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Abstract: In this paper, we will derive the explicit formulae for Chebyshev polynomials of
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results are also deduced for their rth derivatives. Finally, some identities involving Chebyshev
polynomials of the third and fourth kind with even and odd indices and Fibonacci polynomials
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1 Introduction

Fibonacci numbers are one of the most widely studied mathematical objects. The developments
in the theory of Fibonacci numbers have led to the creation of an unparalleled niche in the arena
of existing mathematical research. In addition to mathematics, these numbers find enormous
applications in a wide range of fields, including physical and medical sciences, computer sciences,

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



statistics, and graph theory. Due to their wide spectrum of applications in nature in general and
mathematics in particular, the fibonacci numbers have attracted the interest of mathematicians
and made their existence indispensable in the development of mathematical theory [4]. Several
mathematicians have analysed Fibonacci sequences, studied their properties, and obtained various
generalisations in different directions [3, 9]. One such direction of generalisation extends the
Fibonacci sequences to the sequences of Fibonacci polynomials and Chebyshev polynomials.

Several authors have studied various properties of Fibonacci polynomials and Chebyshev
polynomials of the first and second kind and their interactions and deduced many interesting
results [7, 8, 10, 11], but very little work has been done in the case of Chebyshev polynomials of
the third and fourth kind. In this paper, we will discuss the behaviour of Chebyshev polynomials
of the third and fourth kind and their relationship with Fibonacci polynomials.

To start with, the Fibonacci numbers are defined by the second-order linear recursive relation
as follows:

Fα = Fα−1 + Fα−2, (1)

for all α ≥ 0 with F0 = 0, F1 = 1.
Similarly, Lucas numbers, another variant of Fibonacci numbers, are defined by the recursive

relation as follows:

Lα = Lα−1 + Lα−2, (2)

for all α ≥ 0 with L0 = 2, L1 = 1.
In one of its generalisations, the Fibonacci and Lucas numbers are extended to the Fibonacci

and Lucas polynomials [11], which are defined recursively as:

Fα(ζ) = ζFα−1(ζ) + Fα−2(ζ), F0(ζ) = 0, F1(ζ) = 1, (3)

Lα(ζ) = ζLα−1(ζ) + Lα−2(ζ), L0(ζ) = 2, L1(ζ) = ζ, (4)

for all integers, α ≥ 1.
Following this pattern, Chebyshev polynomials also exhibit similar recursive relations.Chebyshev

polynomials appear as solutions of the Chebyshev differential equation occurring as a special
case in the analysis of a Strum-Liouville boundary value problem [5]. For any integer α ≥ 0,
the Chebyshev polynomials of first (Tα(ζ)), second (Uα(ζ)) , third (Vα(ζ)), and fourth (Wα(ζ))

kind [2, 8] are defined as follows:

Tα(ζ) = cosαθ, (5)

Uα(ζ) =
sin(α + 1)θ

sin θ
, (6)

Vα(ζ) =
cos(α + 1

2
)θ

cos θ
2

, (7)

Wα(ζ) =
sin(α + 1

2
)θ

sin θ
2

, (8)
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where ζ = cos θ, for all ζ ∈ [−1, 1] and α ∈ N . Using De Moivre’s theorem, these Chebyshev
polynomials [2], can be written recursively for any integer α > 1, as follows:

Tα(ζ) = 2ζTα−1(ζ)− Tα−2(ζ), T0(ζ) = 1, T1(ζ) = ζ, (9)

Uα(ζ) = 2ζUα−1(ζ)− Uα−2(ζ), U0(ζ) = 1, U1(ζ) = 2ζ, (10)

Vα(ζ) = 2ζVα−1(ζ)−Vα−2(ζ), V0(ζ) = 1, V1(ζ) = 2ζ − 1, (11)

Wα(ζ) = 2ζWα−1(ζ)−Wα−2(ζ), W0(ζ) = 1, W1(ζ) = 2ζ + 1.

Further algebraic manipulations of these recursive relations give rise to the following explicit
formulae [1, 7]

Fα(ζ) =
1

2α
√
ζ2 + 4

[(ζ +
√
ζ2 + 4)α − (ζ −

√
ζ2 + 4)α], (12)

Tα(ζ) =
1

2
[(ζ +

√
ζ2 − 1)α + (ζ −

√
ζ2 − 1)α], (13)

Uα(ζ) =
1

2
√
ζ2 − 1

[(ζ +
√
ζ2 − 1)α+1 − (ζ −

√
ζ2 − 1)α+1], (14)

for Fibonacci polynomials and Chebyshev polynomials of the first and second kind, respectively.
A wide variety of literature is available on the Chebyshev polynomials of the first and second
kind whereas limited work has been done on the Chebyshev polynomials of third and fourth kind
which opens up an intriguing field for the prospective researchers.

