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1 Introduction
In [16], Sir William Rowan Hamilton defined the quaternions. Quaternions form a noncommutative,
associative algebra over R

𝐻 = {𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 | 𝑎, 𝑏, 𝑐, 𝑑 ∈ R}

where 𝑖2 = 𝑗2 = 𝑘2 = −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖 and 𝑘𝑖 = −𝑖𝑘 = 𝑗 are known as
Hamilton’s rules (see [16, 27]).

It is well known that the Fibonacci sequence {𝐹𝑛} is defined by the following homogeneous
linear recurrence relation:

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

for 𝑛 ≥ 2, where 𝐹0 = 0 and 𝐹1 = 1. In [22], it can be obtained miscellaneous properties
involving Fibonacci numbers. The initial work began with Fibonacci sequences in algebraic
structures that Wall [28] investigated in cyclic groups. Number theoretic properties such as these
get from homogeneous linear recurrence relations relevant to this subject have been researched
recently by many authors; see for example, [2–15,17–21,23,25,26,29]. In [1], the author studied
the complex-type Pell 𝑝-numbers modulo 𝑚 and get the periods and the ranks of the complex-type
Pell 𝑝-numbers modulo 𝑚. Deveci and Shannon [11] extended the theory to the quaternions. Lü
and Wang demonstrated that the 𝑘-step Fibonacci sequence modulo 𝑚 is simply periodic [24].

After a given point, a sequence is considered periodic if all it consists of is repeated iterations of
a fixed subsequence. The number of elements in the shortest repeating subsequence determines the
period of sequence. As an illustration, the sequence 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑓, 𝑔, ℎ, 𝑖, 𝑓, 𝑔, ℎ, 𝑖, . . . is periodic
and has a period of 4 following the first element 𝑒. If the first 𝑘 components of a sequence
form a repeating subsequence, the sequence is simply periodic with period 𝑘. The sequence
𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, . . . , for instance, is merely periodic with period 5.

In Section 2, we define the six different quaternion-type cyclic-Fibonacci sequences and then
present some properties, such as, the Cassini formulas, generating function. Also, we get the
relationship between the Fibonacci sequence and the first three quaternion-type cyclic-Fibonacci
numbers. In Section 3, we study quaternion-type cyclic-Fibonacci sequences modulo 𝑚 and then,
we give the relationships between the lengths of periods of the quaternion-type cyclic-Fibonacci
sequences of the first, second, third, fourth, fifth and sixth kind modulo 𝑚 and the generating
matrices of these sequences. In Section 4, we introduce the quaternion-type cyclic-Fibonacci
sequences in groups. After this, we calculate the quaternion Fibonacci lengths of generalized
quaternion groups. Finally, we give a specific example for sequences of quaternion groups 𝑄8

and 𝑄16.

2 The quaternion-type cyclic-Fibonacci sequences
In this section, we will introduce six different quaternion-type cyclic-Fibonacci sequences for any
positive integer number 𝑛 ≥ 2. Then, we will present miscellaneous properties of these sequences.
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Definition 2.1. Define the quaternion-type cyclic-Fibonacci sequences of the first, second, third,
fourth, fifth and sixth kind, respectively:

𝑥1
𝑛 =

⎧⎪⎨⎪⎩
𝑗𝑥1

𝑛−2 + 𝑘𝑥1
𝑛−1 if 𝑛 ≡ 0 (3),

𝑖𝑥1
𝑛−2 + 𝑗𝑥1

𝑛−1 if 𝑛 ≡ 1 (3),
𝑘𝑥1

𝑛−2 + 𝑖𝑥1
𝑛−1 if 𝑛 ≡ 2 (3),

𝑥2
𝑛 =

⎧⎪⎨⎪⎩
𝑘𝑥2

𝑛−2 + 𝑖𝑥2
𝑛−1 if 𝑛 ≡ 0 (3),

𝑗𝑥2
𝑛−2 + 𝑘𝑥2

𝑛−1 if 𝑛 ≡ 1 (3),
𝑖𝑥2

𝑛−2 + 𝑗𝑥2
𝑛−1 if 𝑛 ≡ 2 (3),

𝑥3
𝑛 =

⎧⎪⎨⎪⎩
𝑖𝑥3

𝑛−2 + 𝑗𝑥3
𝑛−1 if 𝑛 ≡ 0 (3),

𝑘𝑥3
𝑛−2 + 𝑖𝑥3

𝑛−1 if 𝑛 ≡ 1 (3),
𝑗𝑥3

𝑛−2 + 𝑘𝑥3
𝑛−1 if 𝑛 ≡ 2 (3),

𝑥4
𝑛 =

⎧⎪⎨⎪⎩
𝑗𝑥4

𝑛−2 + 𝑘𝑥4
𝑛−1 if 𝑛 ≡ 0 (3),

𝑘𝑥4
𝑛−2 + 𝑖𝑥4

𝑛−1 if 𝑛 ≡ 1 (3),
𝑖𝑥4

𝑛−2 + 𝑗𝑥4
𝑛−1 if 𝑛 ≡ 2 (3),

𝑥5
𝑛 =

⎧⎪⎨⎪⎩
𝑘𝑥5

𝑛−2 + 𝑖𝑥5
𝑛−1 if 𝑛 ≡ 0 (3),

𝑖𝑥5
𝑛−2 + 𝑗𝑥5

𝑛−1 if 𝑛 ≡ 1 (3),
𝑗𝑥5

𝑛−2 + 𝑘𝑥5
𝑛−1 if 𝑛 ≡ 2 (3),

𝑥6
𝑛 =

⎧⎪⎨⎪⎩
𝑖𝑥6

𝑛−2 + 𝑗𝑥6
𝑛−1 if 𝑛 ≡ 0 (3),

𝑗𝑥6
𝑛−2 + 𝑘𝑥6

𝑛−1 if 𝑛 ≡ 1 (3),
𝑘𝑥6

𝑛−2 + 𝑖𝑥6
𝑛−1 if 𝑛 ≡ 2 (3),

the initial conditions for all type are 𝑥𝜏
0 = 0 and 𝑥𝜏

1 = 1 (1 ≤ 𝜏 ≤ 6).

Let the entries of the matrices𝐴 and𝐵 be the elements of the quaternion-type cyclic-Fibonacci
sequences,

𝐴 =

[︃
𝑎11 𝑎12
𝑎21 𝑎22

]︃
and 𝐵 =

[︃
𝑏11 𝑏12
𝑏21 𝑏22

]︃
,

then the following properties hold:

(𝑖). 𝐴×𝐵 =

[︃
𝑎11𝑏11 + 𝑎12𝑏21 𝑎11𝑏12 + 𝑎12𝑏22
𝑎21𝑏11 + 𝑎22𝑏21 𝑎21𝑏12 + 𝑎22𝑏22

]︃
.

(𝑖𝑖). det𝐴 = 𝑎11𝑎22 − 𝑎12𝑎21.

(𝑖𝑖𝑖). det(𝐴 ·𝐵) = det𝐴 · det𝐵.

(𝑖𝑣). 𝐴𝑛 = 𝐴𝑛−1 × 𝐴 (𝑛 ∈ Z+).

Since the multiplication of quaternions is not commutative, the above properties are given
considering multiplicative order. Therefore, it is easy to see that

det𝐴 · det𝐵 ̸= det𝐵 · det𝐴

and
𝐴𝑛−1 × 𝐴 ̸= 𝐴× 𝐴𝑛−1.

