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1 Introduction

In[16], Sir William Rowan Hamilton defined the quaternions. Quaternions form anoncommutative,
associative algebra over R

H={a+bi+cj+dk|ab,ecdeR}

where 2 = j2 = k? = —1,ij = —ji = k, jk = —kj = i and ki = —ik = j are known as
Hamilton’s rules (see [16,27]).
It is well known that the Fibonacci sequence { F},} is defined by the following homogeneous
linear recurrence relation:
F,=F, 1+ F, 9

for n > 2, where Fy = 0 and F7; = 1. In [22], it can be obtained miscellaneous properties
involving Fibonacci numbers. The initial work began with Fibonacci sequences in algebraic
structures that Wall [28] investigated in cyclic groups. Number theoretic properties such as these
get from homogeneous linear recurrence relations relevant to this subject have been researched
recently by many authors; see for example, [2—15,17-21,23,25,26,29]. In [1], the author studied
the complex-type Pell p-numbers modulo m and get the periods and the ranks of the complex-type
Pell p-numbers modulo m. Deveci and Shannon [11] extended the theory to the quaternions. Lii
and Wang demonstrated that the k-step Fibonacci sequence modulo m is simply periodic [24].

After a given point, a sequence is considered periodic if all it consists of is repeated iterations of
a fixed subsequence. The number of elements in the shortest repeating subsequence determines the
period of sequence. As an illustration, the sequence e, f, g, h,i, f, g, h,i, f, g, h,t, ... is periodic
and has a period of 4 following the first element e. If the first £ components of a sequence
form a repeating subsequence, the sequence is simply periodic with period k. The sequence
e,f,g,h,t,e, f,g,h,1,e, f,g,h,i,..., forinstance, is merely periodic with period 5.

In Section 2, we define the six different quaternion-type cyclic-Fibonacci sequences and then
present some properties, such as, the Cassini formulas, generating function. Also, we get the
relationship between the Fibonacci sequence and the first three quaternion-type cyclic-Fibonacci
numbers. In Section 3, we study quaternion-type cyclic-Fibonacci sequences modulo m and then,
we give the relationships between the lengths of periods of the quaternion-type cyclic-Fibonacci
sequences of the first, second, third, fourth, fifth and sixth kind modulo m and the generating
matrices of these sequences. In Section 4, we introduce the quaternion-type cyclic-Fibonacci
sequences in groups. After this, we calculate the quaternion Fibonacci lengths of generalized
quaternion groups. Finally, we give a specific example for sequences of quaternion groups (s

and Q16-

2 The quaternion-type cyclic-Fibonacci sequences

In this section, we will introduce six different quaternion-type cyclic-Fibonacci sequences for any
positive integer number n > 2. Then, we will present miscellaneous properties of these sequences.
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Definition 2.1. Define the quaternion-type cyclic-Fibonacci sequences of the first, second, third,
fourth, fifth and sixth kind, respectively:

( Jpg kT, f n=0(3), ( kap o +ivh g if n=0(3),

Ty = drh o+ jry ., if n=1(3), v = Jrn g tkan_ if n=1(3),
kxl o +ixl | if n=2(3), \ ir? o+ if n=2(3),

iy jrhy i n=0(3), (ot kel i n=0(3)

a2 = kad ,+ixd | if n=1(3), b= kxt ,4dxt | ifn=1(3)
| Jrnotkan_y if n=2(3) | iy T, i n=2(3),

( kad_,+ixd o, if n=0(3), (xS, + 28 if n=0(3),

ay = drh o+ jah ., if n=1(3), = Jrh g kay_ if n=1(3),
L jn otk if n=2(3), L kal,_p +izg i n=2(3),

the initial conditions for all type are ] = 0 and 27 =1 (1 < 7 < 6).

Let the entries of the matrices A and B be the elements of the quaternion-type cyclic-Fibonacci

sequences,

A =
ba1 b2

Q21 Q22

b b ]

an a12] and B =

then the following properties hold:

a11b11 + a12091  a11b12 + a12bao ]

(i) Ax B=
a21011 + a22b21  az1bia + agbas

(ll) det A = 110922 — A12027.
(1ii). det(A- B) = det A - det B.
(iv). A" = A1 x A (n€Z").

