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1 Introduction

Telephone numbers were studied by the German mathematician Heinrich August Rothe
(1773–1842) and involve an immediate application, considering the forms or ways of connecting
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telephone lines. Telephone numbers admit numerous interpretations [1, 5, 7]. Below we present
the following definition.

Definition 1.1. The sequence of the telephone numbers {Tn}n∈N is defined by the following
recurrence relation: Tn = Tn−1 + (n− 1)Tn−2, and with the initial values indicated by: T0 = 1,

T1 = 1.

From the previous recurrence, we can write the numerical list 1, 1, 2, 4, 10, 26, 76, 232, . . . On
the other hand, from the work indicated in [3], we find the following generalization.

Definition 1.2. The k-telephone sequence {Tk,n}n∈N is defined by the following recurrence relation:
Tk,n = kTk,n−1 + (n− 1)Tk,n−2, and with the initial values indicated by: Tk,0 = 1, Tk,1 = k.

Similarly, we verify that

Tk,2 = k2 + 1, Tk,3 = k3 + 3k, Tk,4 = k4 + 6k2 + 3, Tk,5 = k5 + 10k3 + 15k,

etc.
Finally, based on [2] we found another generalized form that allows another interpretation for

telephone numbers.

Definition 1.3. The {Tp,n}n∈N generalized telephone number sequence is defined by the following
recurrence relation: Tkp,n = Tp,n−1 + p(n − 1)Tp,n−2, and with the initial values indicated by:
Tp,0 = 1, Tp,1 = 1.

We can find that Tp,2 = 1+ p, Tp,3 = 1+ 3p, Tp,4 = 3p2 +6p+1, Tp,5 = 15p2 +10p+1, etc.
From the previous Definitions 1.1, 1.2 and 1.3, we can easily verify the following elementary

identities:

Tn+1 = T1 +
n∑

i=1

iTi−1,

Tk,n+1 = Tk,1 +
n∑

i=1

iTk,i−1,

Tp,n+1 = Tp,1 + p(n− 1)
n∑

i=1

iTp,i−1.

Furthermore, based on the previous Definitions 1.1, 1.2 and 1.3, we will introduce generating
matrices of order 2 for the numbers indicated earlier.

2 Some properties with matrices

Let us consider the following matrix

[
1 1

0 0

]
=

[
T1 T0

0 0

]
and then we will consider the following

product
0∏

k=0

[
1 1

k 0

]
=

[
1 1

0 0

]
=

[
T1 T0

0 0

]
.

Then we can easily verify that:
1∏

k=0

[
1 1

k 0

]
=

[
1 1

0 0

][
1 1

1 0

]
=

[
2 1

0 0

]
=

[
T2 T1

0 0

]
and

that, when we consider the following case, it results in:
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2∏
k=0

[
1 1

k 0

]
=

[
1 1

0 0

][
1 1

1 0

][
1 1

2 0

]
=

[
2 1

0 0

][
1 1

2 0

]
=

[
4 2

0 0

]
=

[
T3 T2

0 0

]
.

Or even that:

3∏
k=0

[
1 1

k 0

]
=

[
1 1

0 0

][
1 1

1 0

][
1 1

2 0

][
1 1

3 0

]
=

[
10 4

0 0

]
=

[
T4 T3

0 0

]
.

From the matrix multiplication indicated by
n∏

i=0

[
k 1

i 0

]
, we verified some properties and

theorems.

Next, let us consider that:
0∏

i=0

[
k 1

i 0

]
=

[
k 1

0 0

]
=

[
Tk,1 Tk,0

0 0

]
and we still have that

1∏
i=0

[
k 1

i 0

]
=

[
k 1

0 0

][
k 1

1 0

]
=

[
k2 + 1 k

0 0

]
=

[
Tk,2 Tk,1

0 0

]
occurs.

Then:

2∏
i=0

[
k 1

i 0

]
=

[
k 1

0 0

][
k 1

1 0

][
k 1

2 0

]
=

[
k2 + 1 k

0 0

][
k 1

2 0

]

=

[
k3 + 3k k2 + 1

0 0

]
=

[
Tk,3 Tk,2

0 0

]
.