In order to easy in our operations, we define 𝜖(𝜂) as follows:

𝜖(𝜂) =

⎧⎪⎨⎪⎩
𝑗 if 𝜂 ≡ 0 (3),
𝑘 if 𝜂 ≡ 1 (3),
𝑖 if 𝜂 ≡ 2 (3),

(2.1)

where 𝜂 ∈ Z+. We will give relation these sequences to the well-known classic Fibonacci
sequence

𝑥𝜏
𝑛 =

⎧⎪⎨⎪⎩
−(−1)

𝑛
3𝐹𝑛𝜖(𝜏 + 2) if 𝑛 ≡ 0 (3),

(−1)
𝑛−1
3 𝐹𝑛 if 𝑛 ≡ 1 (3),

(−1)
𝑛−2
3 𝐹𝑛𝜖(𝜏 + 1) if 𝑛 ≡ 2 (3),

where 𝜏 = 1, 2, 3 and 𝜖(𝜏) is as defined in the Equation (2.1).
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Now, we introduce matrices for the quaternion-type cyclic-Fibonacci sequences, similar to the
𝑄-matrix for classic Fibonacci sequence. We can write for these sequences

𝐺𝜏 =

[︃
−3 −2𝜖(𝜏 + 2)

2𝜖(𝜏 + 2) −1

]︃
for 𝜏 = 1, 2, 3, (2.2)

and

𝐺
′

𝜏 =

[︃
1− 𝜖(𝜏 + 1) + 𝜖(𝜏) 𝜖(𝜏) + 𝜖(𝜏 − 1)

−𝜖(𝜏 + 1) + 𝜖(𝜏 − 1) 𝜖(𝜏 − 1)

]︃
for 𝜏 = 4, 5, 6. (2.3)

By iterative operations on 𝑛, we find

(𝐺𝜏 )
𝑛 =

[︃
𝑥𝜏
3𝑛+1 −𝑥𝜏

3𝑛

𝑥𝜏
3𝑛 𝑥𝜏

3𝑛−1𝜖(𝜏 + 1)

]︃
for 𝜏 = 1, 2, 3, (2.4)

and

(𝐺
′

𝜏 )
𝑛 =

[︃
𝑥𝜏
3𝑛+1 𝑔12
𝑥𝜏
3𝑛 𝑔22

]︃
for 𝜏 = 4, 5, 6, (2.5)

where 𝑛 ≥ 1,

𝑔12 =
𝑛−1∑︁
𝑠=0

𝑥𝜏
3𝑠+1 (𝜖(𝜏 + 2) + 𝜖(𝜏)) (𝜖(𝜏 + 2))𝑛−𝑠−1 ,

𝑔22 =
𝑛−1∑︁
𝑠=0

𝑥𝜏
3𝑠 (𝜖(𝜏 + 2) + 𝜖(𝜏)) (𝜖(𝜏 + 2))𝑛−𝑠−1 + (𝜖(𝜏 + 2))𝑛 .

Now we obtain the Cassini formula for the quaternion-type cyclic-Fibonacci sequences. By
using the determinant function and the Equations (2.2), (2.4), we have

𝑥𝜏
3𝑛+1𝑥

𝜏
3𝑛−1𝜖(𝜏 + 1) + (𝑥𝜏

3𝑛)
2 = (−1)𝑛 for 𝜏 = 1, 2, 3. (2.6)

By using the determinant function and the Equations (2.3), (2.5), we have

𝑥𝜏
3𝑛+1𝑔22 − 𝑔12𝑥

𝜏
3𝑛 = (1 + 2𝜖(𝜏 + 2)− 2𝜖(𝜏))𝑛 for 𝜏 = 4, 5, 6. (2.7)

Lemma 2.1. We give the recurrence relations for the quaternion-type cyclic-Fibonacci sequences
as follows:

(𝑖). 𝑥𝜏
𝑛 = −4𝑥𝜏

𝑛−3 + 𝑥𝜏
𝑛−6, (𝜏 = 1, 2, 3).

(𝑖𝑖). 𝑥𝜏
𝑛 = (1 + 2𝜖(𝑛+ 𝜏 − 1)− 𝜖(𝑛+ 𝜏))𝑥𝜏

𝑛−3 − 𝜖(𝑛+ 𝜏)𝑥𝜏
𝑛−6, (𝜏 = 4, 5, 6).

Proof. (𝑖). The proof will only be done for the case 𝜏 = 1, the others are done similarly. By
Definition 2.1, we get ⎧⎪⎨⎪⎩

𝑥1
3𝑛 = 𝑘𝑥1

3𝑛−1 + 𝑗𝑥1
3𝑛−2 ,

𝑥1
3𝑛+1 = 𝑗𝑥1

3𝑛 + 𝑖𝑥1
3𝑛−1 ,

𝑥1
3𝑛+2 = 𝑖𝑥1

3𝑛+1 + 𝑘𝑥1
3𝑛 .
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Thus, we have

𝑥1
3𝑛+2 = 𝑖𝑥1

3𝑛+1 + 𝑘𝑥1
3𝑛

= 2𝑘𝑥1
3𝑛 − 𝑥1

3𝑛−1

= −𝑥1
3𝑛−1 + 2𝑘

(︀
𝑘𝑥1

3𝑛−1 + 𝑗𝑥1
3𝑛−2

)︀
= −3𝑥1

3𝑛−1 + 𝑘2𝑗𝑥1
3𝑛−2.

And then, since 2𝑗𝑥1
3𝑛−2 = 𝑘

(︀
𝑥1
3𝑛−1 − 𝑥1

3𝑛−4

)︀
, we obtain

𝑥1
3𝑛+2 = −4𝑥1

3𝑛−1 + 𝑥1
3𝑛−4. (2.8)

Similarly, we can write

𝑥1
3𝑛+1 = 𝑗𝑥1

3𝑛 + 𝑖𝑥1
3𝑛−1

= 2𝑖𝑥1
3𝑛−1 − 𝑥1

3𝑛−2

= −𝑥1
3𝑛−2 + 2𝑖

(︀
𝑖𝑥1

3𝑛−2 + 𝑘𝑥1
3𝑛−3

)︀
= −3𝑥1

3𝑛−2 + 𝑖2𝑘𝑥1
3𝑛−3.

And then, since 2𝑘𝑥1
3𝑛−3 = 𝑖

(︀
𝑥1
3𝑛−2 − 𝑥1

3𝑛−5

)︀
, we acquire

𝑥1
3𝑛+1 = −4𝑥1

3𝑛−2 + 𝑥1
3𝑛−5. (2.9)

Similarly, we have

𝑥1
3𝑛 = 𝑘𝑥1

3𝑛−1 + 𝑗𝑥1
3𝑛−2

= 2𝑗𝑥1
3𝑛−2 − 𝑥1

3𝑛−3

= −𝑥1
3𝑛−3 + 2𝑗

(︀
𝑗𝑥1

3𝑛−3 + 𝑖𝑥1
3𝑛−4

)︀
= −3𝑥1

3𝑛−3 + 𝑗2𝑖𝑥1
3𝑛−4.

And then, since 2𝑖𝑥1
3𝑛−4 = 𝑗

(︀
𝑥1
3𝑛−3 − 𝑥1

3𝑛−6

)︀
, we get

𝑥1
3𝑛 = −4𝑥1

3𝑛−3 + 𝑥1
3𝑛−6. (2.10)

From the Equations (2.8), (2.9) and (2.10), we obtain 𝑥1
𝑛 = −4𝑥1

𝑛−3 + 𝑥1
𝑛−6, as required.

(𝑖𝑖). The proof will only be done for the case 𝜏 = 4, the others are done similarly. By Definition
2.1, we get ⎧⎪⎨⎪⎩

𝑥4
3𝑛 = 𝑘𝑥4

3𝑛−1 + 𝑗𝑥4
3𝑛−2 ,

𝑥4
3𝑛+1 = 𝑖𝑥4

3𝑛 + 𝑘𝑥4
3𝑛−1 ,

𝑥4
3𝑛+2 = 𝑗𝑥4

3𝑛+1 + 𝑖𝑥4
3𝑛 .

Thus, we have

𝑥4
3𝑛+2 = 𝑗𝑥4

3𝑛+1 + 𝑖𝑥4
3𝑛

= (𝑖− 𝑘)𝑥4
3𝑛 + 𝑖𝑥4

3𝑛−1

= 𝑖𝑥4
3𝑛−1 + (𝑖− 𝑘)

(︀
𝑘𝑥4

3𝑛−1 + 𝑗𝑥4
3𝑛−2

)︀
= (1 + 𝑖− 𝑗)𝑥4

3𝑛−1 + (𝑘 + 𝑖)𝑥4
3𝑛−2.