Since the multiplication of quaternions is not commutative, the above properties are given
considering multiplicative order. Therefore, it is easy to see that

det A - det B # det B - det A

and
A1 x A # A X AL,

In order to easy in our operations, we define €(7) as follows:
i ifn=0(03),
en) =4 k if n=1(3), 2.1)
i if n=2(3),
where € Z*T. We will give relation these sequences to the well-known classic Fibonacci

sequence
—(=1)3 FLe(t + 2) if n=0 (3),

m =< (=1)"5 F, if n=1(3),
(=1)"5" Foe(r + 1) if n=2(3),

where 7 = 1,2, 3 and ¢(7) is as defined in the Equation (2.1).
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Now, we introduce matrices for the quaternion-type cyclic-Fibonacci sequences, similar to the
(-matrix for classic Fibonacci sequence. We can write for these sequences

-3 —2¢(T + 2)

G, =
2e(T 4+ 2) -1

forr=1,2,3, 2.2)

and
¢ - [ l—e(r+1)+e(r) e(r)+e(r—1)

) her—1)  e(r—1) ]f(’”—4’576- 2.3)

By iterative operations on n, we find

1.7' _xT
G )" = | 3 3n for 7 =1,2,3, 2.4
() [ W ahelr +1) 24
and
(G =| Tt 92 for =456, 2.5)
xSn 922
where n > 1,

2 = 3 s (elr +2) + () (el +2)"

Goz = i 2%, (e(T 4+ 2) 4+ (1)) (e(m +2))" " + (e(m +2))".

Now we obtain the Cassini formula for the quaternion-type cyclic-Fibonacci sequences. By
using the determinant function and the Equations (2.2), (2.4), we have

$§n+1$§n—15(7 + 1) + (xgn)2 = (_1>n fOI‘ T = 17 27 3. (26)
By using the determinant function and the Equations (2.3), (2.5), we have
T, 1922 — g1225, = (1 + 2€(7 + 2) — 2¢(7))" for 7 =4,5,6. (2.7)

Lemma 2.1. We give the recurrence relations for the quaternion-type cyclic-Fibonacci sequences
as follows:

(i). a] = —dal s+l o (1=1,2,3).

n—6’

(it). af = (14+2e(n+7—1)—€e(n+7))al_s—en+7)al_4 (1 =4,5,6).

Proof.  (i). The proof will only be done for the case 7 = 1, the others are done similarly. By
Definition 2.1, we get
T30 = k301 + JT30_2 »
T3t = JT3y + 13,1

1 a1 1
T340 = 3,41 + ka3, .
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Thus, we have
xil’»n+2 = imil’:n+1 + /{Z;L’:l,m
= 2kxl — 13,
= _‘ril’)n—l + 2k (kxén—l + jxén—2)
= —3x}, , + k2jxl, .
And then, since 2jz3, , = k (23, , — z},_,), we obtain
Tyro = —4T3, 1 + X3, 4. (2.8)
Similarly, we can write
$§n+1 = Jg, + i3,
= Qixil,m_l — xén_Q
= a3, o+ 2i (imén,Q + kxénfg,)
= —3x3, o +i2kxy, ..
And then, since 2kzj, 4 =i (2}, , — z3,_5), we acquire
Ty = —4T3, o + T3, 5. (2.9)
Similarly, we have
T3 = k31 + 23,9
- 2jxén—2 - $§’>n—3
= _:Cil’)nfB + 2] (jlén,g) + Z"Til’mfll)
= —3x}, 4+ 52z}, .
And then, since 2iz}, , = j (23, 5 — z3,_¢), We get

T, = —4T3,_3 + T3, _- (2.10)

From the Equations (2.8), (2.9) and (2.10), we obtain z! = —4z! .+ z! . as required.

