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Abstract: Let N(a1, a2, a3, a4, a5;n) and T (a1, a2, a3, a4, a5;n) count the representations of n as
a1x

2
1+ a2x

2
2+ a3x

2
3+ a4x

2
4+ a5x

2
5 and a1X1(X1+1)/2+ a2X2(X2+1)/2+ a3X3(X3+1)/2+

a4X4(X4 + 1)/2 + a5X5(X5 + 1)/2, respectively, where a1, a2, a3, a4, a5 are positive integers,
x1, x2, x3, x4, x5 are integers and n,X1, X2, X3, X4, X5 are nonnegative integers. In this paper,
we establish some new relations betweenN(a1, a2, a3, a4, a5;n) and T (a1, a2, a3, a4, a5;n). Also,
we prove that T (a1, a2, a3, a4, a5;n) is a linear combination of N(a1, a2, a3, a4, a5;m) and
N(a1, a2, a3, a4, a5;m/4), wherem = 8n+a1+a2+a3+a4+a5, for various values of a1, a2, a3,
a4, a5.
Keywords: Sum of squares, Sum of triangular numbers, Theta function identities.
2020 Mathematics Subject Classification: 11D85, 11E25.

1 Introduction

Let N+, N and Z denote the set of positive integers, the set of nonnegative integers and the set
of integers, respectively. Let Z5 = Z × Z × Z × Z × Z and N5 = N × N × N × N × N. For
a1, a2, a3, a4, a5 ∈ N+ and n ∈ N, define
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N(a1, a2, a3,a4, a5;n) :=
∣∣{(x1, x2, x3, x4, x5) ∈ Z5 : a1x

2
1 + · · ·+ a5x

2
5 = n

}∣∣
and

T (a1, a2, a3,a4, a5;n)

:=

∣∣∣∣{(x1, x2, x3, x4, x5) ∈ N5 : a1
x1(x1 + 1)

2
+ · · ·+ a5

x5(x5 + 1)

2
= n

}∣∣∣∣ ,
where we take N(a1, a2, a3, a4, a5; 0) = T (a1, a2, a3, a4, a5; 0) = 1.

Recently, numerous relations have been proved between sums of squares and sums of triangular
numbers. The relations between sums of squares and sums of triangular numbers were first
discovered by Bateman and Knopp in [5]. They proved that for 1 ≤ k ≤ 7,

rk(8n+ k) = 2k
(
1 +

k(k − 1)(k − 2)(k − 3)

48

)
tk(n),

where rk(n) and tk(n) denote the number of representations of n as the sum of k squares and the
sum of k triangular numbers, respectively. In [2], Barrucand et al. used generating functions
to rediscover the results of Bateman and Knopp. Later, Cooper and Hirschhorn [8] gave a
bijective proof of these results. Afterward, Adiga et al. [1] provided a generalization of the result
rk(8n + k) = cktk(n), which is valid for 1 ≤ k ≤ 7. They introduced partitions of k as the
index and this was a step forward. Later, Baruah et al. [3] extended these results to when k is
a partition of 8. Their results, especially, [3, Theorem (1.4)], established a prototype for further
research including the Theorems (3.1) and (3.2) of this paper. Thereafter, Wang and Sun [13, 14]
proved several relations between sums of squares and sums of triangular numbers. In a series
of papers [9–12], Sun proved many relations between sums of squares and sums of triangular
numbers. Particularly, in [11], Sun proved some new relations between N(a1, a2, a3, a4;n)

and T (a1, a2, a3, a4;n) and proposed 23 conjectures establishing the relations between
N(a1, a2, a3, a4;n) and T (a1, a2, a3, a4;n). Five of these conjectures are proved by Yao [17]
by using (p, k)-parametrization of theta functions and five conjectures follow as special cases
in [16]. Sun himself proved three conjectures in [10] and three conjectures are proved by Xia
and Zhong in [15] by utilizing theta function identities. The remaining seven conjectures are
proved by Baruah et al. in [4]. They proved six conjectures by using Ramanujan’s theta function
identities and one is proved by elementary techniques. Recently, Cao and Lin [7] confirmed some
conjectures of Sun [12] by using theta function identities.

In all of the above papers, numerous relations have been established between N(a1, a2, a3;n)

and T (a1, a2, a3;n) and between N(a1, a2, a3, a4;n) and T (a1, a2, a3, a4;n). In this paper, we
establish some new relations between N(a1, a2, a3, a4, a5;n) and T (a1, a2, a3, a4, a5;n)

by using Ramanujan’s theta function identities. Moreover, we prove that T (a1, a2, a3, a4, a5;n)
is a linear combination of N(a1, a2, a3, a4, a5;m) and N(a1, a2, a3, a4, a5;m/4), where
m = 8n+ a1 + a2 + a3 + a4 + a5, for various values of a1, a2, a3, a4, a5.