And then, since (𝑘 + 𝑖)𝑥4
3𝑛−2 = 𝑖𝑥4

3𝑛−1 − 𝑗𝑥4
3𝑛−4, we obtain

𝑥4
3𝑛+2 = (1 + 2𝑖− 𝑗)𝑥4

3𝑛−1 − 𝑗𝑥4
3𝑛−4. (2.11)
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Similarly, we can write

𝑥4
3𝑛+1 = 𝑖𝑥4

3𝑛 + 𝑘𝑥4
3𝑛−1

= (−𝑗 + 𝑘)𝑥4
3𝑛−1 + 𝑘𝑥4

3𝑛−2

= 𝑘𝑥4
3𝑛−2 + (−𝑗 + 𝑘)

(︀
𝑗𝑥4

3𝑛−2 + 𝑖𝑥4
3𝑛−3

)︀
= (1− 𝑖+ 𝑘)𝑥4

3𝑛−2 + (𝑘 + 𝑗)𝑥4
3𝑛−3.

And then, since (𝑘 + 𝑗)𝑥4
3𝑛−3 = 𝑘𝑥4

3𝑛−2 − 𝑖𝑥4
3𝑛−5, we acquire

𝑥4
3𝑛+1 = (1 + 2𝑘 − 𝑖)𝑥4

3𝑛−2 − 𝑖𝑥4
3𝑛−5. (2.12)

Similarly, we have

𝑥4
3𝑛 = 𝑘𝑥4

3𝑛−1 + 𝑗𝑥4
3𝑛−2

= (−𝑖+ 𝑗)𝑥4
3𝑛−2 + 𝑗𝑥4

3𝑛−3

= 𝑗𝑥4
3𝑛−3 + (−𝑖+ 𝑗)

(︀
𝑖𝑥4

3𝑛−3 + 𝑘𝑥4
3𝑛−4

)︀
= (1 + 𝑗 − 𝑘)𝑥4

3𝑛−3 + (𝑖+ 𝑗)𝑥4
3𝑛−4.

And then, since (𝑖+ 𝑗)𝑥4
3𝑛−4 = 𝑗𝑥4

3𝑛−3 − 𝑘𝑥4
3𝑛−6, we get

𝑥4
3𝑛 = (1 + 2𝑗 − 𝑘)𝑥4

3𝑛−3 − 𝑘𝑥4
3𝑛−6. (2.13)

From the Equations (2.11), (2.12) and (2.13), we obtain

𝑥4
𝑛 = (1 + 2𝜖(𝑛)− 𝜖(𝑛+ 1))𝑥4

𝑛−3 − 𝜖(𝑛+ 1)𝑥4
𝑛−6,

as required.

In the following theorem, we develop the generating functions for the quaternion-type cyclic-
Fibonacci sequences.

Theorem 2.1. The generating functions of the {𝑥𝜏
𝑛} are

(𝑖).
∞∑︀
𝑛=0

𝑥𝜏
𝑛𝑡

𝑛 = 𝑡+𝜖(𝜏+1)𝑡2+2𝜖(𝜏+2)𝑡3+𝑡4−𝜖(𝜏+1)𝑡5

1+4𝑡3−𝑡6
, (𝜏 = 1, 2, 3) .

(𝑖𝑖).
∞∑︀
𝑛=0

𝑥𝜏
𝑛𝑡

𝑛 = (−𝜖(𝜏+1)+𝜖(𝜏−1))𝑡3

1−(1+2𝜖(𝜏−1)−𝜖(𝜏))𝑡3+𝜖(𝜏)𝑡6
+ 𝑡−𝜖(𝜏)𝑡4

1−(1+2𝜖(𝜏)−𝜖(𝜏+1))𝑡3+𝜖(𝜏+1)𝑡6

+ 𝜖(𝜏+2)𝑡2+(−𝜖(𝜏+1)+2𝜖(𝜏+2)+2𝜖(𝜏))𝑡5

1−(1+2𝜖(𝜏+1)−𝜖(𝜏+2))𝑡3+𝜖(𝜏+2)𝑡6
, (𝜏 = 4, 5, 6) .

Proof. (𝑖). Assume that 𝑓(𝑡) is the generating function of the {𝑥𝜏
𝑛} for 𝜏 = 1, 2, 3. Then we have

𝑓 (𝑡) =
∞∑︁
𝑛=0

𝑥𝜏
𝑛𝑡

𝑛.

From Lemma 2.1, we obtain

𝑓 (𝑡) = 𝑥𝜏
0 + 𝑥𝜏

1𝑡+ 𝑥𝜏
2𝑡

2 + 𝑥𝜏
3𝑡

3 + 𝑥𝜏
4𝑡

4 + 𝑥𝜏
5𝑡

5 +
∞∑︁
𝑛=6

(︀
−4𝑥𝜏

𝑛−3 + 𝑥𝜏
𝑛−6

)︀
𝑡𝑛

= 𝑥𝜏
0 + 𝑥𝜏

1𝑡+ 𝑥𝜏
2𝑡

2 + 𝑥𝜏
3𝑡

3 + 𝑥𝜏
4𝑡

4 + 𝑥𝜏
5𝑡

5 − 4
(︀
𝑓(𝑡)− 𝑥𝜏

0 − 𝑥𝜏
1𝑡− 𝑥𝜏

2𝑡
2
)︀
𝑡3 + 𝑓(𝑡)𝑡6 .
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Now the rearrangement of the equation implies that

𝑓(𝑡) =
𝑥𝜏
1𝑡+ 𝑥𝜏

2𝑡
2 + 𝑥𝜏

3𝑡
3 + (𝑥𝜏

4 + 4𝑥𝜏
1) 𝑡

4 + (𝑥𝜏
5 + 4𝑥𝜏

2) 𝑡
5

1 + 4𝑡3 − 𝑡6
,

which equals to the left-hand sides
∞∑︀
𝑛=0

𝑥𝜏
𝑛𝑡

𝑛 in the Theorem.

(𝑖𝑖). The proof can be done similarly to (𝑖).

3 The quaternion-type cyclic-Fibonacci sequence modulo 𝑚

In this section, we study quaternion-type cyclic-Fibonacci sequences modulo 𝑚. Then, we give
the relationships between the lengths of periods of the quaternion-type cyclic-Fibonacci sequences
of the first, second, third, fourth, fifth and sixth kind modulo 𝑚 and the generating matrices of
these sequences.

Let 𝑓𝑛 denote the 𝑛-th member of the Fibonacci sequences 𝑓0 = 𝑎, 𝑓1 = 𝑏, 𝑓𝑛+1 = 𝑓𝑛 + 𝑓𝑛−1

(𝑛 ≥ 1).

Theorem 3.1. (Wall, [28]) 𝑓𝑛 (mod 𝑚) forms a simply periodic sequence. That is, the sequence
is periodic and repeats by returning to its starting values.

The length of the period of the ordinary Fibonacci sequence {𝐹𝑛} modulo 𝑚 was denoted by
𝑘 (𝑚).

If we take the least nonnegative residues and decrease the first, second, third, fourth, fifth, and
sixth kinds of quaternion-type cyclic-Fibonacci sequences modulo 𝑚, we obtain the following
recurrence sequences:

{𝑥𝜏
𝑛 (𝑚)} = {𝑥𝜏

1 (𝑚) , 𝑥𝜏
2 (𝑚) , . . . , 𝑥𝜏

𝑢 (𝑚) , . . .}

for every integer 1 ≤ 𝜏 ≤ 6, where 𝑥𝜏
𝑢 (𝑚) is used to mean the 𝑢-th element of the 𝜏 -th

quaternion-type cyclic-Fibonacci sequence when read modulo 𝑚. We observe here that the
recurrence relations in the sequences {𝑥𝜏

𝑛 (𝑚)} and {𝑥𝜏
𝑛} are the same.

Theorem 3.2. The sequences {𝑥𝜏
𝑛 (𝑚)} are periodic and the lengths of their periods are divisible

by 3.

Proof. Let us consider the quaternion-type cyclic-Fibonacci sequence of the first kind {𝑥1
𝑛} as an

example. Consider the set

𝑄 = {(𝑞1, 𝑞2) | 𝑞𝑢’s are quaternions 𝑎𝑢 + 𝑏𝑢𝑖+ 𝑐𝑢𝑗 + 𝑑𝑢𝑘 where𝑎𝑢, 𝑏𝑢, 𝑐𝑢 and 𝑑𝑢

are integers such that 0 ≤ 𝑎𝑢, 𝑏𝑢, 𝑐𝑢, 𝑑𝑢 ≤ 𝑚− 1 and 𝑢 ∈ {1, 2}} .