). The proof will only be done for the case 7 = 4, the others are done similarly. By Definition

2.1, we get
4 7.4 . 4
T3, = kx3, 1 + T3, o,
xd =izt + kad
3n+1 — 3n 3n—1 >
xh =i o 4axd
3n+2 = JT3n+41 3n -
Thus, we have

4 .4 4
Tapio = JT3,41 T 1T3,

= (i — k)3, +ir3, ,
= i, oy + (i — k) (kag, | + jos, )
= (14— j)as,_, + (k+1i)a5,_,
And then, since (k + i)x3, , =ix3, | — jx3, ,, we obtain
4

Tapyo = (1420 — )5, 1 — jT5,_4- 2.11)
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Similarly, we can write
w%n—&—l = Zlén + kx%n—l

= (_] + k)xénfl + kx%an

= kmén—Q + (_j + k) (jxén—Q + ix%n—(i)

= (1 =i+ k)ag, o+ (k + 1), 5
And then, since (k + j)x3,_5 = ka3, o — ix3,_5, We acquire

Ty = (14 2k —i)ag,_o — ixy, 5. (2.12)

Similarly, we have

xén = kxénfl +jx§n72

= (_Z + j)mén—Q + jx%n—i’)

= J s+ (=i +J) (iz5, 5 + kas, 4)
And then, since (i + j)x4, , = jxa, 5 — kx4, s We get

x5, = (1+ 25 — k)3, 5 — kag, . (2.13)
From the Equations (2.11), (2.12) and (2.13), we obtain
vt = (1+2n) —e(n+1))at 5 —e(n+1a?

as required. ]

In the following theorem, we develop the generating functions for the quaternion-type cyclic-
Fibonacci sequences.

Theorem 2.1. The generating functions of the {x]} are

. = e(T 2 e(7 34t —e(r 5
(z). Zlofcﬁt” _ tde(r+1)t +214(F4J£321tt6+t (T+1)t : (T — 1, 2’ 3)'

14+2e(7—1)—e(7))t3+€(T) 14+2e(7T)—e(741))t3+e(T+1)t0

e(TH2)12+(—e(T+1)+2e(T42) +2¢(7))t° o
T A ) (r ) P20 (1=4,5,6).

w -
(ZZ) Z JTZLt" = T (—e(r+D)+e(r—1))t* - + — t—e(T)t!
n=0

Proof.  (i). Assume that f(t) is the generating function of the {«] } for 7 = 1, 2, 3. Then we have

fF) =Y agt.
n=0
From Lemma 2.1, we obtain
o0
F)=af+alt+ a3t +25t® +aft + 250 + Y (—dal_y+a] o) t"
n=6

= af + ot + 23t® + 2}t + 2t + 2t — 4 (f(t) — ) — a7t — a3t?) 0+ f(0)t°.
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Now the rearrangement of the equation implies that

_ (b ajt? + 2l + (af + da]) ¢ + (af + 4a) £

t
f() 1 4 4¢3 — ¢6 !

which equals to the left-hand sides ) z7¢" in the Theorem.

n=0

(77). The proof can be done similarly to (7). O

3 The quaternion-type cyclic-Fibonacci sequence modulo m

In this section, we study quaternion-type cyclic-Fibonacci sequences modulo m. Then, we give
the relationships between the lengths of periods of the quaternion-type cyclic-Fibonacci sequences
of the first, second, third, fourth, fifth and sixth kind modulo m and the generating matrices of
these sequences.

Let f,, denote the n-th member of the Fibonacci sequences fo = a, fi = b, foi1 = fu + fno1
(n>1).

Theorem 3.1. (Wall, [28]) f,, (mod m) forms a simply periodic sequence. That is, the sequence
is periodic and repeats by returning to its starting values.

The length of the period of the ordinary Fibonacci sequence { F,,} modulo m was denoted by

If we take the least nonnegative residues and decrease the first, second, third, fourth, fifth, and
sixth kinds of quaternion-type cyclic-Fibonacci sequences modulo m, we obtain the following
recurrence sequences:

{z, (m)} = {21 (m), 25 (m), ..., ay(m), ...}

for every integer 1 < 7 <6, where z (m) is used to mean the u-th element of the 7-th
quaternion-type cyclic-Fibonacci sequence when read modulo m. We observe here that the
recurrence relations in the sequences {z], (m)} and {x] } are the same.