We organize the rest of the paper in the following way. In Section 2, we present the preliminary
facts on Ramanujan’s theta functions and useful lemmas. In the subsequent section, we prove the
main results.
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2 Preliminaries

Ramanujan’s theta functions φ(q) and ψ(q) are defined by

φ(q) =
∞∑

n=−∞

qn
2

and

ψ(q) =
∞∑
n=0

qn(n+1)/2.

For a1, a2, a3, a4, a5 ∈ N+, the generating functions of N(a1, a2, a3, a4, a5;n) and
T (a1, a2, a3, a4, a5;n) are, respectively, given by

∞∑
n=0

N(a1, a2, a3, a4, a5;n)q
n = φ(qa1)φ(qa2)φ(qa3)φ(qa4)φ(qa5) (1)

and

∞∑
n=0

T (a1, a2, a3, a4, a5;n)q
n = ψ(qa1)ψ(qa2)ψ(qa3)ψ(qa4)ψ(qa5). (2)

From [6, p. 36, entry 22 (i), (ii)], we have

φ(q) =
f 5
2

f 2
1 f

2
4

, ψ(q) =
f 2
2

f1
, (3)

where, we use the standard notations

(a; q)∞ :=
∞∏
n=0

(1− aqn), |q| < 1

and

fk := (qk; qk)∞.

We require some well-known 2- and 3-dissections and several identities on Ramanujan’s theta
functions, which are listed in the following lemmas.

Lemma 2.1. The following 2-dissections hold:

φ(q) = φ(q4) + 2qψ(q8), (4)

φ(q)2 = φ(q2)2 + 4qψ(q4)2, (5)

φ(q)ψ(q2) = ψ(q)2, (6)

φ(q)φ(q3) = φ(q4)φ(q12) + 2qψ(q2)ψ(q6) + 4q4ψ(q8)ψ(q24), (7)

ψ(q3)ψ(q5) = ψ(q8)φ(q60) + q3ψ(q2)ψ(q30) + q14φ(q4)ψ(q120), (8)

ψ(q)ψ(q15) = ψ(q6)ψ(q10) + qφ(q20)ψ(q24) + q3φ(q12)ψ(q40). (9)
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Proof. The first identity follows from [6, p. 40, Entry 25 (i), (ii)]. The second identity follows
from [6, p. 40, Entry 25 (v), (vi)]. The identity (6) is [6, p. 40, Entry 25 (iv)]. By using (4)
in [6, p. 68, Eq. (36.2)] and setting (µ, ν) = (2, 1), we readily arrive at (7) and (8) follows by
setting (µ, ν) = (4, 1) in [6, p. 69, Eq. (36.8)]. Finally, the identity (9) follows from [4, Lemma
2.5, Eq. (2.18)].

Lemma 2.2. The following 3-dissections hold:

φ(q) =
f 5
2

f 2
1 f

2
4

=
f 5
18

f 2
9 f

2
36

+ 2q
f 2
6 f9f36
f3f12f18

, (10)

ψ(q) =
f 2
2

f1
=
f6f

2
9

f3f18
+ q

f 2
18

f9
. (11)

Proof. The above two identities follow from [6, p. 49, Corollary].

3 New relations between sums of squares
and sums of triangular numbers

In this section, we prove five theorems. In these theorems, we prove some new relations between
sums of five squares and sums of five triangular numbers. In Theorems (3.1) and (3.2), we prove
that T (a1, a2, a3, a4, a5;n) can be represented as a linear combination of N(a1, a2, a3, a4, a5;m)

and N(a1, a2, a3, a4, a5;m/4), where m = 8n + a1 + a2 + a3 + a4 + a5, for certain values of
a1, a2, a3, a4, a5. The case (1, 1, 1, 1, 4) of Theorem (3.1) and the case (1, 1, 2, 2, 2) of Theorem
(3.2) are the special cases of [3, Theorem (1.4)]. In Theorem (3.3), we prove some new relations
between T (a1, a2, a3, a4, a5;n) and N(a1, a2, a3, a4, a5;m) for several values of a1, a2, a3, a4, a5.
The cases (1, 1, 1, 1, 3), (1, 1, 1, 1, 2) and (1, 1, 1, 2, 2) of Theorem (3.3) are due to
Adiga et al. [1]. In Theorem (3.4), we prove a new relation between T (3, 5, 12, 12, 12; 4n + 3)

and N(3, 5, 12, 12, 12; 8n + 17). In Theorem (3.5), we prove two new results about
T (3, 5, 12, 12, 12; 3n + 1) and N(3, 5, 12, 12, 12; 3n + 1). The results in Theorems (3.4) and
(3.5) are quite different from the results proved in the first three theorems as these results do not
involve m = 8n+ a1 + a2 + a3 + a4 + a5.