Suppose that the cardinality of the set 𝑄 is denoted by the notation |𝑄|. Since the set 𝑄 is finite,
there are |𝑄| distinct 2-tuples of the quaternion-type cyclic-Fibonacci sequences of the first kind
{𝑥1

𝑛} modulo 𝑚. Thus, it is clear that at least one of these 2-tuples appears twice in the sequence
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{𝑥1
𝑛 (𝑚)}. Let 𝑥1

𝛼 (𝑚) ≡ 𝑥1
𝛽 (𝑚) and 𝑥1

𝛼+1 (𝑚) ≡ 𝑥1
𝛽+1 (𝑚). If 𝛽 − 𝛼 ≡ 0 (mod3), then we

get 𝑥1
𝛼+2 (𝑚) ≡ 𝑥1

𝛽+2 (𝑚), 𝑥1
𝛼+3 (𝑚) ≡ 𝑥1

𝛽+3 (𝑚), . . .. So, it is easy to see that the subsequence
following this 2-tuple repeats; that is, {𝑥1

𝑛 (𝑚)} is a periodic sequence and the length of its period
must be divisible by 3.

The proofs for the sequences {𝑥2
𝑛}, {𝑥3

𝑛}, {𝑥4
𝑛}, {𝑥5

𝑛} and {𝑥6
𝑛} are similar to the above and

are omitted.

We next denote the lengths of periods of the sequences {𝑥𝜏
𝑛 (𝑚)} by 𝑙𝑥𝜏

𝑛
(𝑚) .

Consider the matrices

𝐴1 =

[︃
𝑖 𝑘

1 0

]︃
,

𝐴2 =

[︃
𝑘 𝑗

1 0

]︃
and 𝐴3 =

[︃
𝑗 𝑖

1 0

]︃
.

Suppose that 𝐺1 = 𝐴3𝐴2𝐴1, 𝐺2 = 𝐴2𝐴1𝐴3, 𝐺3 = 𝐴1𝐴3𝐴2, 𝐺′
4 = 𝐴1𝐴2𝐴3, 𝐺′

5 = 𝐴3𝐴1𝐴2 and
𝐺′

6 = 𝐴2𝐴3𝐴1. Using the above, we define the following matrices:

(𝑀1)
𝑛 =

⎧⎪⎨⎪⎩
(𝐺1)

𝑛
3 if 𝑛 ≡ 0 (3),

𝐴1 (𝐺1)
𝑛−1
3 if 𝑛 ≡ 1 (3),

𝐴2𝐴1 (𝐺1)
𝑛−2
3 if 𝑛 ≡ 2 (3),

(𝑀2)
𝑛 =

⎧⎪⎨⎪⎩
(𝐺2)

𝑛
3 if 𝑛 ≡ 0 (3),

𝐴3 (𝐺2)
𝑛−1
3 if 𝑛 ≡ 1 (3),

𝐴1𝐴3 (𝐺2)
𝑛−2
3 if 𝑛 ≡ 2 (3),

(𝑀3)
𝑛 =

⎧⎪⎨⎪⎩
(𝐺3)

𝑛
3 if 𝑛 ≡ 0 (3),

𝐴2 (𝐺3)
𝑛−1
3 if 𝑛 ≡ 1 (3),

𝐴3𝐴2 (𝐺3)
𝑛−2
3 if 𝑛 ≡ 2 (3),

(𝑀4)
𝑛 =

⎧⎪⎨⎪⎩
(𝐺′

4)
𝑛
3 if 𝑛 ≡ 0 (3),

𝐴3 (𝐺
′
4)

𝑛−1
3 if 𝑛 ≡ 1 (3),

𝐴2𝐴3 (𝐺
′
4)

𝑛−2
3 if 𝑛 ≡ 2 (3),

(𝑀5)
𝑛 =

⎧⎪⎨⎪⎩
(𝐺′

5)
𝑛
3 if 𝑛 ≡ 0 (3),

𝐴2 (𝐺
′
5)

𝑛−1
3 if 𝑛 ≡ 1 (3),

𝐴1𝐴2 (𝐺
′
5)

𝑛−2
3 if 𝑛 ≡ 2 (3),

(𝑀6)
𝑛 =

⎧⎪⎨⎪⎩
(𝐺′

6)
𝑛
3 if 𝑛 ≡ 0 (3),

𝐴1 (𝐺
′
6)

𝑛−1
3 if 𝑛 ≡ 1 (3),

𝐴3𝐴1 (𝐺
′
6)

𝑛−2
3 if 𝑛 ≡ 2 (3).

Then we get

(𝑀𝜏 )
𝑛

(︃
1

0

)︃
=

(︃
𝑥𝜏
𝑛+1

𝑥𝜏
𝑛

)︃
,

where 𝜏 is an integer such that 1 ≤ 𝜏 ≤ 6. Therefore, we immediately deduce that 𝑙𝑥𝜏
𝑛
(𝑚) is the

smallest positive integer 𝛼 such that (𝑀𝜏 )
𝛼 ≡ 𝐼(mod 𝑚) for every integer 1 ≤ 𝜏 ≤ 6.

4 The quaternion-type cyclic-Fibonacci sequence in groups
In this section, we will define six different quaternion-type cyclic-Fibonacci sequences in finite
groups. Subsequently, we will examine the quaternion-type cyclic-Fibonacci orbits of the first,
second, third, fourth, fifth and sixth kinds of the generalized quaternion group. Finally, we will
give a specific example for sequences of quaternion groups 𝑄8 and 𝑄16.

Let 𝐺 be a 2-generator group and let

𝑋 = {(𝑥1, 𝑥2) ∈ 𝐺×𝐺 | ⟨{𝑥1, 𝑥2}⟩ = 𝐺} .

We call (𝑥1, 𝑥2) a generating pair for 𝐺.
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Definition 4.1. Let 𝐺 be a 2-generator group. For the generating pair (𝑥, 𝑦), we define the
quaternion-type cyclic-Fibonacci orbits of the first, second, third, fourth, fifth and sixth kinds of
𝐺 as follows, respectively:

𝑎1𝑛 =

⎧⎪⎨⎪⎩
(𝑎1𝑛−2)

𝑗(𝑎1𝑛−1)
𝑘 if 𝑛 ≡ 0 (3),

(𝑎1𝑛−2)
𝑖(𝑎1𝑛−1)

𝑗 if 𝑛 ≡ 1 (3),
(𝑎1𝑛−2)

𝑘(𝑎1𝑛−1)
𝑖 if 𝑛 ≡ 2 (3),

𝑎2𝑛 =

⎧⎪⎨⎪⎩
(𝑎2𝑛−2)

𝑘(𝑎2𝑛−1)
𝑖 if 𝑛 ≡ 0 (3),

(𝑎2𝑛−2)
𝑗(𝑎2𝑛−1)

𝑘 if 𝑛 ≡ 1 (3),
(𝑎2𝑛−2)

𝑖(𝑎2𝑛−1)
𝑗 if 𝑛 ≡ 2 (3),

𝑎3𝑛 =

⎧⎪⎨⎪⎩
(𝑎3𝑛−2)

𝑖(𝑎3𝑛−1)
𝑗 if 𝑛 ≡ 0 (3),

(𝑎3𝑛−2)
𝑘(𝑎3𝑛−1)

𝑖 if 𝑛 ≡ 1 (3),
(𝑎3𝑛−2)

𝑗(𝑎3𝑛−1)
𝑘 if 𝑛 ≡ 2 (3),

𝑎4𝑛 =

⎧⎪⎨⎪⎩
(𝑎4𝑛−2)

𝑗(𝑎4𝑛−1)
𝑘 if 𝑛 ≡ 0 (3),

(𝑎4𝑛−2)
𝑘(𝑎4𝑛−1)

𝑖 if 𝑛 ≡ 1 (3),
(𝑎4𝑛−2)

𝑖(𝑎4𝑛−1)
𝑗 if 𝑛 ≡ 2 (3),

𝑎5𝑛 =

⎧⎪⎨⎪⎩
(𝑎5𝑛−2)

𝑘(𝑎5𝑛−1)
𝑖 if 𝑛 ≡ 0 (3),

(𝑎5𝑛−2)
𝑖(𝑎5𝑛−1)

𝑗 if 𝑛 ≡ 1 (3),
(𝑎5𝑛−2)

𝑗(𝑎5𝑛−1)
𝑘 if 𝑛 ≡ 2 (3),

𝑎6𝑛 =

⎧⎪⎨⎪⎩
(𝑎6𝑛−2)