Theorem 3.2. The sequences {z], (m)} are periodic and the lengths of their periods are divisible
by 3.

Proof. Let us consider the quaternion-type cyclic-Fibonacci sequence of the first kind {z}} as an
example. Consider the set

Q = {(q1, @) | q.’s are quaternions a,, + b,i + ¢,j + d,k wherea,, b,, ¢, and d,,
are integers such that 0 < a,, b, ¢,, d, <m —landu € {1,2}}.

Suppose that the cardinality of the set () is denoted by the notation |@)|. Since the set () is finite,
there are || distinct 2-tuples of the quaternion-type cyclic-Fibonacci sequences of the first kind
{z1} modulo m. Thus, it is clear that at least one of these 2-tuples appears twice in the sequence
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{z), (m)}. Let z (m) = 25 (m) and z,,, (m) = x4, (m). If § —a = 0(mod3), then we
get zl,, (m) = xp,y (m), x5 3 (m) = 25,5 (m), ... So, it is easy to see that the subsequence
following this 2-tuple repeats; that is, {z! (m)} is a periodic sequence and the length of its period
must be divisible by 3.

The proofs for the sequences {z2}, {23}, {22}, {«>} and {28} are similar to the above and
are omitted. U

We next denote the lengths of periods of the sequences {z], (m)} by l- (m) .

vk A, = k g
10 10
Suppose that G1 = A3A2A1, Gg = A2A1A3, G3 = A1A3A2, Gi; = A1A2A3, G/5 = A3A1A2 and
Gy = A2A3A;. Using the above, we define the following matrices:

Consider the matrices

Jot

A, —
! 10

and Az =

I3

([ (Gy)? ifn=0(3), ([ (Gy)3 ifn =0 (3),
M) ={ A (G)T  ifn=1(3), M)"=Q A(G)5  ifn=1(3),
| A4, (G5 ifn=2(3), | A145(Go)5 ifn=2(3),
([ (Gs)? ifn=0(3), ([ (G)® ifn=0(3),
(M) =4 A, (Gg)nT;lQ ifn=1(3), M) =4 A, (G;)"T:2 ifn=1(3),
[ A3Ay (G3) = ifn=2(3), [ A2 A3 (GYy) & ifn=2(3),
([ (GL)¢ ifn=0(3), ([ (G))F ifn=0(3),
(Ms)" =4 A, (G;)"T‘: Citn=1(), (M)'={ A (Gg)”il ifn=1(3),
| A4, (GL)5 ifn=2(3), | AsA; (G5 ifn=2(3).

Then we get

where 7 is an integer such that 1 < 7 < 6. Therefore, we immediately deduce that [, (m) is the
smallest positive integer « such that (M, )® = I(mod m) for every integer 1 < 7 < 6.

4 The quaternion-type cyclic-Fibonacci sequence in groups

In this section, we will define six different quaternion-type cyclic-Fibonacci sequences in finite
groups. Subsequently, we will examine the quaternion-type cyclic-Fibonacci orbits of the first,
second, third, fourth, fifth and sixth kinds of the generalized quaternion group. Finally, we will
give a specific example for sequences of quaternion groups (s and ()45.

Let GG be a 2-generator group and let

X ={(x1,22) € G x G| {z1,22}) = G}.