And similarly, we see that:

3∏
i=0

[
k 1

i 0

]
=

[
k 1

0 0

][
k 1

1 0

][
k 1

2 0

][
k 1

3 0

]
=

[
k3 + 3k k2 + 1

0 0

][
k 1

3 0

]

=

[
k4 + 6k2 + 3 k3 + 3k

0 0

]
=

[
Tk,4 Tk,3

0 0

]
.

From these cases, we will use the following product
n∏

i=0

[
k 1

i 0

]
to verify the theorems below.

Theorem 2.1. Consider the numbers {Tn}n∈N. So, for every positive integer n ≥ 0, the relation
n∏

i=0

[
1 1

k 0

]
=

[
Tn+1 Tn

0 0

]
is valid.

Proof. By mathematical induction, we will assume that
n∏

k=0

[
1 1

k 0

]
=

[
Tn+1 Tn

0 0

]
and then we

have
n+1∏
k=0

[
1 1

k 0

]
=

n∏
k=0

[
1 1

k 0

][
1 1

n+ 1 0

]
=

[
Tn+1 Tn

0 0

][
1 1

n+ 1 0

]
=

[
Tn+1 + (n+ 1)Tn Tn

0 0

]

=

[
Tn+2 Tn+1

0 0

]
for every positive integer n ≥ 0.
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Theorem 2.2. Consider the numbers {Tk,n}n∈N. For every positive integer n ≥ 0, the following
relation holds:

n∏
i=0

[
k 1

i 0

]
=

[
Tk,n+1 Tk,n

0 0

]
.

Proof. By mathematical induction, we will assume that:
n∏

i=0

[
k 1

i 0

]
=

[
Tk,n+1 Tk,n

0 0

]
.

For n+ 1, we have:
n+1∏
i=0

[
k 1

i 0

]
=

n∏
i=0

[
k 1

i 0

][
k 1

n+ 1 0

]
=

[
Tk,n+1 Tk,n

0 0

][
k 1

n+ 1 0

]

=

[
kTk,n+1 + (n+ 1)Tk,n Tk,n+1

0 0

]
=

[
Tk,n+2 Tk,n+1

0 0

]
,

for every positive integer n ≥ 0.

For the next theorem, it is enough to observe that:
n∏

i=0

[
1 1

pi 0

]
=

[
1 1

0 0

]
=

[
Tp,1 Tp,0

0 0

]
.

Or even that:
1∏

i=0

[
1 1

pi 0

]
=

[
1 1

0 0

][
1 1

p 0

]
=

[
1 + p 1

0 0

]
=

[
Tp,2 Tp,1

0 0

]
.

and:
2∏

i=0

[
1 1

pi 0

]
=

[
1 1

0 0

][
1 1

p 0

][
1 1

2p 0

]
=

[
1 + p 1

0 0

][
1 1

2p 0

]

=

[
1 + 3p 1 + p

0 0

]
=

[
Tp,3 Tp,2

0 0

]
,

4∏
i=0

[
1 1

pi 0

]
=

[
Tp,4 Tp,3

0 0

]
Theorem 2.3. Consider the generalized telephone numbers {Tp,n}n∈N. For every positive integer

n ≥ 0, the following relation holds
n∏

i=0

[
1 1

p 0

]
=

[
Tp,n+1 Tp,n

0 0

]
.

Proof. By mathematical induction, we will assume that:
n∏

i=0

[
1 1

pi 0

]
=

[
Tp,n+1 Tp,n

0 0

]
.

