗25𝑗3 − 1, and hence,⌊︁
2432−𝑗252−𝑗3−1

3𝑗25𝑗3−1

⌋︁
= 0. There are no representations for these cases.

Combining all the cases in 2A, we have #(1800, 3𝑗25𝑗3)= 17 + 1 = 18.

In the following, we will consider the cases when 𝑗1 > 0. Depending on whether 𝑟 =

2𝑗13𝑗25𝑗3 is a factor of 𝑁 = 233252 or not, there are two possibilities:

i) If 𝑟|𝑁 then 1 ≤ 𝑗1 ≤ 3, 0 ≤ 𝑗2 ≤ 2 and 0 ≤ 𝑗3 ≤ 2, but at least one of 𝑗2 and 𝑗3 is
nonzero. In this case, 𝑟 is an even integer, and by Theorem 4.3, 𝑑 can only be an even
integer less than or equal to

⌊︁
2𝑘1−𝑗1+1𝑞𝑘2−𝑗2 𝑡𝑘3−𝑗3𝑁0−1

2𝑗1𝑞𝑗2 𝑡𝑗3−1

⌋︁
.

ii). If 𝑟 - 𝑁 , then 𝑗1 = 𝑘1 + 1 = 4, and 𝑑 will be an odd integer less than or equal
to
⌊︁
𝑞𝑘2−𝑗2 𝑡𝑘3−𝑗3𝑁0−1

2𝑘1+1𝑞𝑗2 𝑡𝑗3−1

⌋︁
.

2B. Consider the possibility i), when 𝑟|𝑁 . In this case 𝑟 = 2𝑗13𝑗25𝑗3 with 1 ≤ 𝑗1 ≤ 3, 1 ≤ 𝑗2 ≤
2 and 1 ≤ 𝑗3 ≤ 2, and there is a representation for each

𝑑 ≤
⌊︂
2𝑘1−𝑗1+1𝑞𝑘2−𝑗2𝑡𝑘3−𝑗3 − 1

2𝑗1𝑞𝑗2𝑡𝑗3 − 1

⌋︂
=

⌊︂
24−𝑗132−𝑗252−𝑗3 − 1

2𝑗13𝑗25𝑗3 − 1

⌋︂
.

We now compute all the cases for 𝑟|𝑁 :

(a) 𝑗1 = 1

∙ (𝑗2, 𝑗3) = (1, 0). 𝑟 = 2× 3 = 6, and 𝑑 is an even integer ≤
⌊︁
24−𝑗132−𝑗2 52−𝑗3−1

2𝑗13𝑗25𝑗3−1

⌋︁
=⌊︀

599
5

⌋︀
= 119. Thus, #(1800, 𝑟) = 118

2
= 59.

∙ (𝑗2, 𝑗3) = (0, 1). 𝑟 = 2 × 5 = 10, and 𝑑 is an even integer ≤
⌊︀
360−1

9

⌋︀
= 39, or

𝑑 = 2, 4, . . . , 38. Thus, #(1800, 𝑟) = 19.
∙ (𝑗2, 𝑗3) = (1, 1). 𝑟 = 2× 3× 5 = 30, and 𝑑 is an even integer ≤

⌊︀
120−1
29

⌋︀
= 4, or

𝑑 = 2 or 4. Thus, #(1800, 𝑟) = 2.
∙ (𝑗2, 𝑗3) = (2, 0). 𝑟 = 2 × 9 = 18 and 𝑑, is an even integer ≤

⌊︀
200−1
17

⌋︀
= 11, or

𝑑 = 2, 4, 6, 8, 10. Thus, #(1800, 𝑟) = 5.
∙ (𝑗2, 𝑗3) = (0, 2), (1, 2), (2, 1), or (2, 2). In each of these cases, 24−𝑗132−𝑗2 52−𝑗3−1

2𝑗13𝑗25𝑗3−1

< 2, and
⌊︁
24−𝑗132−𝑗2 52−𝑗3−1

2𝑗13𝑗25𝑗3−1

⌋︁
≤ 1. There cannot be any even integer for 𝑑 in these

cases, and consequently, and there are no representations in these cases.

Combining all the above for 𝑗1 = 1, we have #(1800, 𝑟) = 59 + 19 + 2 + 5 = 85.

(b) 𝑗1 = 2

∙ (𝑗2, 𝑗3) = (1, 0). 𝑟 = 22×3 = 12, and𝑑 is an even integer≤
⌊︁
24−𝑗132−𝑗2 52−𝑗3−1

2𝑗13𝑗25𝑗3−1

⌋︁
=⌊︀

299
11

⌋︀
= 27, or 𝑑 = 2, 4, . . . , 26. Thus, #(1800, 𝑟) = 13.

∙ (𝑗2, 𝑗3) = (0, 1). 𝑟 = 22 × 5 = 20, and 𝑑 is an even integer ≤
⌊︀
180−1
19

⌋︀
= 9, or

𝑑 = 2, 4, 6, 8. Thus, #(1800, 𝑟) = 4.
∙ (𝑗2, 𝑗3) = (2, 0). 𝑟 = 22 × 9 = 36, and 𝑑 is an even integer ≤

⌊︀
100−1
35

⌋︀
= 2, or

𝑑 = 2. Thus, #(1800, 𝑟) = 1.