We call (1, x2) a generating pair for G.
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Definition 4.1. Let G be a 2-generator group. For the generating pair (x,y), we define the
quaternion-type cyclic-Fibonacci orbits of the first, second, third, fourth, fifth and sixth kinds of
G as follows, respectively:

(a1 5) (@) fn=0(3), (a7 5)*(an )" I n=0(3)
a, = a}z—z)l(ai—ly if n=1(3), ay = (ai_y {(ai—l)% ifn=1(3)
| (an2)*(a,1)  if n=2(3), [ (@h o) (ar ) if n=2(3),
(a3 o)) ifn=0(3) (@)@ )F Fn=0(3),
B={ (@ )Ma ) Fn=1(),  di=1 (@,)al)  Fn=1(3)
| (a5 o) (a1)f  fn=2(3) [ (an2)'(any)  ifn=2(3),
( (an-o)*(an0)" i n=0(3), ( (an—)'(an_r) ' n=0(3),
dp =14 (@) (a ) Fn=1(3) an =1 (@) (@ )" Fn=1(3)
L (ay_o) (ap_1)* if n=2(3) L (a5,_5)"(a5,_,)’ if n=2(3),

forn > 2, with initial conditions a = x and a] = y (1 < 7 < 6), where the following conditions
hold for every x,y € G:

(7). Let ¢ = a + bi + ¢j + dk such that a,b, c and d are integers and let e be the identity of G,
then

a(mod|x|)+b(mod|x|)i+c(mod|z|)j+d(mod|x|)k a(mod|:c|)xb(modkc|)ixc(m0d\x|)jxd(mod\x|)k

x x9=x =z

* (z)* = (x)", where u € {i, j, k} and a is an integer.

0+0i+05+0k

x el =cecandzx =e

(ZZ) Letq1 = @1+bli+01j+d1k (ll’ldQQ = a2+b2’i+02j‘|—d2k such thatal, bl, C1, dl, as, bg, Ca, dg
are integers, then (11 x%2)~! = p=927~%,

(i11). If vy # yx, then x¥y" # y“z* for u € {i, j, k}.
(iv). (zy)" =y a foru € {i, j, k}.

(U). (xmyuQ)“S = gustigusuz, (xyul)“2 = g2y¥2" gnd (xuly)UQ = 2"2%MyY2 for uy, U, ug €
{i,7,k} and so (z*“1y")" = 71y~ L,

(vi). Foruy,us € {i, j, k} such that uy # ug, x"'y"2 = y*22"1, zy"t = y“1z, 2"y = yz** and

u1 —1,,u1

so (xy*)" = 2y~ and (z"1y)" = 7 y".

Let the notation F&:Ty) (G) denote the 7-th quaternion-type cyclic-Fibonacci orbit of the group
G for the generating pair (z, y). From the definition of the orbit F (‘;’;) (@) itis clear that the length
of the period of this sequence in a finite group depend on the chosen generating pair and the order
in which the assignments of z, y are made.

Theorem4.1. Let G be a 2-generator group. If G is finite, then the quaternion-type cyclic-Fibonacci
orbits of the first, second, third, fourth, fifth and sixth kinds of G are periodic and the lengths of
their periods are divisible by 3.

234



Proof. Let us consider the 2nd quaternion-type cyclic-Fibonacci orbit of the group GG. Consider
the set

9

S — {(Sl)al (rnod|51 ‘)+b1 (mOd‘S1 |)i+cl (mod\sl |)j+d1 (mod|31 ‘)k (Sz)ag(mod|52\)erg(mod\a*g|)i+02(mod\52|)j+d2(mod|32\)k .

51, 82 € G and a1, a2, b17b27cl7627d17d27 € Z} .

Since the group G is finite, S is a finite set. Then for any v > 0, there exists v > u such that

a2 =aZand a2, = a2,,. If v — u = 0(mod3), then we get a2, = a2 ,, a2 5 = a’,,, ...
Because of the repeating, for all generating pairs, the sequence F| (‘;’Z) (@) is periodic and the length
of its period must be divisible by 3.