For n+ 1, we have:
n+1∏
i=0

[
1 1

pi 0

]
=

n+1∏
i=0

[
1 1

pi 0

][
1 1

p+ 1 0

]
=

[
Tp,n+1 Tp,n

0 0

][
1 1

p+ 1 0

]

=

[
Tp,n+1 + (p+ 1)Tp,n Tp,n+1

0 0

]
=

[
Tp,n+2 Tp,n+1

0 0

]
,

for every positive integer n ≥ 0.
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Lemma 2.1. Consider the numbers {Tn}n∈N, {Tk,n}n∈N and {Tp,n}n∈N. For every positive integer
n ≥ 0, the following relations are valid:

(a)

[
T1 + . . .+ Tn+1 T0 + T1 + . . .+ Tn

0 0

]
=
∏0

k=0

[
1 1

k 0

]
+
∏1

k=0

[
1 1

k 0

]
+
∏2

k=0

[
1 1

k 0

]

+ . . .+
∏n

k=0

[
1 1

k 0

]
;

(b)

[
Tk,1 + . . .+ Tk,n+1 Tk,0 + Tk,1 + . . .+ Tk,n

0 0

]
=
∏0

i=0

[
k 1

i 0

]
+
∏1

i=0

[
k 1

i 0

]
+
∏2

i=0

[
k 1

i 0

]

+ . . .+
∏n

i=0

[
k 1

i 0

]
;

(c)

[
Tp,1 + . . .+ Tp,n+1 Tp,0 + Tp,1 + . . .+ Tp,n

0 0

]
=
∏0

i=0

[
1 1

pi 0

]
+
∏1

i=0

[
1 1

pi 0

]
+
∏2

i=0

[
1 1

pi 0

]

+ . . .+
∏n

i=0

[
1 1

pi 0

]
.

Proof. We immediately verify that:[
T1 + . . .+ Tn+1 T0 + T1 + . . .+ Tn

0 0

]
=

[
T1 T0

0 0

]
+

[
T2 T1

0 0

]
+

[
Tn+1 Tn

0 0

]
,

and, in view of Theorem 2.1, the result follows for every positive integer n ≥ 0. Similarly, we
verify items (b) and (c).

Lemma 2.2. Consider the numbers {Tk,n}n∈N. For every positive integer n ≥ 0, the following
relations are valid:

(a)

(
n∏

k=0

[
1 1

k 0

])n+1

= T n
n+1

[
Tn+1 Tn

0 0

]
;

(b)

(
n∏

i=0

[
k 1

i 0

])n+1

= T n
k,n+1

[
Tk,n+1 Tk,n

0 0

]
;

(c)

(
n∏

i=0

[
1 1

pi 0

])n+1

= T n
p,n+1

[
Tp,n+1 Tp,n

0 0

]
.

Proof. Just observe that
n∏

k=0

[
1 1

k 0

]
n∏

k=0

[
1 1

k 0

]
=

[
Tn+1 Tn

0 0

][
Tn+1 Tn

0 0

]
=

[
T 2
n+1 Tn+1Tn

0 0

]

= Tn+1

[
Tn+1 Tn

0 0

]
i.e., we can write that

n∏
k=0

[
1 1

k 0

]
n∏

k=0

[
1 1

k 0

]2
= Tn+1

[
Tn+1 Tn

0 0

]
.

Similarly, items (b) and (c) follow.
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Lemma 2.3. Consider the numbers {Tk,n}n∈N. For every positive integer n ≥ 0, the following
relations are valid:

(a)

[
Tn+1 + Tm+1 Tn + Tm

0 0

]
=

[
Tn+1 Tn

0 0

](
I

[
1 1

n+ 1 0

][
1 1

n+ 2 0

]
...

[
1 1

n+m 0

])
;

(b)

[
Tk,n+1 + Tk,m+1 Tk,n + Tk,m

0 0

]
=

[
Tk,n+1 Tk,n

0 0

](
I

[
1 1

n+ 1 0

][
1 1

n+ 2 0

]
...

[
1 1

n+m 0

])
;

(c)

[
Tp,n+1 + Tp,m+1 Tp,n + Tp,m

0 0

]
=

[
Tp,n+1 Tp,n

0 0

](
I

[
1 1

n+ 1 0

][
1 1

n+ 2 0

]
...

[
1 1

n+m 0

])
.