256



∙ (𝑗2, 𝑗3) = (1, 1), (0, 2), (1, 2), (2, 1) or (2, 2).
⌊︁
24−𝑗132−𝑗2 52−𝑗3−1

2𝑗13𝑗25𝑗3−1

⌋︁
= 0. No

representations in such cases.

Combining all the above for 𝑗1 = 2, we have #(1800, 𝑟) = 13 + 4 + 1 = 18.

(c) 𝑗1 = 3

∙ (𝑗2, 𝑗3) = (1, 0). 𝑟 = 23×3 = 24 and 𝑑 is an even integer≤
⌊︁
24−𝑗132−𝑗2 52−𝑗3−1

2𝑗13𝑗25𝑗3−1

⌋︁
=⌊︀

149
23

⌋︀
= 6, or 𝑑 = 2, 4, 6. Thus, #(1800, 𝑟) = 3.

∙ (𝑗2, 𝑗3) = (0, 1). 𝑟 = 23 × 5 = 40 and 𝑑 is an even integer ≤
⌊︀
90−1
39

⌋︀
= 2 or

𝑑 = 2. Thus, #(1800, 𝑟) = 1.

∙ (𝑗2, 𝑗3) = (1, 1), (0, 2), (2, 0), (1, 2), (2, 1) or (2, 2) .
⌊︁
24−𝑗132−𝑗2 52−𝑗3−1

2𝑗13𝑗25𝑗3−1

⌋︁
= 0.

No representations in such cases.

For 𝑗1 = 3, #(1800, 𝑟) = 3 + 1 = 4.

Summing up all the results for 2B for 𝑗1 = 1, 2, and 3: #(1800, 𝑟) = 85 + 18 + 4 = 107.

2C. Now, consider the possibility ii) when 𝑟 - 𝑁 . Then 𝑟 = 2𝑟0 and 𝑟0|𝑁(= 233252). From
these we may conclude that 𝑗1 = 4 and 𝑟 = 243𝑗25𝑗3 with 1 ≤ 𝑗1 ≤ 3, 1 ≤ 𝑗2 ≤ 2, and
𝑠0 = 32−𝑗252−𝑗3 . Furthermore, from Theorem 4.3, we know that there is a representation
for each odd integer 𝑑 ≤

⌊︁
32−𝑗252−𝑗3−1
243𝑗25𝑗3−1

⌋︁
.

We can check quickly that the only way for #(1800, 𝑟) ̸= 0 in this case is for 𝑟 = 243150 = 48.
All other combinations of 𝑟 = 243𝑗25𝑗3 with 1 ≤ 𝑗1 ≤ 3, 1 ≤ 𝑗2 ≤ 2, will make #(1800, 𝑟) = 0.
For the case that 𝑟 = 48, 𝑟0 = 24, 𝑠0 = 3× 52 = 75, and

𝑑 =

⌊︂
32−𝑗252−𝑗3 − 1

243𝑗25𝑗3 − 1

⌋︂
=

⌊︂
3× 52 − 1

243𝑗25𝑗3 − 1

⌋︂
=

⌊︂
74

47

⌋︂
= 1.

Summing all the results of above for 1A, 1B, 1C, 2A, 2B, and 2C, we may conclude that

#(1800) = 1087 + 648 + 184 + 18 + 107 + 1 = 2045.

This is the total number of ways that 1800 can be written as sums of arithmetic progressions.

We wish to emphasize again that for any of the 2045 ways of representing 1800 as sums of
arithmetic progressions, it is easy to find the arithmetic progressions themselves. All we need is
to find the first term 𝑎 of the progression for the given 𝑟 and 𝑑, using either Theorem 4.3 or one of
the earlier theorems. then keep adding 𝑑’s to 𝑎 until all 𝑟 terms of the progression are found. For
instance, for the representation of 1800 as the sum of an arithmetic progression of 48 terms, since
in this case 𝑑 = 1, 𝑟0 = 𝑟

2
= 24, and 𝑠0 =

1800
24

= 75, by Theorem 4.3, (or even Theorem 2.1), the
first term of the progression is 𝑎 = 1

2
[𝑠0 − (2𝑟0 − 1)𝑑] = 1

2
[75− 47] = 14, and the progression is

14 + 15 + · · ·+ 60 + 61 = 1800.
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6 Concluding remarks
J. J. Sylvester showed in his original paper [11] that the number of ways a positive integer 𝑁 can
be represented as sums of consecutive integers is equal to the number of odd factors of 𝑁 that is
greater than 1. We now see that the number of ways a positive integer 𝑁 can be represented as
sums of arithmetic progressions 𝑆(𝑎, 𝑟, 𝑑) is also closely related to the factors of 𝑁 , but in a more
complicated way: we need to find among the factors of 𝑁 the admissible values for 𝑟 or 𝑟0 and
use the conditions on 𝑟 and 𝑟0 to find these representations. With some patience, we may find all
the possible representations for any positive integer 𝑁 with our procedure. For instance, from our
computations, we found that the integer 1800 can be written as sums of arithmetic progressions
consisting of as few as 2 terms and as many as 48 terms, and our method also allows us to produce
any of these arithmetic progressions.

In the second part of our paper, we will take up the problem initiated by Wheatstone again,
by using as the main tool, an extension of a method recently introduced by Junaidu, Laradje and
Umar, to study the relationships among various representations for different powers of an integer.
Though these relationships provide us certain new insights for the representations studied in this
part of the paper, each part of the paper can essentially be read independently from the other part.
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