The proofs for the orbits F(‘fy) (@), F(‘f)f’y) (@), F&j’y) (@), F(q’y) (G) and F(‘ify) (@) are similar

to the above and are omitted. ]

We next denote the lengths of the periods of the orbits F{7’ ) (G) by L") (G )
We shall now address the lengths of the periods of the orbits Fq7 (Q2m+1) (Q2m+1)
y) (Qam+1), F zy) (Qam+1), F (w’y) (Qgm+1) and F‘i’ () (Q2me1). It is well- known that the

generalized quaternion group QQom+1 of order 2™ is defined by the presentation

Qomir = (m,y | 2" =yt =1, 22" =% ylay =271

(Qam1) = LEL2 (Qamar) = LEE  (Qomer) = 3.2m7,

(z,y)
Proof. By direct calculation, we obtain the orbits F(‘i’ sy (Qam1), F(ny) (Qgm+1) and Féj y) (Qam1)
as follows, respectively. Firstly, the orbit F(qz’ly) (Qam+1) is

Theorem 4.2. For m > 2, LFq’

(z,y)

1 1 1 ik 1 2j—1 1 —2j 1 —i —3k
ap = x, ay; =y, ay =y'x", az =y“rx ", a, =yx~ | az =y ‘v,
1_ .5 - — yig13k, 12, —21 1 —34j 1 —i, —55k
ag =x°, a; =yx agfyx ag =y, aj,=yx "V, a;; =y T,
1,89 1 1443 i, 233k 1 _ 25, 377 1 _ . —610j 1 _ i, —98Tk
g =2, Q3 =Yx =Yyr o, G=Y°r g = YT y Q7 =Y X
1 Fon1 1 Fenj 1 _ i Fonyik
Agp, = 7777, Agp1 = YT 7, Uppyp = Y 27,
1 2 —Fenyo 1 —Feniaj 1 =i, —Fentak
Agpi3 =Y7T 70, Qgpyg = YT T, gy =Y T T
. . 2
Secondly, we take into account the orbit F(‘i’ v) (Q2m+1). We have the sequence
2 _ 2 _ 2 _ i 2 _ 2k —1 2 _ . —2% 2 _ o~ =3
ayg =, a =Y, Ay =Yy T, ag =Yy T -, ay = Yo ) as =Y "X )
2 _ .5 2 — yath, 2 g 13i 2 _ 2k —21 2 _ . —34k 2 —j.—55i
g =2, Q7r=Yyr ag = Y g =Yy "x =, ag=yYx ;o apn =y T,

2 _ .89 14tk 2 283 2 T 2610k 2 8T
ajy = 2%, aly =y =Y Ay =Y T ~, Qg =Yx y Q17 =Y X )
2 _ _Fen_1 2 Fg k 2 Fg +1Z

Agp, = T 777, Agp1 = YT ™" g = Y 270"

2 _ 2k 7F6 +2 _ F6 +3k‘ _ ] F6 +4’i
Agpyg =Y x "7, a6n+4—y95 B a6n+5—y x U

Finally, we consider the 3rd quaternion-type cyclic-Fibonacci orbit of the generalized quaternion

group Qom+1 With respect to the generating pair (z,y), F a3

(@.9) (Qam+1). Using a similar argument

to the above, we obtain the following sequence:
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3 _ 3 _ 3 k.j 3 9 1 39 3k —3j
ag =, ajy =y, ay, =y a’, as; =y“'x ay; =yxr ag =y "z,

3_ .5 3 8 3 ok 13] 3 9 21 3 34 3 —k =
g = T, ay =y, =y Qg =Y~ =7, Q19 = Yo y A=Y T

3 _ 89 3 144d 3k 283 3 23T 3 _ 610 3 _ .k —987j
aj, =2, ajs=yr ', ay =y ajs =y-'x , Qg = YT , Ay, =Yy oy ,

3 _ _Fgn_1 3 o Fgni 3 k_.Fg +1]
Qgp, = T 7077, g1 = YT =", Ogpyo =Y T 7"

3 _ 2t —Fent2 3 _ —Fen43t _ . —k_.—Fg +4j
Agpyz =Y T 7", Agppg = YT 7T a6n+5—y x U,

where F), is the n-th term of the ordinary Fibonacci sequence { F,, }.