Several authors have analysed the sequence of Chebyshev polynomials of the first and second
kind, studied their properties, established various formulae for these polynomials, and deduced
many interrelated identities and their linkages with other orthogonal polynomials [7, 8, 10, 11].
Wang and Zhang [10] studied these polynomials and deduced some interesting identities for
the power sums of the derivatives of the Chebyshev polynomials of the first kind. In [2, 10],
the authors have deduced the explicit relations for the Fibonacci polynomial and Chebyshev
polynomials of the first and second kind as follows:

Fα(ζ) =

[α−1
2

]∑
β=0

(
α− β − 1

β

)
(ζ)α−2β−1, (15)

Tα(ζ) =
α

2

[α
2
]∑

β=0

(−1)β (α− β − 1)!

(α− 2β)!β!
(2ζ)α−2β, (16)

Uα(ζ) =

[α
2
]∑

β=0

(−1)β ((α− β)!
β!(α− 2β)!

(2ζ)α−2β. (17)

Similar relations are obtained by Yang Li [6,7] for the Chebyshev polynomials of first and second
kind as follows:

T2α(ζ) =
α+1∑
β=0

α∑
γ=0

22γ(2αβ − α)(α + γ − 1)!

(−1)β+α−1(α− γ)!(γ + β)!(γ − β + 1)!
F2β−1(ζ), (18)
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T2α−1(ζ) =
α∑
β=0

α∑
γ=0

22γ−1(2αβ − β)(α + γ − 2)!

(−1)β+α(α− γ)!(γ + β)!(γ − β)!
F2β(ζ), (19)

T(2r−1)
2α(ζ) =

α−r+2∑
β=1

α∑
γ=r

(−1)α−r−γ22γ+r−1(2β − 1)(2α + 1)(α + γ)!

(α− γ)!(β + γ − r + 1)!(γ − r − β + 2)!
F2β−1(ζ), (20)

T(2r)
2α(ζ) =

α−r+1∑
β=1

α∑
γ=r

(−1)α−r−γ+122γ+r(2βα− α)(α + γ − 1)!

(α− γ)!(β + γ − r)!(γ − r − β + 1)!
F2β−1(ζ). (21)

Similar results were obatained for Chebyshev polynomials of second kind.
A close perusal of the cited literature suggests a fair possibility for the deduction of similar

identities for the Chebyshev polynomials of the third and fourth kinds. So, here in this paper, our
main focus will be on the derivation of similar explicit relations for the third and fourth kinds
of Chebyshev polynomials, their derivatives, and their relationship with Fibonacci polynomials,
which will definitely strengthen the existing and prospective research work on Chebyshev
polynomials.

2 Main results

In this section, we will discuss the main results of this paper, which depict explicit relations for
the Chebyshev polynomials of the third and fourth kinds, their derivatives, and their relationship
with Fibonacci polynomials with negative indices. To begin with, we will proceed as follows:
From [2, 8] it can be easily seen that, for any positive integer α,

Vα(ζ) = Uα(ζ)− Uα−1(ζ), (22)

Wα(ζ) = Uα(ζ) + Uα−1(ζ), (23)

Wα(ζ) = (−1)αVα(−ζ), (24)

Fα(−ζ) = (−1)α+1Fα(ζ), (25)

F−α(ζ) = (−1)α−1Fα(ζ). (26)

Firstly, we will establish the explicit formulae for the Chebyshev polynomials of the third and
fourth kind.

Theorem 2.1. For any positive integer α,

V2α(ζ) = (2ζ)2α +
α−1∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(ζ)2β

2
+

(α− β)
(2β + 1)

(ζ)2β+1

]
,

V2α+1(ζ) =
α∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(α + β + 1)

(2β + 1)
(ζ)2β+1 − (ζ)2β

2

]
.

