Corrigendum to: "Some modular considerations regarding odd perfect numbers - Part II"
 [Notes on Number Theory and Discrete Mathematics, 2020, Vol. 26, No. 3, 8-24]

Jose Arnaldo Bebita Dris ${ }^{1}$ and Immanuel Tobias San Diego ${ }^{2}$

${ }^{1}$ M. Sc. Graduate, Mathematics Department, De La Salle University
Manila 1004, Philippines
e-mail: josearnaldobdris@gmail.com
${ }^{2}$ Department of Mathematics and Physical Sciences, Trinity University of Asia Quezon City 1102, Philippines
e-mails: itsandiego@tua.edu.ph, immanuelsandiego28@gmail.com

Received: 9 February 2023
Accepted: 24 March 2023
Online First: 29 March 2023
Abstract: In [2], the authors proposed a theorem which they recently found out to contradict Chen and Luo's results [1]. In the present paper, we provide the correct form of this theorem. Keywords: Sum of divisors, Sum of aliquot divisors, Deficiency, Odd perfect number, Special prime.
2020 Mathematics Subject Classification: 11A05, 11A25.

1 Introduction

Let $\sigma(x)=\sigma_{1}(x)$ denote the classical sum of divisors of the positive integer x.
An odd number n satisfying $\sigma(n)=2 n$ is called an odd perfect number. Euler showed that a hypothetical odd perfect number n, if one exists, must necessarily have the form

$$
n=p^{k} m^{2},
$$

where p is the special prime satisfying $p \equiv k \equiv 1(\bmod 4)$ and $\operatorname{gcd}(p, m)=1$.

	Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
(c) (i)	
terms and conditions of the Creative Commons Attribution 4.0 International License	
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/	

In a part of the abstract of the paper [2], it is claimed that

1. $\sigma\left(m^{2}\right) \equiv 3(\bmod 8)$ holds only if $p-k \equiv 4(\bmod 16)$.

On page 15 of the paper [2], it is stated (without proof) that if $n=p^{k} m^{2}$ is an odd perfect number with special prime p satisfying $\sigma\left(m^{2}\right) \equiv 3(\bmod 8)$, then exactly one of the following conditions hold:

1. $p \equiv 1(\bmod 16), k \equiv 13(\bmod 16)$,
2. $p \equiv 5(\bmod 16), k \equiv 1(\bmod 16)$,
3. $p \equiv 9(\bmod 16), k \equiv 5(\bmod 16)$,
4. $p \equiv 13(\bmod 16), k \equiv 9(\bmod 16)$.

2 The correct form of the Abstract and the Theorem

We now give the corrected form of the part of the abstract that is in error and the corresponding theorem:

2.1 Corrected Abstract

If $n=p^{k} m^{2}$ is an odd perfect number with special prime p, then

1. $\sigma\left(m^{2}\right) \equiv 3(\bmod 8)$ holds only if $p-k \equiv 12(\bmod 16)$.

2.2 Corrected Theorem

Theorem 2.1. Suppose that $n=p^{k} m^{2}$ is an odd perfect number with special prime p satisfying $\sigma\left(m^{2}\right) \equiv 3(\bmod 8)$. This implies that exactly one of the following conditions hold:

1. $p \equiv 1(\bmod 16), k \equiv 5(\bmod 16)$,
2. $p \equiv 5(\bmod 16), k \equiv 9(\bmod 16)$,
3. $p \equiv 9(\bmod 16), k \equiv 13(\bmod 16)$,
4. $p \equiv 13(\bmod 16), k \equiv 1(\bmod 16)$.