𝑖(𝑎6𝑛−1)
𝑗 if 𝑛 ≡ 0 (3),

(𝑎6𝑛−2)
𝑗(𝑎6𝑛−1)

𝑘 if 𝑛 ≡ 1 (3),
(𝑎6𝑛−2)

𝑘(𝑎6𝑛−1)
𝑖 if 𝑛 ≡ 2 (3),

for 𝑛 ≥ 2, with initial conditions 𝑎𝜏0 = 𝑥 and 𝑎𝜏1 = 𝑦 (1 ≤ 𝜏 ≤ 6), where the following conditions
hold for every 𝑥, 𝑦 ∈ 𝐺:

(𝑖). Let 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 such that 𝑎, 𝑏, 𝑐 and 𝑑 are integers and let 𝑒 be the identity of 𝐺,
then

* 𝑥𝑞 = 𝑥𝑎(mod|𝑥|)+𝑏(mod|𝑥|)𝑖+𝑐(mod|𝑥|)𝑗+𝑑(mod|𝑥|)𝑘 = 𝑥𝑎(mod|𝑥|)𝑥𝑏(mod|𝑥|)𝑖𝑥𝑐(mod|𝑥|)𝑗𝑥𝑑(mod|𝑥|)𝑘.

* (𝑥𝑢)𝑎 = (𝑥𝑎)𝑢, where 𝑢 ∈ {𝑖, 𝑗, 𝑘} and 𝑎 is an integer.

* 𝑒𝑞 = 𝑒 and 𝑥0+0𝑖+0𝑗+0𝑘 = 𝑒.

(𝑖𝑖). Let 𝑞1 = 𝑎1+𝑏1𝑖+𝑐1𝑗+𝑑1𝑘 and 𝑞2 = 𝑎2+𝑏2𝑖+𝑐2𝑗+𝑑2𝑘 such that 𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑎2, 𝑏2, 𝑐2, 𝑑2
are integers, then (𝑥𝑞1𝑥𝑞2)−1 = 𝑥−𝑞2𝑥−𝑞1 .

(𝑖𝑖𝑖). If 𝑥𝑦 ̸= 𝑦𝑥, then 𝑥𝑢𝑦𝑢 ̸= 𝑦𝑢𝑥𝑢 for 𝑢 ∈ {𝑖, 𝑗, 𝑘}.

(𝑖𝑣). (𝑥𝑦)𝑢 = 𝑦𝑢𝑥𝑢 for 𝑢 ∈ {𝑖, 𝑗, 𝑘}.

(𝑣). (𝑥𝑢1𝑦𝑢2)𝑢3 = 𝑥𝑢3𝑢1𝑦𝑢3𝑢2 , (𝑥𝑦𝑢1)𝑢2 = 𝑥𝑢2𝑦𝑢2𝑢1 and (𝑥𝑢1𝑦)𝑢2 = 𝑥𝑢2𝑢1𝑦𝑢2 for 𝑢1, 𝑢2, 𝑢3 ∈
{𝑖, 𝑗, 𝑘} and so (𝑥𝑢1𝑦𝑢1)𝑢1 = 𝑥−1𝑦−1.

(𝑣𝑖). For 𝑢1, 𝑢2 ∈ {𝑖, 𝑗, 𝑘} such that 𝑢1 ̸= 𝑢2, 𝑥𝑢1𝑦𝑢2 = 𝑦𝑢2𝑥𝑢1 , 𝑥𝑦𝑢1 = 𝑦𝑢1𝑥, 𝑥𝑢1𝑦 = 𝑦𝑥𝑢1 and
so (𝑥𝑦𝑢1)𝑢1 = 𝑥𝑢1𝑦−1 and (𝑥𝑢1𝑦)𝑢1 = 𝑥−1𝑦𝑢1 .

Let the notation 𝐹 𝑞,𝜏
(𝑥,𝑦) (𝐺) denote the 𝜏 -th quaternion-type cyclic-Fibonacci orbit of the group

𝐺 for the generating pair (𝑥, 𝑦). From the definition of the orbit 𝐹 𝑞,𝜏
(𝑥,𝑦) (𝐺) it is clear that the length

of the period of this sequence in a finite group depend on the chosen generating pair and the order
in which the assignments of 𝑥, 𝑦 are made.

Theorem 4.1. Let𝐺be a 2-generator group. If𝐺 is finite, then the quaternion-type cyclic-Fibonacci
orbits of the first, second, third, fourth, fifth and sixth kinds of 𝐺 are periodic and the lengths of
their periods are divisible by 3.

234



Proof. Let us consider the 2nd quaternion-type cyclic-Fibonacci orbit of the group 𝐺. Consider
the set

𝑆=
{︁
(𝑠1)

𝑎1(mod|𝑠1|)+𝑏1(mod|𝑠1|)𝑖+𝑐1(mod|𝑠1|)𝑗+𝑑1(mod|𝑠1|)𝑘,(𝑠2)
𝑎2(mod|𝑠2|)+𝑏2(mod|𝑠2|)𝑖+𝑐2(mod|𝑠2|)𝑗+𝑑2(mod|𝑠2|)𝑘 :

𝑠1, 𝑠2 ∈ 𝐺 and 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑑1, 𝑑2,∈ Z} .

Since the group 𝐺 is finite, 𝑆 is a finite set. Then for any 𝑢 ≥ 0, there exists 𝑣 > 𝑢 such that
𝑎2𝑢 = 𝑎2𝑣 and 𝑎2𝑢+1 = 𝑎2𝑣+1. If 𝑣 − 𝑢 ≡ 0 (mod3), then we get 𝑎2𝑢+2 = 𝑎2𝑣+2, 𝑎2𝑢+3 = 𝑎2𝑣+3, . . ..
Because of the repeating, for all generating pairs, the sequence𝐹 𝑞,2

(𝑥,𝑦) (𝐺) is periodic and the length
of its period must be divisible by 3.

The proofs for the orbits 𝐹 𝑞,1
(𝑥,𝑦) (𝐺), 𝐹 𝑞,3

(𝑥,𝑦) (𝐺), 𝐹 𝑞,4
(𝑥,𝑦) (𝐺), 𝐹 𝑞,5

(𝑥,𝑦) (𝐺) and 𝐹 𝑞,6
(𝑥,𝑦) (𝐺) are similar

to the above and are omitted.

We next denote the lengths of the periods of the orbits 𝐹 𝑞,𝜏
(𝑥,𝑦) (𝐺) by 𝐿𝐹 𝑞,𝜏

(𝑥,𝑦) (𝐺).
We shall now address the lengths of the periods of the orbits 𝐹 𝑞,1

(𝑥,𝑦) (𝑄2𝑚+1), 𝐹 𝑞,2
(𝑥,𝑦) (𝑄2𝑚+1),

𝐹 𝑞,3
(𝑥,𝑦) (𝑄2𝑚+1), 𝐹 𝑞,4

(𝑥,𝑦) (𝑄2𝑚+1), 𝐹 𝑞,5
(𝑥,𝑦) (𝑄2𝑚+1) and 𝐹 𝑞,6

(𝑥,𝑦) (𝑄2𝑚+1). It is well-known that the
generalized quaternion group 𝑄2𝑚+1 of order 2𝑚 is defined by the presentation

𝑄2𝑚+1 = ⟨𝑥, 𝑦 | 𝑥2𝑚 = 𝑦4 = 1, 𝑥2𝑚−1

= 𝑦2, 𝑦−1𝑥𝑦 = 𝑥−1⟩.

Theorem 4.2. For 𝑚 ≥ 2, 𝐿𝐹 𝑞,1
(𝑥,𝑦) (𝑄2𝑚+1) = 𝐿𝐹 𝑞,2

(𝑥,𝑦) (𝑄2𝑚+1) = 𝐿𝐹 𝑞,3
(𝑥,𝑦) (𝑄2𝑚+1) = 3.2𝑚−1.