Proof. From [7], for any positive integer α, we have

T2α(ζ) =
α∑
β=0

(−1)α−β22βα
(β + α)

(
α + β

2β

)
(ζ)2β, (27)
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T2β+1(ζ) =
α∑
β=0

(−1)α−β22β(2α + 1)

(β + α + 1)

(
α + β + 1

2β + 1

)
(ζ)2β+1. (28)

Using the fact, T′α(ζ) = αUα−1(ζ) with (27) and (28), we have

U2α(ζ) =
α∑
β=0

(−1)α−β22β(2β + 1)

(β + α + 1)

(
α + β + 1

2β + 1

)
(ζ)2β, (29)

U2α+1(ζ) =
α∑
β=0

(−1)α−β22β+2(β + 1)

(β + α + 2)

(
α + β + 2

2β + 2

)
(ζ)2β+1, (30)

U2α−1(ζ) =
α−1∑
β=0

(−1)α−β−122β+2(β + 1)

(β + α + 1)

(
α + β + 1

2β + 2

)
(ζ)2β+1. (31)

Thus, using (22) with (29) and (31), we have

V2α(ζ) = U2α(ζ)− U2α−1(ζ)

=
α∑
β=0

(−1)α−β22β(2β + 1)

(β + α + 1)

(
α + β + 1

2β + 1

)
(ζ)2β

−
α−1∑
β=0

(−1)α−β−122β+2(β + 1)

(β + α + 1)

(
α + β + 1

2β + 2

)
(ζ)2β+1

=
α∑
β=0

(−1)α−β22β
(
α + β

2β

)
(ζ)2β

−
α−1∑
β=0

(−1)α−β−122β+1(α− β)
(2β + 1)

(
α + β

2β

)
(ζ)2β+1

= (2ζ)2α +
α−1∑
β=0

(−1)α−β22β
(
α + β

2β

)
(ζ)2β

+
α−1∑
β=0

(−1)α−β22β+1(α− β)
(2β + 1)

(
α + β

2β

)
(ζ)2β+1

= (2ζ)2α +
α−1∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(ζ)2β

2
+

(α− β)
(2β + 1)

(ζ)(2β+1)

]
.

Therefore,

V2α(ζ) = (2ζ)2α +
α−1∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(ζ)2β

2
+

(α− β)
(2β + 1)

(ζ)(2β+1)

]
. (32)

Similarly, using (22) with (29) and (30) and proceeding as above, we have

V2α+1(ζ) = U2α+1(ζ)− U2α(ζ)

=
α∑
β=0

(−1)α−β22β+2(β + 1)

(β + α + 2)

(
α + β + 2

2β + 2

)
(ζ)2β+1
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−
α∑
β=0

(−1)α−β22β(2β + 1)

(β + α + 1)

(
α + β + 1

2β + 1

)
(ζ)2β

=
α∑
β=0

(−1)α−β22β+1(α + β + 1)

(2β + 1)

(
α + β

2β

)
(ζ)2β+1 −

α∑
β=0

(−1)α−β22β
(
α + β

2β

)
(ζ)2β

=
α∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(α + β + 1)

(2β + 1)
(ζ)2β+1 − (ζ)2β

2

]
.

Therefore,

V2α+1(ζ) =
α∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(α + β + 1)

(2β + 1)
(ζ)2β+1 − (ζ)2β

2

]
. (33)

This establishes the Theorem 2.1.

Theorem 2.2. For any positive integer α,

W2α(ζ) = (2ζ)2α +
α−1∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(ζ)2β

2
− (α− β)

(2β + 1)
(ζ)2β+1

]
,

W2α+1(ζ) =
α∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(α + β + 1)

(2β + 1)
(ζ)2β+1 +

(ζ)2β

2

]
.

Proof. Using (24) and (32), we have

W2α(ζ) = (−1)2αV2α(−ζ) = V2α(−ζ)

= (−2ζ)2α +
α−1∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(−ζ)2β

2
+

(α− β)
(2β + 1)

(−ζ)(2β+1)

]

= (2ζ)2α +
α−1∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(ζ)2β

2
− (α− β)

(2β + 1)
(ζ)(2β+1)

]
.

Therefore,

W2α(ζ) = (2ζ)2α +
α−1∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(ζ)2β

2
− (α− β)

(2β + 1)
(ζ)(2β+1)

]
.

Similarly, using (24) and (33), we have

W2α+1(ζ) =
α∑
β=0

(−1)α−β22β+1

(
α + β

2β

)[
(ζ)2β

2
+

(α + β + 1)

(2β + 1)
(ζ)(2β+1)

]
.

This establishes the Theorem 2.2.