3 A Proof of Theorem 2.1

(This section refers to the results (i.e. lemmas) as stated in the paper [2].)
Let $n=p^{k} m^{2}$ be an odd perfect number with special prime p, satisfying $\sigma\left(m^{2}\right) \equiv 3(\bmod 8)$.
By Lemma 3.1, $p \equiv k+4(\bmod 8)$ holds.
We now consider each of the resulting possible congruences for p and k modulo 16:

1. $p \equiv 1(\bmod 16), k \equiv 5(\bmod 16)$,
2. $p \equiv 1(\bmod 16), k \equiv 13(\bmod 16)$,
3. $p \equiv 5(\bmod 16), k \equiv 1(\bmod 16)$,
4. $p \equiv 5(\bmod 16), k \equiv 9(\bmod 16)$,
5. $p \equiv 9(\bmod 16), k \equiv 5(\bmod 16)$,
6. $p \equiv 9(\bmod 16), k \equiv 13(\bmod 16)$,
7. $p \equiv 13(\bmod 16), k \equiv 1(\bmod 16)$,
8. $p \equiv 13(\bmod 16), k \equiv 9(\bmod 16)$.

Recall that we have the equation

$$
\begin{equation*}
2 D\left(m^{2}\right) s\left(m^{2}\right)=\left(\operatorname{gcd}\left(m^{2}, \sigma\left(m^{2}\right)\right)\right)^{2} D\left(p^{k}\right) s\left(p^{k}\right) \tag{*}
\end{equation*}
$$

where $D(x)=2 x-\sigma(x)$ is the deficiency of x and $s(x)=\sigma(x)-x$ is the aliquot sum of x.
First, suppose that $p \equiv 1(\bmod 16), k \equiv 5(\bmod 16)$. By Lemma 3.3, $D\left(p^{k}\right) \equiv 12(\bmod 16)$. By Lemma 3.5, $D\left(m^{2}\right) \equiv 7(\bmod 8)$. By Lemma 3.4, $s\left(p^{k}\right) \equiv 5(\bmod 16)$. By Lemma 3.6, $s\left(m^{2}\right) \equiv 2(\bmod 8)$.

Thus, symbolically we obtain from Equation (*) that

$$
2(8 a+7)(8 b+2)=(8 c+1)(16 d+12)(16 e+5)
$$

which is solvable over the positive integers, per WolframAlpha.
Next, suppose that $p \equiv 1(\bmod 16), k \equiv 13(\bmod 16)$. By Lemma 3.3, $D\left(p^{k}\right) \equiv 4(\bmod 16)$. By Lemma 3.5, $D\left(m^{2}\right) \equiv 7(\bmod 8)$. By Lemma 3.4, $s\left(p^{k}\right) \equiv 13(\bmod 16)$. By Lemma 3.6, $s\left(m^{2}\right) \equiv 2(\bmod 8)$.

Thus, symbolically we obtain from Equation (*) that

$$
2(8 a+7)(8 b+2)=(8 c+1)(16 d+4)(16 e+13)
$$

which is NOT solvable over the positive integers, per WolframAlpha.
Next, suppose that $p \equiv 5(\bmod 16), k \equiv 1(\bmod 16)$. By Lemma 3.3, $D\left(p^{k}\right) \equiv 4(\bmod 16)$. By Lemma 3.5, $D\left(m^{2}\right) \equiv 7(\bmod 8)$. By Lemma 3.4, $s\left(p^{k}\right) \equiv 1(\bmod 16)$. By Lemma 3.6, $s\left(m^{2}\right) \equiv 2(\bmod 8)$.

Thus, symbolically we obtain from Equation (*) that

$$
2(8 a+7)(8 b+2)=(8 c+1)(16 d+4)(16 e+1)
$$

which is NOT solvable over the positive integers, per WolframAlpha.
Next, suppose that $p \equiv 5(\bmod 16), k \equiv 9(\bmod 16)$. By Lemma 3.3, $D\left(p^{k}\right) \equiv 12(\bmod 16)$. By Lemma 3.5, $D\left(m^{2}\right) \equiv 7(\bmod 8)$. By Lemma 3.4, $s\left(p^{k}\right) \equiv 9(\bmod 16)$. By Lemma 3.6, $s\left(m^{2}\right) \equiv 2(\bmod 8)$.