Proof. By direct calculation, we obtain the orbits𝐹 𝑞,1
(𝑥,𝑦) (𝑄2𝑚+1),𝐹 𝑞,2

(𝑥,𝑦) (𝑄2𝑚+1) and𝐹 𝑞,3
(𝑥,𝑦) (𝑄2𝑚+1)

as follows, respectively. Firstly, the orbit 𝐹 𝑞,1
(𝑥,𝑦) (𝑄2𝑚+1) is

𝑎10 = 𝑥, 𝑎11 = 𝑦, 𝑎12 = 𝑦𝑖𝑥𝑘, 𝑎13 = 𝑦2𝑗𝑥−1, 𝑎14 = 𝑦𝑥−2𝑗, 𝑎15 = 𝑦−𝑖𝑥−3𝑘,

𝑎16 = 𝑥5, 𝑎17 = 𝑦𝑥8𝑗, 𝑎18 = 𝑦𝑖𝑥13𝑘, 𝑎19 = 𝑦2𝑗𝑥−21, 𝑎110 = 𝑦𝑥−34𝑗, 𝑎111 = 𝑦−𝑖𝑥−55𝑘,

𝑎112 = 𝑥89, 𝑎113 = 𝑦𝑥144𝑗, 𝑎114 = 𝑦𝑖𝑥233𝑘, 𝑎115 = 𝑦2𝑗𝑥−377, 𝑎116 = 𝑦𝑥−610𝑗, 𝑎117 = 𝑦−𝑖𝑥−987𝑘,

. . .

𝑎16𝑛 = 𝑥𝐹6𝑛−1 , 𝑎16𝑛+1 = 𝑦𝑥𝐹6𝑛𝑗, 𝑎16𝑛+2 = 𝑦𝑖𝑥𝐹6𝑛+1𝑘,

𝑎16𝑛+3 = 𝑦2𝑗𝑥−𝐹6𝑛+2 , 𝑎16𝑛+4 = 𝑦𝑥−𝐹6𝑛+3𝑗, 𝑎16𝑛+5 = 𝑦−𝑖𝑥−𝐹6𝑛+4𝑘.

Secondly, we take into account the orbit 𝐹 𝑞,2
(𝑥,𝑦) (𝑄2𝑚+1). We have the sequence

𝑎20 = 𝑥, 𝑎21 = 𝑦, 𝑎22 = 𝑦𝑗𝑥𝑖, 𝑎23 = 𝑦2𝑘𝑥−1, 𝑎24 = 𝑦𝑥−2𝑘, 𝑎25 = 𝑦−𝑗𝑥−3𝑖,

𝑎26 = 𝑥5, 𝑎27 = 𝑦𝑥8𝑘, 𝑎28 = 𝑦𝑗𝑥13𝑖, 𝑎29 = 𝑦2𝑘𝑥−21, 𝑎210 = 𝑦𝑥−34𝑘, 𝑎211 = 𝑦−𝑗𝑥−55𝑖,

𝑎212 = 𝑥89, 𝑎213 = 𝑦𝑥144𝑘, 𝑎214 = 𝑦𝑗𝑥233𝑖, 𝑎215 = 𝑦2𝑘𝑥−377, 𝑎216 = 𝑦𝑥−610𝑘, 𝑎217 = 𝑦−𝑗𝑥−987𝑖,

. . .

𝑎26𝑛 = 𝑥𝐹6𝑛−1 , 𝑎26𝑛+1 = 𝑦𝑥𝐹6𝑛𝑘, 𝑎26𝑛+2 = 𝑦𝑗𝑥𝐹6𝑛+1𝑖,

𝑎26𝑛+3 = 𝑦2𝑘𝑥−𝐹6𝑛+2 , 𝑎26𝑛+4 = 𝑦𝑥−𝐹6𝑛+3𝑘, 𝑎26𝑛+5 = 𝑦−𝑗𝑥−𝐹6𝑛+4𝑖.

Finally, we consider the 3rd quaternion-type cyclic-Fibonacci orbit of the generalized quaternion
group 𝑄2𝑚+1 with respect to the generating pair (𝑥, 𝑦), 𝐹 𝑞,3

(𝑥,𝑦) (𝑄2𝑚+1). Using a similar argument
to the above, we obtain the following sequence:
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𝑎30 = 𝑥, 𝑎31 = 𝑦, 𝑎32 = 𝑦𝑘𝑥𝑗, 𝑎33 = 𝑦2𝑖𝑥−1, 𝑎34 = 𝑦𝑥−2𝑖, 𝑎35 = 𝑦−𝑘𝑥−3𝑗,

𝑎36 = 𝑥5, 𝑎37 = 𝑦𝑥8𝑖, 𝑎38 = 𝑦𝑘𝑥13𝑗, 𝑎39 = 𝑦2𝑖𝑥−21, 𝑎310 = 𝑦𝑥−34𝑖, 𝑎311 = 𝑦−𝑘𝑥−55𝑗,

𝑎312 = 𝑥89, 𝑎313 = 𝑦𝑥144𝑖, 𝑎314 = 𝑦𝑘𝑥233𝑗, 𝑎315 = 𝑦2𝑖𝑥−377, 𝑎316 = 𝑦𝑥−610𝑖, 𝑎317 = 𝑦−𝑘𝑥−987𝑗,

· · ·

𝑎36𝑛 = 𝑥𝐹6𝑛−1 , 𝑎36𝑛+1 = 𝑦𝑥𝐹6𝑛𝑖, 𝑎36𝑛+2 = 𝑦𝑘𝑥𝐹6𝑛+1𝑗,

𝑎36𝑛+3 = 𝑦2𝑖𝑥−𝐹6𝑛+2 , 𝑎36𝑛+4 = 𝑦𝑥−𝐹6𝑛+3𝑖, 𝑎36𝑛+5 = 𝑦−𝑘𝑥−𝐹6𝑛+4𝑗 ,

where 𝐹𝑛 is the 𝑛-th term of the ordinary Fibonacci sequence {𝐹𝑛}.
It is known that 𝑘(2𝑚) = 2𝑚−1.3; see [28] for proof. So we get that the lengths of the

periods of the sequences 𝐹 𝑞,1
(𝑥,𝑦) (𝑄2𝑚+1), 𝐹 𝑞,2

(𝑥,𝑦) (𝑄2𝑚+1) and 𝐹 𝑞,3
(𝑥,𝑦) (𝑄2𝑚+1) are lcm [6, 𝑘(2𝑚)] =

lcm [6, 2𝑚−1.3] = 3.2𝑚−1.

Theorem 4.3. For 𝑚 ≥ 2, 𝐿𝐹 𝑞,4
(𝑥,𝑦) (𝑄2𝑚+1) = 𝐿𝐹 𝑞,5

(𝑥,𝑦) (𝑄2𝑚+1) = 𝐿𝐹 𝑞,6
(𝑥,𝑦) (𝑄2𝑚+1) = 3.2𝑚.

Proof. We prove this by direct calculation. At first, let us consider the 4-th quaternion-type
cyclic-Fibonacci orbit of the generalized quaternion group 𝑄2𝑚+1 with respect to the generating
pair (𝑥, 𝑦). The orbit 𝐹 𝑞,4

(𝑥,𝑦) (𝑄2𝑚+1) is in the following form:

𝑎40 = 𝑥, 𝑎41 = 𝑦, 𝑎42 = 𝑦𝑗𝑥𝑖, 𝑎43 = 𝑦𝑗−𝑖𝑥𝑗, 𝑎44 = 𝑦1−𝑖+𝑘𝑥𝑗+𝑘, 𝑎45 = 𝑦1+𝑖+𝑗+2𝑘𝑥−1+𝑖+𝑘, . . . ,

𝑎412 = 𝑥1−4𝑖−16𝑗+4𝑘, 𝑎413 = 𝑦𝑥4+4𝑖−16𝑗−16𝑘, 𝑎414 = 𝑦𝑗𝑥20−15𝑖−20𝑘, . . . ,

𝑎424 = 𝑥−495+304𝑖+360𝑗−104𝑘, 𝑎425 = 𝑦𝑥−632−512𝑖+448𝑗+192𝑘, 𝑎426 = 𝑦𝑗𝑥−752−303𝑖−528𝑗+872𝑘, . . . ,

· · ·

𝑎412𝑛 = 𝑥4𝑛𝑞0+1, 𝑎412𝑛+1 = 𝑦𝑥4𝑛𝑞1 , 𝑎412𝑛+2 = 𝑦𝑗𝑥𝑞2 , . . . ,

where 𝑞𝑢 (0 ≤ 𝑢 ≤ 11) are quaternion numbers which represented in the form 𝑞𝑢 = 𝑎𝑢 + 𝑏𝑢𝑖 +