Proof. Just observe that:[
Tn+1 + Tm+1 Tn + Tm

0 0

]
=

[
Tn+1 Tn

0 0

]
+

[
Tm+1 Tm

0 0

]
=

n∏
k=0

[
1 1

k 0

]
+

m∏
k=0

[
1 1

k 0

]

=
n∏

k=0

[
1 1

k 0

](
I +

[
1 1

n+ 1 0

][
1 1

n+ 2 0

]
. . .

[
1 1

n+m 0

])
.

Similarly, items (b) and (c) follow.

3 Other properties with matrices

Now, we will consider the following indicated products[
1 1

1 0

][
1 1

0 0

]
=

[
1 1

1 1

]
=

[
T1 T1

1·T0 1·T0

]
[
1 1

2 0

][
1 1

1 0

]
=

[
1 1

0 0

]
=

[
1 1

2 0

][
1 1

1 1

]
=

[
2 2

2· 1 2· 1

]
=

[
T2 T2

2·T1 2·T1

]
.

Or, more easily, we determine that:[
1 1

3 0

][
1 1

2 0

][
1 1

1 0

][
1 1

0 0

]
=

[
1 1

3 0

][
2 2

2 2

]
=

[
4 4

3· 2 3· 2

]
=

[
T3 T3

3·T2 3·T2

]

and[
1 1

4 0

][
1 1

3 0

][
1 1

2 0

][
1 1

1 0

][
1 1

0 0

]
=

[
1 1

4 0

][
4 4

6 6

]
=

[
10 10

4· 4 4· 4

]
=

[
T4 T4

4·T3 4·T3

]
.

Next, we will define the following product

n∏
k=0

[
1 1

n− k 0

]
=

[
1 1

n 0

][
1 1

n− 1 0

]
. . .

[
1 1

1 0

][
1 1

0 0

]
.
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Theorem 3.1. For every positive integer n ≥ 1, the following matrix properties hold:

n∏
k=0

[
1 1

n− k 0

]
=

[
Tn Tn

n·Tn−1 n·Tn−1

]
.

Proof. Just see that:

n∏
k=−1

[
1 1

n− k 0

]
=

[
1 1

n+ 1 0

]
n∏

k=0

[
1 1

n− k 0

]
=

[
1 1

n+ 1 0

][
Tn Tn

n·Tn−1 n·Tn−1

]

=

[
Tn + n·Tn−1 n·Tn−1

(n+ 1)·Tn (n+ 1)·Tn

]
=

[
Tn+1 Tn+1

(n+ 1)·Tn n·Tn

]
.

On the other hand, we also see that
1∏

i=0

[
k 1

i 0

]
=

[
k 1

1 0

][
k 1

0 0

]
=

[
k2 k

k 1

]
.

Thus, we can verify that

[
k 1

1 0

][
k 1

0 0

]
=

[
k2 k

k 1

]
=

[
k·Tk,1 Tk,1

1· k·Tk,0 1·Tk,0

]
.

Or again, we easily find that:[
k 1

2 0

][
k 1

1 0

][
k 1

0 0

]
=

[
k 1

2 0

][
k2 k

k 1

]
=

[
k3 + k k2 + 1

2k2 2k

]
=

[
k(k2 + 1) k2 + 1

2k· k 2k

]

=

[
k·Tk,2 Tk,2

2k·Tk,1 2·Tk,1

]

and that
3∏

i=0

[
k 1

3− i 0

]
=

[
k 1

3 0

][
k 1

2 0

][
k 1

1 0

][
k 1

0 0

]
=

[
k·Tk,3 Tk,3

3·Tk,2 3·Tk,2

]
.

Theorem 3.2. For every positive integer n ≥ 1, the following matrix properties hold:

n∏
i=0

[
k 1

n− i 0

]
=

[
k·Tk,n Tk,n

n· kTk,n−1 n·Tk,n−1

]
.