Thus, the Theorems 2.1 and 2.2 establish explicit relations for the Chebyshev polynomials of
the third and fourth kinds. Next, we will proceed to deduce the derivative of these polynomials
as follows:

209



Theorem 2.3. For any positive integer α and r,

Vr
2α(ζ) =

α∑
β=d r

2
e

(−1)α−β22β(α + β)!

(α− β)!(2β − r)!
ζ2β−r +

α−1∑
β=d r−1

2
e

(−1)α−β22β+1(α + β)!

(2β + 1− r)!(α− β − 1)!
ζ(2β+1)−r,

Vr
2α+1(ζ) =

α∑
β=d r−1

2
e

(−1)α−β22β+1(α + β + 1)!

(α− β)!(2β + 1− r)!
ζ(2β+1)−r −

α−1∑
β=d r

2
e

(−1)α−β22β(α + β)!

(2β − r)!(α− β)!
ζ2β−r,

where dζe is a ceiling function of ζ .

Proof. Diffrentiating (29), (30) and (31) with respect to ζ r-times, we have

Ur2α(ζ) =
α∑

β=d r
2
e

(−1)α−β22β(α + β)!

(α− β)!(2β − r)!
ζ2β−r, (34)

Ur2α+1(ζ) =
α∑

β=d r−1
2
e

(−1)α−β22β+1(α + β + 1)!

(2β + 1− r)!(α− β)!
ζ(2β+1)−r, (35)

Ur2α−1(ζ) =
α−1∑

β=d r−1
2
e

(−1)α−β−122β+1(α + β)!

(α− β − 1)!(2β + 1− r)!
ζ(2β+1)−r. (36)

Differentiating (22) with respect to ζ r-times and using (34) and (36), we have

Vr
2α(ζ) = Ur2α(ζ)− Ur2α−1(ζ)

=
α∑

β=d r
2
e

(−1)α−β22β(α + β)!

(2β − r)!(α− β)!
ζ2β−r −

α−1∑
β=d r−1

2
e

(−1)α−β−122β+1(α + β)!

(2β + 1− r)!(α− β − 1)!
ζ(2β+1)−r.

Therefore,

Vr
2α(ζ) =

α∑
β=d r

2
e

(−1)α−β22β(α + β)!

(α− β)!(2β − r)!
ζ2β−r +

α−1∑
β=d r−1

2
e

(−1)α−β22β+1(α + β)!

(α− β − 1)!(2β + 1− r)!
ζ(2β+1)−r. (37)

Again, differentiating (22) with respect to ζ r-times and using (34) and (35) , we have

Vr
2α+1(ζ) = Ur2α+1(ζ)− Ur2α(ζ)

=
α∑

β=d r−1
2
e

(−1)α−β22β+1(α + β + 1)!

(2β + 1− r)!(α− β)!
ζ(2β+1)−r −

α∑
β=d r

2
e

(−1)α−β22β(α + β)!

(2β − r)!(α− β)!
ζ2β−r.

Therefore,

Vr
2α+1(ζ) =

α∑
β=d r−1

2
e

(−1)α−β22β+1(α + β + 1)!

(2β + 1− r)!(α− β)!
ζ(2β+1)−r −

α∑
β=d r

2
e

(−1)α−β22β(α + β)!

(2β − r)!(α− β)!
ζ2β−r.

(38)

This establishes the Theorem 2.3.
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Theorem 2.4. For any positive integer α and r,

Wr
2α(ζ) =

α∑
β=d r

2
e

(−1)α−β22β(α + β)!

(α− β)!(2β − r)!
ζ2β−r −

α−1∑
β=d r−1

2
e

(−1)α−β22β+1(α + β)!

(α− β − 1)!(2β + 1− r)!
ζ(2β+1)−r,

Wr
2α+1(ζ) =

α∑
β=d r−1

2
e

(−1)α−β22β+1(α + β + 1)!

(2β + 1− r)!(α− β)!
ζ(2β+1)−r +

α−1∑
β=d r

2
e

(−1)α−β22β(α + β)!

(2β − r)!(α− β)!
ζ2β−r,

where dζe is a ceiling function of ζ .

Proof. Differentiating (24) with respect to ζ r-times, and using (37), we have

Wr
2α(ζ) = (−1)rVr

2α(−ζ)

=
α∑

β=d r
2
e

(−1)α−β+r22β(α + β)!

(α− β)!(2β − r)!
(−ζ)2β−r

+
α−1∑

β=d r−1
2
e

(−1)α−β+r22β+1(α + β)!