𝑐𝑢𝑗 + 𝑑𝑢𝑘 (𝑎𝑢, 𝑏𝑢, 𝑐𝑢, 𝑑𝑢 ∈ R, 0 ≤ 𝑢 ≤ 11) such that gcd(𝑞0, 𝑞1, 𝑞2, · · · , 𝑞11) = 1.
Secondly, we consider the orbit 𝐹 𝑞,5

(𝑥,𝑦) (𝑄2𝑚+1). We obtain the sequence

𝑎50 = 𝑥, 𝑎51 = 𝑦, 𝑎52 = 𝑦𝑘𝑥𝑗, 𝑎53 = 𝑦𝑘−𝑗𝑥𝑘, 𝑎54 = 𝑦1+𝑖−𝑗𝑥𝑖+𝑘, 𝑎55 = 𝑦1+2𝑖+𝑗+𝑘𝑥−1+𝑖+𝑗, . . . ,

𝑎512 = 𝑥1+4𝑖−4𝑗−16𝑘, 𝑎513 = 𝑦𝑥4−16𝑖+4𝑗−16𝑘, 𝑎514 = 𝑦𝑘𝑥20−20𝑖−15𝑗, . . . ,

𝑎524 = 𝑥−655+120𝑖+264𝑗−16𝑘, 𝑎525 = 𝑦𝑥−760−160𝑖−600𝑗−64𝑘, 𝑎526 = 𝑦𝑘𝑥−200+584𝑖−815𝑗−880𝑘, . . . ,

· · ·

𝑎512𝑛 = 𝑥4𝑛𝑞
′
0+1, 𝑎512𝑛+1 = 𝑦𝑥4𝑛𝑞

′
1 , 𝑎512𝑛+2 = 𝑦𝑘𝑥𝑞

′
2 , . . . ,

where 𝑞
′
𝑢 (0 ≤ 𝑢 ≤ 11) are quaternion numbers which represented in the form 𝑞

′
𝑢 = 𝑎

′
𝑢 + 𝑏

′
𝑢𝑖 +

𝑐
′
𝑢𝑗 + 𝑑

′
𝑢𝑘
(︀
𝑎

′
𝑢, 𝑏

′
𝑢, 𝑐

′
𝑢, 𝑑

′
𝑢 ∈ R, 0 ≤ 𝑢 ≤ 11

)︀
such that gcd(𝑞′

0, 𝑞
′
1, 𝑞

′
2, · · · , 𝑞

′
11) = 1.

Finally, we present the 6-th quaternion-type cyclic-Fibonacci orbit of the generalized quaternion
group 𝑄2𝑚+1 with respect to the generating pair (𝑥, 𝑦), 𝐹 𝑞,6

(𝑥,𝑦) (𝑄2𝑚+1). The orbit 𝐹 6
(𝑥,𝑦) (𝑄2𝑚+1) is

as follows:
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𝑎60 = 𝑥, 𝑎61 = 𝑦, 𝑎62 = 𝑦𝑖𝑥𝑘, 𝑎63 = 𝑦𝑖−𝑘𝑥𝑖, 𝑎64 = 𝑦1+𝑗−𝑘𝑥𝑖+𝑗, 𝑎65 = 𝑦1+𝑖+2𝑗+𝑘𝑥−1+𝑗+𝑘, . . . ,
𝑎612 = 𝑥1−16𝑖+4𝑗−4𝑘, 𝑎613 = 𝑦𝑥4−16𝑖−16𝑗+4𝑘, 𝑎614 = 𝑦𝑖𝑥20−20𝑗−15𝑘, . . . ,

𝑎624 = 𝑥−655+80𝑖−264𝑗+264𝑘, 𝑎625 = 𝑦𝑥−632+448𝑖−288𝑗−632𝑘, 𝑎626 = 𝑦𝑖𝑥−712−368𝑖+712𝑗−943𝑘, . . . ,

· · ·

𝑎612𝑛 = 𝑥4𝑛𝑞
′′
0 +1, 𝑎612𝑛+1 = 𝑦𝑥4𝑛𝑞

′′
1 , 𝑎612𝑛+2 = 𝑦𝑖𝑥𝑞

′′
2 , . . . ,

where 𝑞
′′
𝑢 (0 ≤ 𝑢 ≤ 11) are quaternion numbers which represented in the form 𝑞

′′
𝑢 = 𝑎

′′
𝑢 + 𝑏

′′
𝑢𝑖 +

𝑐
′′
𝑢𝑗 + 𝑑

′′
𝑢𝑘
(︀
𝑎

′′
𝑢, 𝑏

′′
𝑢, 𝑐

′′
𝑢, 𝑑

′′
𝑢 ∈ R, 0 ≤ 𝑢 ≤ 11

)︀
such that gcd(𝑞′′

0 , 𝑞
′′
1 , 𝑞

′′
2 , · · · , 𝑞

′′
11) = 1.

So we need the smallest integer 𝑛 such that 4𝑛 = 2𝑚𝑘 for 𝑘 ∈ N. Thus it is verified that
the lengths of the periods of the sequences 𝐹 𝑞,4

(𝑥,𝑦) (𝑄2𝑚+1), 𝐹 𝑞,5
(𝑥,𝑦) (𝑄2𝑚+1) and 𝐹 𝑞,6

(𝑥,𝑦) (𝑄2𝑚+1) are
12.2𝑚−2.

Now, for the generating pair (𝑥, 𝑦), we give the quaternion-type cyclic-Fibonacci orbits of the
quaternion groups 𝑄8 and 𝑄16 presented by 𝑄8 = ⟨𝑥, 𝑦 | 𝑥4 = 1, 𝑥2 = 𝑦2, 𝑦−1𝑥𝑦 = 𝑥−1⟩ and
𝑄16 = ⟨𝑥, 𝑦 | 𝑥8 = 1, 𝑥4 = 𝑦2, 𝑦−1𝑥𝑦 = 𝑥−1⟩, respectively.

Example 4.1.

(𝑖). The sequence 𝐹 𝑞,2
(𝑥,𝑦) (𝑄8) is

𝑎20 = 𝑥, 𝑎21 = 𝑦, 𝑎22 = 𝑦𝑗𝑥𝑖, 𝑎23 = 𝑦2𝑘𝑥−1, 𝑎24 = 𝑦1+2𝑘, 𝑎25 = 𝑦2𝑖−𝑗𝑥−𝑖,

𝑎26 = 𝑥, 𝑎27 = 𝑦, 𝑎28 = 𝑦𝑗𝑥𝑖, 𝑎29 = 𝑦2𝑘𝑥−1, 𝑎210 = 𝑦1+2𝑘, 𝑎211 = 𝑦2𝑖−𝑗𝑥−𝑖,

𝑎212 = 𝑥, 𝑎213 = 𝑦, 𝑎214 = 𝑦𝑗𝑥𝑖, 𝑎215 = 𝑦2𝑘𝑥−1, 𝑎216 = 𝑦1+2𝑘, 𝑎217 = 𝑦2𝑖−𝑗𝑥−𝑖, . . . .

So 𝐿𝐹 𝑞,2
(𝑥,𝑦) (𝑄8) = 6.

(𝑖𝑖). The sequence 𝐹 𝑞,4
(𝑥,𝑦) (𝑄8) is

𝑎40 = 𝑥, 𝑎41 = 𝑦, 𝑎42 = 𝑦𝑗𝑥𝑖, 𝑎43 = 𝑦𝑗−𝑖𝑥𝑗,

𝑎44 = 𝑦1−𝑖+𝑘𝑥𝑗+𝑘, 𝑎45 = 𝑦1+𝑖+𝑗+2𝑘𝑥−1+𝑖+𝑘, 𝑎46 = 𝑦2𝑗+2𝑘𝑥𝑖+𝑗−𝑘, 𝑎47 = 𝑦−𝑖+𝑗+3𝑘,

𝑎48 = 𝑦−1+3𝑖−2𝑗+3𝑘𝑥−1+𝑗+𝑘, 𝑎49 = 𝑦𝑖+3𝑗𝑥−1−𝑖−𝑘, 𝑎410 = 𝑦3𝑗+2𝑘𝑥𝑗−𝑘, 𝑎411 = 𝑦3𝑘𝑥𝑗,

𝑎412 = 𝑥, 𝑎413 = 𝑦, 𝑎414 = 𝑦𝑗𝑥𝑖, 𝑎415 = 𝑦𝑗−𝑖𝑥𝑗,

𝑎416 = 𝑦1−𝑖+𝑘𝑥𝑗+𝑘, 𝑎417 = 𝑦1+𝑖+𝑗+2𝑘𝑥−1+𝑖+𝑘, 𝑎418 = 𝑦2𝑗+2𝑘𝑥𝑖+𝑗−𝑘, 𝑎419 = 𝑦−𝑖+𝑗+3𝑘,

𝑎420 = 𝑦−1+3𝑖−2𝑗+3𝑘𝑥−1+𝑗+𝑘, 𝑎421 = 𝑦𝑖+3𝑗𝑥−1−𝑖−𝑘, 𝑎422 = 𝑦3𝑗+2𝑘𝑥𝑗−𝑘, 𝑎423 = 𝑦3𝑘𝑥𝑗, . . . .