Theorem 3.1. If (a1, a2, a3, a4, a5) = (1, 1, 1, 1, 4) or (1, 1, 1, 1, 12), then for n ∈ N+,

T (a1, a2, a3, a4, a5;n) =
1

48
(N(a1, a2, a3, a4, a5; 8n+ a1 + a2 + a3 + a4 + a5)

−N(a1, a2, a3, a4, a5; (8n+ a1 + a2 + a3 + a4 + a5)/4)). (12)

Proof. We only prove the case (1, 1, 1, 1, 4) of (12), while the other case (1, 1, 1, 1, 12) can be
proved by similar method.

In view of (1) and (4), we have
∞∑
n=0

N(1, 1, 1, 1, 4;n)qn = φ(q)4φ(q4)

= (φ(q4)4 + 8qφ(q4)3ψ(q8) + 24q2φ(q4)2ψ(q8)2 + 32q3φ(q4)ψ(q8)3

+ 16q4ψ(q8)4)× φ(q4).
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Extracting the terms involving q2n and replacing q2 with q, we have

∞∑
n=0

N(1, 1, 1, 1, 4; 2n)qn = (φ(q2)4 + 24qφ(q2)2ψ(q4)2 + 16q2ψ(q4)4)× φ(q2). (13)

Again, extracting the terms involving q2n and replacing q2 with q and by using (4), we arrive at

∞∑
n=0

N(1, 1, 1, 1, 4; 4n)qn = (φ(q)4 + 16qψ(q2)4)× φ(q)

= (φ(q4)4 + 8qφ(q4)3ψ(q8) + 24q2φ(q4)2ψ(q8)2 + 32q3φ(q4)ψ(q8)3

+ 16q4ψ(q8)4 + 16qψ(q2)4)× (φ(q4) + 2qψ(q8)).

Extracting the terms involving q2n and replacing q2 with q and by using (13), we have

∞∑
n=0

N(1, 1, 1, 1, 4; 8n)qn = φ(q2)(φ(q2)4 + 24qφ(q2)2ψ(q4)2 + 16q2ψ(q4)4)

+ 16qφ(q2)ψ(q4)2(φ(q2)2 + 4qψ(q4)2) + 32qψ(q)4ψ(q4)

=
∞∑
n=0

N(1, 1, 1, 1, 4; 2n)qn + 16qφ(q)2φ(q2)ψ(q4)2 + 32qψ(q)4ψ(q4).

Thus, in view of (2), we have

∞∑
n=0

N(1, 1, 1, 1, 4; 8n)qn −
∞∑
n=0

N(1, 1, 1, 1, 4; 2n)qn = 48qψ(q)4ψ(q4)

= 48
∞∑
n=0

T (1, 1, 1, 1, 4;n)qn+1,

and hence,

N(1, 1, 1, 1, 4; 8n+ 8)−N(1, 1, 1, 1, 4; 2n+ 2) = 48T (1, 1, 1, 1, 4, n),

which completes the proof of the theorem.

Theorem 3.2. If (a1, a2, a3, a4, a5) = (1, 1, 2, 2, 2) or (1, 3, 3, 3, 6) and t = 80 or 128, respectively,
then for n ∈ N+,

T (a1, a2, a3, a4, a5;n) =
1

t
(N(a1, a2, a3, a4, a5; 8n+ a1 + a2 + a3 + a4 + a5)

−N(a1, a2, a3, a4, a5; (8n+ a1 + a2 + a3 + a4 + a5)/4)). (14)

Proof. We only prove the case (1, 3, 3, 3, 6) of (14), while the other case (1, 1, 2, 2, 2) can be
proved by similar method.

In view of (1) and (4), we have

∞∑
n=0

N(1, 3, 3, 3, 6;n)qn = φ(q)φ(q3)3φ(q6) (15)

= φ(q6)(φ(q4) + 2qψ(q8))

× (φ(q12)3 + 6q3φ(q12)2ψ(q24) + 12q6φ(q12)ψ(q24)2 + 8q9ψ(q24)3).