It is known that £(2™) = 2™~ 1.3; see [28] for proof. So we get that the lengths of the
periods of the sequences Fq’ ) (Qame1), F (Q2m+1) and Fi’ @3 y) (Q@am1) are lem [6, k(2™)] =
lem [6,2m1.3] = 3.2m7 L. O

Theorem 4.3. For m > 2, LFq’ ) (Qamir) = Fngy (Qam+1) = Fq’ ) (Qamsr) = 3.2

Proof. We prove this by direct calculation. At first, let us consider the 4-th quaternion-type
cyclic-Fibonacci orbit of the generalized quaternion group (Jom+1 with respect to the generating
pair (z,y). The orbit F, ((2,43,,) (Qgm+1) is in the following form:

4 4 4 i 4 i j 4 1—itk j+k 4 Avitii2k —1titk
ay=1z, ay =y, a=yz", az=y"'v), a;=y N
4 1-4i—16§+4k 4 . At4i-16j—16k 4 _ 20—15i—20k
g =T ) a3 = Yxr ) a1y = yx ) ceey
4 _ —495+304i+3605—104k 4 . 632-512i+448j+192k 4 —752-303i—528;+872k
Ay =T , Qgy =YX , a%—yx .,
4  _ _A4dngo+1 4 _ Angqr 4 — 2 J 42
Aiop = y Qiopg1 = YT y Aopta = Y27, ..,

where ¢, (0 <wu < 11) are quaternion numbers which represented in the form ¢, = a, + b, +
cuj + dyk (ay, by, cy,d, € R, 0 <wu < 11) such that ged(qo, g1, G2, -+ ,q11) = 1.
Secondly, we consider the orbit Fq’ (Q2m+1) We obtain the sequence

5 5 _ 5 k. j .5 _ - k—j.k 5 __  1+i—j itk 5 _  1+42i+jt+k. .—1+itj
ay =2, a) =Y, ay =y ', a3 =y" 2" a3 =y T as =y T e
5 _ _1+4i—4j—16k 5 _ . 4-16i+4j—16k 5 k :20~20i— 153
(g = , (3 = Yr ) Ay =Y 1 RS
5 _ . .—655+120i+264j—16k 5 _ . —760—160i—600j—64k 5 k,.—200+584i— 815]'78801@
(Z24—.CE 3 CLQS_@/:U ) aﬁ—yx [ERICR
5 dngy+1 5 4ng, 5 k. .q
_ .4ng _ nq _ q
alQn =z 0 ) a12n+1 =yx 17 a12n+2 =y 27 R

where ¢, (0 < u < 11) are quaternion numbers which represented in the form ¢, = a,, + b.i +
c,j+d,k (au, b, c,d, e¢R, 0<u< 11) such that ged(qy, ¢, @9, 5 ¢yy) = 1.

Finally, we present the 6-th quaternion-type cyclic-Fibonacci orbit of the generalized quaternion
group (Qom+1 with respect to the generating pair (x,y), F, &;i/) (Qgm+1). The orbit F, (iyy) (Qam+1) is

as follows:
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6 6 __ 6 ik 1+]k+

_ _ 14it2j4k, —14j+k
o= 191161':4%}—’%&2 R y4 16— 163+4k r Y 6’ 20y2og 15k v T
CL12 =X y CL13 yl’ a14 — y ZL’ ey

6 _ . —655180i—264j+264k 6 _ 7632+44827288]f632k 6 —712— 368z+712] 943k
agy = , A9y = YT , aSe =y'x .
6 dngy +1 6 ang 6 i
ngq _ o Ang — i
Arop, =T 7077, Qlopyy = YT, Qropio =Y T2, ...,

where ¢, (0 < u < 11) are quaternion numbers which represented in the form ¢, = a, + b.i +
o + dyk (ay, by, c,, d, € R, 0<wu<11) such that ged(gy, ¢1 5 g5, -+, q1y) = 1.

So we need the smallest integer n such that 4n = 2™k for £ € N. Thus it is verified that
the lengths of the periods of the sequences [’ o g (Qame1), i e y) (@2m+1) and F(%fy) (Qam+1) are
12.2m72, [

Now, for the generating pair (z, y), we give the quaternion-type cyclic-Fibonacci orbits of the
quaternion groups Qg and Q6 presented by Qg = (z,y | 2* =1, 22 =42, y Loy = 27!) and
Qis = (v,y |2® =1, 2 =y? y 'wy =a"), respectively.