(α− β − 1)!(2β + 1− r)!
(−ζ)(2β+1)−r

=
α∑

β=d r
2
e

(−1)α−β+r22β(α + β)!

(α− β)!(2β − r)!
ζ2β−r

−
α−1∑

β=d r−1
2
e

(−1)α−β+r22β+1(α + β)!

(α− β − 1)!(2β + 1− r)!
ζ(2β+1)−r.

Therefore,

Wr
2α(ζ) =

α∑
β=d r

2
e

(−1)α−β+r22β(α + β)!

(α− β)!(2β − r)!
ζ2β−r −

α−1∑
β=d r−1

2
e

(−1)α−β+r22β+1(α + β)!

(α− β − 1)!(2β + 1− r)!
ζ(2β+1)−r.

Again differentiating (24) with respect to ζ r-times, and using (38), we have

Wr
2α+1(ζ) =

α∑
β=d r−1

2
e

(−1)α−β22β+1(α + β + 1)!

(2β + 1− r)!(α− β)!
ζ(2β+1)−r +

α∑
β=d r

2
e

(−1)α−β22β(α + β)!

(2β − r)!(α− β)!
ζ2β−r.

This establishes the Theorem 2.4.

The explicit formulae for the rth derivative of the third and fourth kinds of Chebyshev
polynomials with even and odd indices are thus established by Theorems 2.3 and 2.4.

Next, we will study the interaction between the Chebyshev polynomials of the third and fourth
kind and the Fibonacci polynomials.

Theorem 2.5. For any positive integer α and r,

V2α(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(α− β)!(β + µ)!(β − µ+ 1)!
× F−(2µ−1)(ζ)

+
α∑
µ=1

α−1∑
β=0

(−1)µ+α22β+2µ(α + β − 1)!

(β − µ+ 1)!(β + µ+ 1)!(α− β + 1)!
× F−2µ(ζ),
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V2α+1(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α(α + β)!

(β − µ+ 1)!

[
22β+2µ

(β + µ+ 1)!(α− β + 2)!
× F−2µ(ζ)

− 22β−1(1− 2µ)

(β + µ)!(α− β)!
× F−(2µ−1)(ζ)

]
.

Proof. For any positive integer α, we can deduce [7],

U2α(ζ) =
+∞∑
µ=1

C2α,µFµ(ζ),

U2α−1(ζ) =
+∞∑
µ=1

C2α−1,µFµ(ζ),

where

C2α,µ =


α∑
β=0

24β+1i3µ+2α+1µ(α+β)!
(α−β)!(2β+µ+1)!!(2β−µ+1)!!

if µ is odd

0 otherwise,

C2α−1,µ =


α∑
β=0

24β+3i3µ+2αµ(α+β−1)!
(α−β−1)!(2β+µ+2)!!(2β−µ+2)!!

if µ is odd

0 otherwise.

Using this, from [7] , we have

U2α(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(α− β)!(β + µ)!(β − µ+ 1)!
× F2µ−1(ζ), (39)

U2α−1(ζ) =
α∑
µ=1

α−1∑
β=0

(−1)µ+α22β+2µ(α + β − 1)!

(β − µ+ 1)!(β + µ+ 1)!(α− β + 1)!
× F2µ(ζ), (40)

U2α+1(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α+122β+2µ(α + β)!

(β − µ+ 1)!(β + µ+ 1)!(α− β + 2)!
× F2µ(ζ). (41)

Using (22), (39) and (40) , we have

V2α(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(α− β)!(β + µ)!(β − µ+ 1)!
× F2µ−1(ζ)

−
α∑
µ=1

α−1∑
β=0

(−1)µ+α22β+2µ(α + β − 1)!

(β − µ+ 1)!(β + µ+ 1)!(α− β + 1)!
× F2µ(ζ).

Now, in view of (26), we have F2µ−1(ζ) = F−(2µ−1)(ζ) and F2µ(ζ) = −F−2µ(ζ), which in turn
implies

V2α(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(β + µ)!(β − µ+ 1)!(α− β)!
× F−(2µ−1))(ζ)

+
α∑
µ=1

α−1∑
β=0

(−1)µ+α22β+2µ(α + β − 1)!

(β + µ+ 1)!(β − µ+ 1)!(α− β + 1)!
× F−2µ(ζ).
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Therefore,

V2α(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(α− β)!(β + µ)!(β − µ+ 1)!
× F−(2µ−1)(ζ)

+
α∑
µ=1

α−1∑
β=0

(−1)µ+α22β+2µ(α + β − 1)!