So, 𝐿𝐹 𝑞,4
(𝑥,𝑦) (𝑄8) = 12.

(𝑖𝑖𝑖). The sequence 𝐹 𝑞,1
(𝑥,𝑦) (𝑄16) is

𝑎10 = 𝑥, 𝑎11 = 𝑦, 𝑎12 = 𝑦𝑖𝑥𝑘, 𝑎13 = 𝑦2𝑗𝑥−1, 𝑎14 = 𝑦−3𝑥−2𝑗, 𝑎15 = 𝑦−𝑖𝑥−3𝑘,

𝑎16 = 𝑥5, 𝑎17 = 𝑦, 𝑎18 = 𝑦𝑖𝑥5𝑘, 𝑎19 = 𝑦2𝑗𝑥3, 𝑎110 = 𝑦−3𝑥−2𝑗, 𝑎111 = 𝑦−5𝑖𝑥𝑘,

𝑎112 = 𝑥, 𝑎113 = 𝑦, 𝑎114 = 𝑦𝑖𝑥𝑘, 𝑎115 = 𝑦2𝑗𝑥−1, 𝑎116 = 𝑦−3𝑥−2𝑗, 𝑎117 = 𝑦−𝑖𝑥−3𝑘,

𝑎118 = 𝑥5, 𝑎119 = 𝑦, 𝑎120 = 𝑦𝑖𝑥5𝑘, 𝑎121 = 𝑦2𝑗𝑥3, 𝑎122 = 𝑦−3𝑥−2𝑗, 𝑎123 = 𝑦−5𝑖𝑥𝑘, . . . ,

which implies that 𝐿𝐹 𝑞,1
(𝑥,𝑦) (𝑄16) = 12.
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(𝑖𝑣). The sequence 𝐹 𝑞,6
(𝑥,𝑦) (𝑄16) is

𝑎60 = 𝑥, 𝑎61 = 𝑦, 𝑎62 = 𝑦𝑖𝑥𝑘,

𝑎63 = 𝑦𝑖−𝑘𝑥𝑖 𝑎64 = 𝑦1+𝑗−𝑘𝑥𝑖+𝑗, 𝑎65 = 𝑦1+𝑖+2𝑗+𝑘𝑥−1+𝑗+𝑘,

𝑎66 = 𝑦−2+2𝑖+2𝑗𝑥−2+𝑖−𝑗+𝑘, 𝑎67 = 𝑦−2−𝑖−3𝑗−3𝑘𝑥−2+2𝑖−2𝑘, 𝑎68 = 𝑦1+𝑗+𝑘𝑥−3−𝑖+3𝑗−2𝑘,

𝑎69 = 𝑦−𝑖+3𝑘𝑥−5−4𝑖−𝑗+𝑘, 𝑎610 = 𝑦𝑖𝑥−4−𝑖−7𝑗−4𝑘, 𝑎611 = 𝑦−𝑗𝑥−3𝑖−4𝑘

𝑎612 = 𝑥1+4𝑗−4𝑘, 𝑎613 = 𝑦𝑥4+4𝑘, 𝑎614 = 𝑦𝑖𝑥4−4𝑗−7𝑘,

𝑎615 = 𝑦𝑖−𝑘𝑥4−3𝑖, 𝑎616 = 𝑦1+𝑗−𝑘𝑥4−7𝑖+𝑗+4𝑘, 𝑎617 = 𝑦1+𝑖+2𝑗+𝑘𝑥7+4𝑖−7𝑗+5𝑘,

𝑎618 = 𝑦−2+2𝑖+2𝑗𝑥6+𝑖+3𝑗−3𝑘,𝑎619 = 𝑦−2−𝑖+3𝑗−3𝑘𝑥2+2𝑖+2𝑘, 𝑎620 = 𝑦1+𝑗+𝑘𝑥−7+7𝑖+7𝑗+6𝑘,

𝑎621 = 𝑦−𝑖+3𝑘𝑥−1−𝑗+𝑘, 𝑎622 = 𝑦𝑖𝑥7𝑖+𝑗, 𝑎623 = 𝑦−𝑗𝑥−7𝑖,

𝑎624 = 𝑥, 𝑎625 = 𝑦, 𝑎626 = 𝑦𝑖𝑥𝑘,

𝑎627 = 𝑦𝑖−𝑘𝑥𝑖, 𝑎628 = 𝑦1+𝑗−𝑘𝑥𝑖+𝑗, 𝑎629 = 𝑦1+𝑖+2𝑗+𝑘𝑥−1+𝑗+𝑘,

𝑎630 = 𝑦−2+2𝑖+2𝑗𝑥−2+𝑖−𝑗+𝑘, 𝑎631 = 𝑦−2−𝑖−3𝑗−3𝑘𝑥−2+2𝑖−2𝑘,𝑎632 = 𝑦1+𝑗+𝑘𝑥−3−𝑖+3𝑗−2𝑘,

𝑎633 = 𝑦−𝑖+3𝑘𝑥−5−4𝑖−𝑗+𝑘, 𝑎634 = 𝑦𝑖𝑥−4−𝑖−7𝑗−4𝑘, 𝑎635 = 𝑦−𝑗𝑥−3𝑖−4𝑘

𝑎636 = 𝑥1+4𝑗−4𝑘, 𝑎637 = 𝑦𝑥4+4𝑘, 𝑎638 = 𝑦𝑖𝑥4−4𝑗−7𝑘,

𝑎639 = 𝑦𝑖−𝑘𝑥4−3𝑖, 𝑎640 = 𝑦1+𝑗−𝑘𝑥4−7𝑖+𝑗+4𝑘, 𝑎641 = 𝑦1+𝑖+2𝑗+𝑘𝑥7+4𝑖−7𝑗+5𝑘,

𝑎642 = 𝑦−2+2𝑖+2𝑗𝑥6+𝑖+3𝑗−3𝑘,𝑎643 = 𝑦−2−𝑖+3𝑗−3𝑘𝑥2+2𝑖+2𝑘, 𝑎644 = 𝑦1+𝑗+𝑘𝑥−7+7𝑖+7𝑗+6𝑘,

𝑎645 = 𝑦−𝑖+3𝑘𝑥−1−𝑗+𝑘, 𝑎646 = 𝑦𝑖𝑥7𝑖+𝑗, 𝑎647 = 𝑦−𝑗𝑥−7𝑖, . . . ,

which implies that 𝐿𝐹 𝑞,6
(𝑥,𝑦) (𝑄16) = 24.

Conclusion
In this paper, we defined the quaternion-type cyclic-Fibonacci sequences and then we obtained
the relationships among the elements of these sequences and the generating matrices of these
sequences. Also, we gave the Cassini formula, generating functions of the quaternion-type cyclic-
Fibonacci sequences.

Then, we studied the quaternion-type cyclic-Fibonacci sequences modulo𝑚. Furthermore, we
got the cyclic groups generated by reducing the multiplicative orders of the generating matrices and
the auxiliary equations of these sequences modulo 𝑚 and then, we investigated the orders of these
cyclic groups. Moreover, using the terms of 2-generator groups which is called the quaternion-type
cyclic-Fibonacci orbit, we redefined the quaternion-type cyclic-Fibonacci sequences. Also, these
sequences in finite groups were examined in detail. With this study, we will gain a new perspective
to the Fibonacci quaternions in the literature.
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