Proof. Just see that:

n+1∏
i=0

[
k 1

n− i 0

]
=

[
k 1

n+ 1 0

]
n∏

i=0

[
k 1

n− i 0

]
=

[
k 1

n+ 1 0

][
k·Tk,n Tk,n

n· kTk,n−1 n·Tk,n−1

]

=

[
k· (k·Tk,n + n·Tk,n−1) k·Tk,n + n·Tk,n−1

(n+ 1)k·Tk,n (n+ 1)k·Tk,n

]

=

[
k·Tk,n+1 Tk,n+1

(n+ 1)k·Tk,n (n+ 1)k·Tk,n

]
.
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Finally, let us verify that:

1∏
i=0

[
1 1

(n− i)p 0

]
=

[
1 1

p 0

][
1 1

0 0

]
=

[
1 1

p p

]
=

[
Tp,1 Tp,1

p·Tp,0 p·Tp,0

]
,

2∏
i=0

[
1 1

(n− i)p 0

]
=

[
1 + p 1 + p

2p 2p

][
Tp,2 Tp,2

p·Tp,1 p·Tp,1

]
,

3∏
i=0

[
1 1

(n− 1)p 0

]
=

[
1 + 3p 1 + 3p

3p(1 + p) 3p(1 + p)

]
=

[
Tp,3 Tp,3

p·Tp,2 p·Tp,2

]
.

Theorem 3.3. Consider the numbers {Tp,n}n∈N and for every positive integer n ≥ 1, the the
following property of matrices holds:

n∏
i=0

[
1 1

(n− i)p 0

]
=

[
Tp,n Tp,n

n· pTp,n−1 n· pTp,n−1

]
.

Proof. Just see that:

n+1∏
i=0

[
1 1

(n− i)p 0

]
=

[
1 1

n+ 1 0

]
n+1∏
i=0

[
1 1

(n− i)p 0

]
=

[
1 1

n+ 1 0

][
Tp,n Tp,n

n· pTp,n−1 n· pTp,n−1

]

=

[
Tp,n + n· pTp,n−1 Tp,n + n· pTp,n−1

(n+ 1)Tp,n (n+ 1)Tp,1

]
=

[
Tp,n+1 Tp,n+1

(n+ 1)Tp,n (n+ 1)Tp,n

]
.

Lemma 3.1. Consider the numbers {Tn}n∈N, {Tk,n}n∈N and {Tp,n}n∈N. For every positive integer
n ≥ 0, the following relations are valid:

(a)

[
T1 + T2 + . . .+ Tn T1 + T2 + . . .+ Tn

T0 + 2T1 + . . .+ nTn−1 T0 + 2T1 + . . .+ nTn−1

]

=
1∏

k=0

[
1 1

1− k 0

]
+

2∏
k=0

[
1 1

2− k 0

]
+ . . .+

n∏
k=0

[
1 1

n− k 0

]
;

(b)

[
Tk,1 + Tk,2 + . . .+ Tk,n Tk,1 + Tk,2 + . . .+ Tk,n

Tk,0 + 2Tk,1 + . . .+ nTk,n−1 Tk,0 + 2Tk,1 + . . .+ nTk,n−1

]

=
1∏

i=0

[
1 1

(1− i)k 0

]
+

2∏
i=0

[
1 1

(2− i)k 0

]
+ . . .+

n∏
i=0

[
1 1

(n− i)k 0

]
;

(c)

[
Tp,1 + Tp,2 + . . .+ Tp,n Tp,1 + Tp,2 + . . .+ Tp,n

Tp,0 + 2Tp,1 + . . .+ nTp,n−1 Tp,0 + 2Tp,1 + . . .+ nTp,n−1

]

=
1∏

i=0

[
1 1

(1− i)p 0

]
+

2∏
i=0

[
1 1

(2− i)p 0

]
+ . . .+

n∏
i=0

[
1 1

(n− i)p 0

]
.

Proof. Just use Theorems 3.1, 3.2, 3.3.
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4 Conclusion

In the previous sections we demonstrated new relationships involving the finite products of
matrices of the type:

n∏
i=0

[
k 1

i 0

]
,

n∏
i=0

[
k 1

n− i 0

]
,

n∏
i=0

[
k 1

pi 0

]
.

We demonstrated that such products allow us to describe matrices of order 2, which generate
telephone numbers and had not yet been introduced in the literature.

For future studies, application in other disciplines is suggested according to the works [4]
and [6].
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