(β + µ+ 1)!(β − µ+ 1)!(α− β + 1)!
× F−2µ(ζ). (42)

Similarly, using (22), (39) and (41), we have

V2α+1(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α+122β+2µ(α + β)!

(β − µ+ 1)!(β + µ+ 1)!(α− β + 2)!
× F2µ(ζ)

−
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(α− β)!(β + µ)!(β − µ+ 1)!
× F2µ−1(ζ).

Now, again, in view of (26), we have F2µ−1(ζ) = F−(2µ−1)(ζ) and F2µ(ζ) = −F−2µ(ζ), which in
turn gives

V2α+1(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α(α + β)!

(β − µ+ 1)!

[
22β+2µ

(α− β + 2)!(β + µ+ 1)!
× F−2µ(ζ)

− 22β−1(1− 2µ)

(α− β)!(β + µ)!
× F−(2µ−1)(ζ)

]
.

(43)

Thus, the Theorem 2.5 is established.

Theorem 2.6. For any positive integer α and r,

W2α(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(α− β)!(β + µ)!(β − µ+ 1)!
× F−(2µ−1)(ζ)

−
α∑
µ=1

α−1∑
β=0

(−1)µ+α22β+2µ(α + β − 1)!

(β − µ+ 1)!(β + µ+ 1)!(α− β + 1)!
× F−2µ(ζ),

W2α+1(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α(α + β)!

(β − µ+ 1)!

[
22β+2µ

(α− β + 2)!(β + µ+ 1)!
× F−2µ(ζ)

+
22β−1(1− 2µ)

(α− β)!(β + µ)!
× F−(2µ−1)(ζ)

]
.

Proof. Using (42) and (24), we have

W2α(ζ) = (−1)2αV2α(−ζ) = V2α(−ζ)

= ‘
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(β + µ)!(β − µ+ 1)!(α− β)!
× F−(2µ−1)(−ζ)

+
α∑
µ=1

α−1∑
β=0

(−1)µ+α22β+2µ(α + β − 1)!

(β + µ+ 1)!(β − µ+ 1)!(α− β + 1)!
× F−2µ(−ζ).
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Now, in view of (25) we have F−(2µ−1)(−ζ) = F−(2µ−1)(ζ) and F−2µ(−ζ) = −F−2µ(ζ). Using
these relations gives

W2α(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α22β−1(1− 2µ)(α + β)!

(α− β)!(β + µ)!(β − µ+ 1)!
× F−(2µ−1)(ζ)

−
α∑
µ=1

α−1∑
β=0

(−1)µ+α22β+2µ(α + β − 1)!

(α− β + 1)!(β + µ+ 1)!(β − µ+ 1)!
× F−2µ(ζ).

Again, using F−(2µ−1)(−ζ) = F−(2µ−1)(ζ) and F−2µ(−ζ) = −F−2µ(ζ) with equation (43) in (24)
and proceeding as above, we have

W2α+1(ζ) =
α+1∑
µ=1

α∑
β=0

(−1)µ+α(α + β)!

(β − µ+ 1)!

[
22β+2µ

(β + µ+ 1)!(α− β + 2)!
× F−2µ(ζ)

+
22β−1(1− 2µ)

(β + µ)!(α− β)!
× F−(2µ−1)(ζ)

]
.

This establishes the Theorem 2.6.

Thus, the Theorems 2.5 and 2.6 establish the relation between the third and fourth kinds of
Chebyshev polynomials and Fibonacci polynomials with negative index.

3 Conclusion

In this paper, we considered the sequences of Chebyshev polynomials of the third and fourth kind
and deduced their explicit formulae with even and odd indices. Similar relationships are obtained
for their general rth derivatives. At the end, their relationship with the Fibonacci polynomials
with even and odd negative indices is obtained, which turns out to be an expression of Chebyshev
polynomials of third and fourth kind with even and odd negative indices as a linear combination of
Fibonacci polynomials with negative indices. These findings will definitely enrich and strengthen
the existing literature on Chebyshev polynomials and their relationship with the Fibonacci and
other similar and related orthogonal polynomials. This study is expected to add more depth to our
understanding of the combinatorial and analytic properties of these Chebyshev polynomials and
be instrumental in studying some general summation problems arising in both pure and applied
mathematics involving these polynomials.
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