220



Extracting the terms involving q2n and replacing q2 with q and using (4), we arrive at

∞∑
n=0

N(1, 3, 3, 3, 6; 2n)qn = φ(q3)(φ(q2)φ(q6)3 + 12q2φ(q6)2ψ(q4)ψ(q12)

+ 12q3φ(q2)φ(q6)ψ(q12)2 + 16q5ψ(q4)ψ(q12)3)

= (φ(q12) + 2q3ψ(q24))(φ(q2)φ(q6)3 + 12q2φ(q6)2ψ(q4)ψ(q12)

+ 12q3φ(q2)φ(q6)ψ(q12)2 + 16q5ψ(q4)ψ(q12)3).

Again, extracting the terms involving q2n and replacing q2 with q, we have

∞∑
n=0

N(1, 3, 3, 3, 6; 4n)qn = φ(q)φ(q3)3φ(q6) + 12qφ(q3)2φ(q6)ψ(q2)ψ(q6)

+ 24q3φ(q)φ(q3)ψ(q6)2ψ(q12) + 32q4ψ(q2)ψ(q6)3ψ(q12).

In view of (5), (7) and (15), we have,

∞∑
n=0

(N(1, 3, 3, 3, 6; 4n)−N(1, 3, 3, 3, 6;n))qn

= 12qφ(q6)ψ(q2)ψ(q6)(φ(q6)2 + 4q3ψ(q12)2) + 32q4ψ(q2)ψ(q6)3ψ(q12)

+ 24q3ψ(q6)2ψ(q12)(φ(q4)φ(q12) + 2qψ(q2)ψ(q6) + 4q4ψ(q8)ψ(q24)),

From which we further extract
∞∑
n=0

(N(1, 3, 3, 3, 6; 8n)−N(1, 3, 3, 3, 6; 2n))qn

= 32q2ψ(q)ψ(q3)3ψ(q6) + 48q2φ(q3)ψ(q)ψ(q3)ψ(q6)2 + 48q2ψ(q)ψ(q3)3ψ(q6)

= 80q2ψ(q)ψ(q3)3ψ(q6) + 48q2ψ(q)ψ(q3)3ψ(q6),

where the second equality is due to (6).
By using (2), we arrive at

∞∑
n=0

(N(1, 3, 3, 3, 6; 8n)−N(1, 3, 3, 3, 6; 2n))qn = 128
∞∑
n=0

T (1, 3, 3, 3, 6;n)qn+2,

and hence,

N(1, 3, 3, 3, 6; 8n+ 16)−N(1, 3, 3, 3, 6; 2n+ 4) = 128T (1, 3, 3, 3, 6;n),

which completes the proof of the theorem.

Theorem 3.3. If (a1, a2, a3, a4, a5) = (1, 1, 1, 1, 3) or (1, 3, 3, 3, 3) or (1, 1, 1, 1, 2) or (1, 1, 1, 2, 2)
and t = 112 or 112 or 144 or 128, respectively, then for n ∈ N+,

T (a1, a2, a3, a4, a5;n) =
1

t
N(a1, a2, a3, a4, a5; 8n+ a1 + a2 + a3 + a4 + a5). (16)
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Proof. We only prove the case (1, 1, 1, 2, 2) of (16), while the other cases can be proved by similar
method.

In view of (1) and (4), we have

∞∑
n=0

N(1, 1, 1, 2, 2;n)qn = φ(q)3φ(q2)2

= (φ(q4)3 + 6qφ(q4)2ψ(q8) + 12q2φ(q4)ψ(q8)2 + 8q3ψ(q8)3)φ(q2)2.

Extracting the terms involving q2n+1, dividing with q and replacing q2 with q and then using (5),
we have

∞∑
n=0

N(1, 1, 1, 2, 2; 2n+ 1)qn = (6φ(q2)2ψ(q4) + 8qψ(q4)3)φ(q)2

= (6φ(q2)2ψ(q4) + 8qψ(q4)3)(φ(q2)2 + 4qψ(q4)2).

Again, extracting the terms involving q2n+1, dividing with q and replacing q2 with q, we have

∞∑
n=0

N(1, 1, 1, 2, 2; 4n+ 3)qn = 32φ(q)2ψ(q2)3

= 32ψ(q2)3(φ(q2)2 + 4qψ(q4)2).