Thus, symbolically we obtain from Equation (*) that

$$
2(8 a+7)(8 b+2)=(8 c+1)(16 d+12)(16 e+9)
$$

which is solvable over the positive integers, per WolframAlpha.
Next, suppose that $p \equiv 9(\bmod 16), k \equiv 5(\bmod 16)$. By Lemma 3.3, $D\left(p^{k}\right) \equiv 4(\bmod 16)$. By Lemma 3.5, $D\left(m^{2}\right) \equiv 7(\bmod 8)$. By Lemma 3.4, $s\left(p^{k}\right) \equiv 5(\bmod 16)$. By Lemma 3.6, $s\left(m^{2}\right) \equiv 2(\bmod 8)$.

Thus, symbolically we obtain from Equation (*) that

$$
2(8 a+7)(8 b+2)=(8 c+1)(16 d+4)(16 e+5)
$$

which is NOT solvable over the positive integers, per WolframAlpha.
Next, suppose that $p \equiv 9(\bmod 16), k \equiv 13(\bmod 16) . \operatorname{By} \operatorname{Lemma} 3 \cdot 3, D\left(p^{k}\right) \equiv 12(\bmod 16)$. By Lemma 3.5, $D\left(m^{2}\right) \equiv 7(\bmod 8)$. By Lemma 3.4, $s\left(p^{k}\right) \equiv 13(\bmod 16)$. By Lemma 3.6, $s\left(m^{2}\right) \equiv 2(\bmod 8)$.

Thus, symbolically we obtain from Equation (*) that

$$
2(8 a+7)(8 b+2)=(8 c+1)(16 d+12)(16 e+13)
$$

which is solvable over the positive integers, per WolframAlpha.

Next, suppose that $p \equiv 13(\bmod 16), k \equiv 1(\bmod 16)$. By Lemma 3.3, $D\left(p^{k}\right) \equiv 12(\bmod 16)$. By Lemma 3.5, $D\left(m^{2}\right) \equiv 7(\bmod 8)$. By Lemma 3.4, $s\left(p^{k}\right) \equiv 1(\bmod 16)$. By Lemma 3.6, $s\left(m^{2}\right) \equiv 2(\bmod 8)$.

Thus, symbolically we obtain from Equation (*) that

$$
2(8 a+7)(8 b+2)=(8 c+1)(16 d+12)(16 e+1)
$$

which is solvable over the positive integers, per WolframAlpha.
Lastly, suppose that $p \equiv 13(\bmod 16), k \equiv 9(\bmod 16)$. By Lemma 3.3, $D\left(p^{k}\right) \equiv 4(\bmod 16)$. By Lemma 3.5, $D\left(m^{2}\right) \equiv 7(\bmod 8)$. By Lemma 3.4, $s\left(p^{k}\right) \equiv 9(\bmod 16)$. By Lemma 3.6, $s\left(m^{2}\right) \equiv 2(\bmod 8)$.

Thus, symbolically we obtain from Equation (*) that

$$
2(8 a+7)(8 b+2)=(8 c+1)(16 d+4)(16 e+9)
$$

which is NOT solvable over the positive integers, per WolframAlpha.

4 Conclusion

To summarize: If $\sigma\left(m^{2}\right) \equiv 3(\bmod 8)$, then exactly one of the following conditions hold:

1. $p \equiv 1(\bmod 16), k \equiv 5(\bmod 16)$,
2. $p \equiv 5(\bmod 16), k \equiv 9(\bmod 16)$,
3. $p \equiv 9(\bmod 16), k \equiv 13(\bmod 16)$,
4. $p \equiv 13(\bmod 16), k \equiv 1(\bmod 16)$.

In other words, the congruence $\sigma\left(m^{2}\right) \equiv 3(\bmod 8)$ holds only if $p \equiv k+12(\bmod 16)$.
Our findings now match Chen and Luo's results [1]. The rest of the paper [2] is unaffected.

Acknowledgements

The authors thank Joshua Zelinsky for hinting over Mathematics Stack Exchange that the paper [2] may partly be in error.

References

[1] Chen, S.-C., \& Luo, H. (2013). Odd multiperfect numbers. Bulletin of the Australian Mathematical Society, 88(1), 56-63.
[2] Dris, J. A., \& San Diego, I. (2020). Some modular considerations regarding odd perfect numbers - Part II. Notes on Number Theory and Discrete Mathematics, 26(3), 8-24.