Example 4.1.
(7). The sequence Fm o (@s) is

ag=x, aj=vy, ay=ya', o=y, af=y"* =y 2,
ag =, ai=y, az=y'a', ag=y*a"", aj, =y, dof, =y" 2
Q%Q =z, a%?) =Y, a§4 = y'a, a% =y, a%6 =y a%7 =y
So LFq’ (Qg) = 6.
(i1). The sequence Fq’ ) (@s) is
aé =z, cfl1 =, a;l = iji ag = yj*ia;j,
at = ylmithygith af = iRyl d 2042k ik g4 i3k
A e aa] ady = fitgimk gh kg
ay, = 1, ajs =y, ay, = y'a’, ajs =1y~
azllﬁ _ yl—i-l—kl,j-&-k’ a4117 _ y1+i+j+2kl,—1+i+k’ azllg — y2j+2k$i+j—k’ ailg — y—i+j+3k’
ady = y Bk kg BT g1k ady = Stk d sk
So, LF’q7 (Qg) =12
(1ii). The sequence Fx (o) (Q16) is
w=x, a=y, ag=yit  ag=yYrl, ag=yle¥ =yl
d=if, al—y d-ye¥ a—ied =y oY, ol =yt
Ay =T, ap =y, ay = y'a", ays = y¥r a%6 =y "z, ay R
a%s =1’ aig =Y, a%o = yilﬁka a%1 = y¥a?, gy = y e, a%3 =y Mk,

which implies that LFI o (Q16) =
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(iv). The sequence Fx (o) (Q16) is

ag =z, a$ =y, al = yizk,
ag = yi—kxi ag = yl—l—j—kxiﬂ" Clg _ y1+7j+2j+kx_1+]‘+k’

a8 =y RRAU RN h g6 g 2mim3i=Shy 2422k g6 Lkihy—3=it3i =2k
a8 = kS dimg k6 i —dmisTi—ak R
) aS, = yattik, pa————s

a?s = yi_kﬁ_?’i, a% = y1+ﬂ—kx4—7z’+j+4k’ a% _ y1+1+2j+kx7+4i—7j+5k7
a8, =y RHRRULOHAY B (6 2B 2Rk (6 Lk THTIT 4O
dyy =y~ agy = y'a", agy =y Ja ",

asy = 537 aSs = v, aS, = y'at,

as; =y~ aSg =y IRy oS, = yl itk —Ikitk
aly =y 2+21+2]x =gk G0 23Sk TRk (0 Lkt —3-it3j-2k,
aSy = y Tk TETAITR g8 — iy AT TR aS, = y iS4k

a8y = 1+t 0l = yattik, o8, = gt

agy = yi7k56473l, aSy =yt kAT 8 — y1+1+2j+kx7+4i77j+5k7
aS, = y FTAAE o=k o6 — y—2—1+33—3k$2+2z+2k’ a8, = yiHithyTHTIHTIOR

which implies that LF ) (Q16) = 24.

Conclusion

In this paper, we defined the quaternion-type cyclic-Fibonacci sequences and then we obtained
the relationships among the elements of these sequences and the generating matrices of these
sequences. Also, we gave the Cassini formula, generating functions of the quaternion-type cyclic-
Fibonacci sequences.

Then, we studied the quaternion-type cyclic-Fibonacci sequences modulo m. Furthermore, we
got the cyclic groups generated by reducing the multiplicative orders of the generating matrices and
the auxiliary equations of these sequences modulo m and then, we investigated the orders of these
cyclic groups. Moreover, using the terms of 2-generator groups which is called the quaternion-type
cyclic-Fibonacci orbit, we redefined the quaternion-type cyclic-Fibonacci sequences. Also, these
sequences in finite groups were examined in detail. With this study, we will gain a new perspective
to the Fibonacci quaternions in the literature.
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