From which we extract
∞∑
n=0

N(1, 1, 1, 2, 2; 8n+ 7)qn = 128ψ(q)3ψ(q2)2

= 128
∞∑
n=0

T (1, 1, 1, 2, 2;n)qn,

and hence,

N(1, 1, 1, 2, 2; 8n+ 7) = 128T (1, 1, 1, 2, 2;n),

which completes the proof.

Theorem 3.4. Let n ∈ N+. Then

T (3, 5, 12, 12, 12; 4n+ 3) =
1

16
N(3, 5, 12, 12, 12; 8n+ 17). (17)

Proof. In view of (1) and (4), we have

∞∑
n=0

N(3, 5, 12, 12, 12;n)qn = φ(q3)φ(q5)φ(q12)3

= (φ(q12) + 2q3ψ(q24))(φ(q20) + 2q5ψ(q40))φ(q12)3.

If we extract those terms involving q2n+1, then divide with q and replace q2 with q, we have

∞∑
n=0

N(3, 5, 12, 12, 12; 2n+ 1)qn = (2qφ(q10)ψ(q12) + 2q2φ(q6)ψ(q20))φ(q6)3.
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Again, extracting the terms involving q2n+1, dividing with q and replacing q2 with q and then
using (4), we arrive at

∞∑
n=0

N(3, 5, 12, 12, 12; 4n+ 1)qn = 2qφ(q3)4ψ(q10)

= 2qψ(q10)(φ(q12)4 + 8q3φ(q12)3ψ(q24) + 24q6φ(q12)2ψ(q24)2

+ 32q9φ(q12)ψ(q24)3 + 16q12ψ(q24)4),

From which we further extract
∞∑
n=0

N(3, 5, 12, 12, 12; 8n+ 1)qn = 16q2φ(q6)3ψ(q5)ψ(q12) + 64q5φ(q6)ψ(q5)ψ(q12)3

= 16q2φ(q3)2φ(q6)ψ(q5)ψ(q12)

= 16q2ψ(q3)4ψ(q5),

where the last equality is due to (6).
Thus,

∞∑
n=0

N(3, 5, 12, 12, 12; 8n+ 1)qn = 16q2ψ(q3)4ψ(q5). (18)

On the other hand, using (2) and (8), we have,

∞∑
n=0

T (3, 5, 12, 12, 12;n)qn = ψ(q3)ψ(q5)ψ(q12)3

= ψ(q12)3(ψ(q8)φ(q60) + q3ψ(q2)ψ(q30) + q14φ(q4)ψ(q120)).

Now, using (9), we have

∞∑
n=0

T (3, 5, 12, 12, 12; 2n+ 1)qn = qψ(q)ψ(q6)3ψ(q15)

= qψ(q6)3(ψ(q6)ψ(q10) + qφ(q20)ψ(q24) + q3φ(q12)ψ(q40)),

So,

∞∑
n=0

T (3, 5, 12, 12, 12; 4n+ 3)qn = ψ(q3)4ψ(q5). (19)

Hence, in view of (18) and (19), we have

∞∑
n=0

N(3, 5, 12, 12, 12; 8n+ 1)qn = 16
∞∑
n=0

T (3, 5, 12, 12, 12; 4n+ 3)qn+2,

So,

N(3, 5, 12, 12, 12; 8n+ 17) = 16T (3, 5, 12, 12, 12; 4n+ 3),

which completes the proof.

223



Theorem 3.5. Let n ∈ N+. Then

T (3, 5, 12, 12, 12; 3n+ 1) = N(3, 5, 12, 12, 12; 3n+ 1) = 0. (20)

Proof. In view of (1) and (10), we have

∞∑
n=0

N(3, 5, 12, 12, 12;n)qn = φ(q3)φ(q5)φ(q12)3

= φ(q3)φ(q12)3
(

f 5
90

f 2
45f

2
180

+ 2q5
f 2
30f45f180
f15f60f90

)
.

If we extract those terms involving q3n+1, then divide with q and replace q3 with q, we have

N(3, 5, 12, 12, 12; 3n+ 1) = 0. (21)

Also, in view of (2) and (11), we have

∞∑
n=0

T (3, 5, 12, 12, 12;n)qn = ψ(q3)ψ(q5)ψ(q12)3

= ψ(q3)ψ(q12)3
(
f30f

2
45

f15f90
+ q5

f 2
90

f45

)
.

If we extract those terms involving q3n+1, then divide with q and replace q3 with q, we have

T (3, 5, 12, 12, 12; 3n+ 1) = 0. (22)

(21) and (22) completes the proof.
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