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Abstract: Let 𝐺 be a simple graph. A vertex labeling 𝜓 : 𝑉 (𝐺) → {1, 2, . . . , 𝛼} is called
𝛼-labeling. For an edge 𝑢𝑣 ∈ 𝐺, the weight of 𝑢𝑣, written 𝑧𝜓(𝑢𝑣), is the sum of the labels of 𝑢
and 𝑣, i.e., 𝑧𝜓(𝑢𝑣) = 𝜓(𝑢) + 𝜓(𝑣). A vertex 𝛼-labeling is said to be an edge irregular 𝛼-labeling
of 𝐺 if for every two distinct edges 𝑎 and 𝑏, 𝑧𝜓(𝑎) ̸= 𝑧𝜓(𝑏). The minimum 𝛼 for which the graph
𝐺 contains an edge irregular 𝛼-labeling is known as the edge irregularity strength of 𝐺 and is
denoted by es(𝐺). In this paper, we find the exact value of edge irregularity strength of different
cases of firefly graph 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 for any 𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛− 2𝑠− 2𝑡− 1 ≥ 1.
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1 Introduction
Let 𝑉 (𝐺) and 𝐸(𝐺), respectively, be the vertex set and edge set of a simple and connected graph
𝐺. An assignment of integers (positive) to a set of vertices or edges, or both, subject to certain
constraints is called graph labeling.

The authors in [4] defined irregular labeling for a graph𝐺 as an assignment of labels from the
set of natural numbers to the edges of 𝐺 such that the sums of the labels assigned to the edges
of each vertex are distinct. The minimum value of the largest label of an edge over all existing
irregular labelings is known as the irregularity strength of 𝐺 and denoted by 𝑠(𝐺).

Determination of 𝑠(𝐺) seems to be hard even for a simple structure of a graph 𝐺 [3,4]. As an
example, Figure 1 shows that the irregularity strength of the Petersen graph is 5.
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Figure 1. Irregularity strength of the Petersen graph

Motivated by the work of Chartrand et al. [4], authors in [1] introduced the concept of edge
irregularity strength of graphs as follows.

Let 𝐺 be a simple graph. A vertex labeling 𝜓 : 𝑉 (𝐺) → {1, 2, . . . , 𝛼} is called 𝛼-labeling.
For an edge 𝑢𝑣 ∈ 𝐺, the weight of 𝑢𝑣, written 𝑧𝜓(𝑢𝑣), is the sum of the labels of 𝑢 and 𝑣, i.e.,
𝑧𝜓(𝑢𝑣) = 𝜓(𝑢) + 𝜓(𝑣). A vertex 𝛼-labeling is said to be an edge irregular 𝛼-labeling of 𝐺 if for
every two distinct edges 𝑎 and 𝑏, 𝑧𝜓(𝑎) ̸= 𝑧𝜓(𝑏). The minimum 𝛼 for which the graph 𝐺 contains
an edge irregular 𝛼-labeling is known as the edge irregularity strength of 𝐺 and is denoted by
es(𝐺).

Clearly, 𝑠(𝐺) is an edge labeling of a graph 𝐺 such that the distinct vertices have distinct
weights; and es(𝐺) is a vertex labeling of a graph 𝐺 such for every two different edges their
weights are distinct.

2 Preliminary results
For a given graph 𝐺, the authors in [1] estimated the bounds for es(𝐺) and also found exact value
of es(𝐺) for several families of graphs such as paths 𝑃𝑛 of order 𝑛 ≥ 2; cycle 𝐶𝑛 of order 𝑛 ≥ 3;
star graph𝐾1,𝑛 of order 𝑛+ 1, 𝑛 ≥ 1; double star 𝑆𝑚,𝑛 with 3 ≤ 𝑚 ≤ 𝑛; and Cartesian product of
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two paths 𝑃𝑛×𝑃𝑚 of order𝑚,𝑛 ≥ 2. The authors in [2] determined the edge irregularity strength
of Toeplitz graphs. The exact value of edge irregularity strength of corona product of graphs with
paths is determined in [9]. The authors in [10] determined the exact value of edge irregularity
strength of disjoint union of graphs. The authors in [8] determined the edge irregularity strength
of sunlet graph. The edge irregularity strength of ladder related graphs are computed in [7].
Recently, in [6] the edge irregularity strength of line graph and line cut-vertex graph of comb
graph is determined.

Motivated by the studies as mentioned above, we find the exact value of edge irregularity
strength of different cases of firefly graph 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 for any 𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛− 2𝑠− 2𝑡− 1 ≥ 1.

The authors in [5] introduced the concept of firefly graph as follows.

Definition 2.1. A firefly graph, written 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 (𝑠 ≥ 0, 𝑡 ≥ 0, 𝑛 − 2𝑠 − 2𝑡 − 1 ≥ 0), is a
graph of order 𝑛 that consists of 𝑠 triangles, 𝑡 pendent paths of length 2, and 𝑛 − 2𝑠 − 2𝑡 − 1

pendent edges sharing a vertex in common.

Figure 2 shows an example of a firefly graph.

Figure 2. The firefly graph 𝐹 (2, 3, 3)

Clearly, |𝑉 (𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1)| = 𝑛; |𝐸(𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1)| = 𝑛+ 𝑠− 1; and ∆ = 𝑛− 𝑡− 1.
The following theorem in [1] establishes the lower bound for the edge irregularity strength of

a graph 𝐺.

Theorem 2.2. Let 𝐺 = (𝑉,𝐸) be a simple graph with maximum degree ∆(𝐺). Then

es(𝐺) ≥ max{⌈ |𝐸(𝐺)|+1
2

⌉,∆(𝐺)}.

3 Edge irregularity strength of firefly graph
With respect to Figure 2, es(𝐹1,0,0) = 3 since 𝐹1,0,0

∼= 𝐾3. Similarly, es(𝐹0,1,0) = 2 since
𝐹0,1,0

∼= 𝑃3; and es(𝐹0,0,1) = 1 since 𝐹0,0,1
∼= 𝐾2. Based on this observation, we determine

es(𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1) for different cases of 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 for any 𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛− 2𝑠− 2𝑡− 1 ≥ 1.
In the next theorem, we find the exact value of edge irregularity strength of firefly graph

𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 for any 𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛− 2𝑠− 2𝑡− 1 ≥ 1 and 𝑠 = 𝑡 = 𝑛− 2𝑠− 2𝑡− 1.

Theorem 3.1. Let 𝐺 = 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 (𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛 − 2𝑠 − 2𝑡 − 1 ≥ 1) be the firefly graph.
Then es(𝐺) = 𝑛− 𝑡− 1 for 𝑠 = 𝑡 = 2𝑠− 2𝑡− 1.
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Proof. Let 𝐺 = 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 (𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛 − 2𝑠 − 2𝑡 − 1 ≥ 1) be the firefly graph. For
𝑠 = 𝑡 = 𝑛− 2𝑠− 2𝑡− 1, let us consider the vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺) of 𝐺 as follows:

𝑉 (𝐺) = {𝑥, 𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑛− 𝑡− 1} ∪ {𝑦𝑗 : 1 ≤ 𝑗 ≤ 𝑡};

𝐸(𝐺) = {𝑥𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑛− 𝑡− 1} ∪ {𝑥𝑙𝑥𝑙+1 : 𝑙 = 2𝑖− 1, 1 ≤ 𝑖 ≤ 𝑠} ∪
{𝑥𝑖𝑦𝑗 : 𝑛− 2𝑡 ≤ 𝑖 ≤ 𝑛− 𝑡− 1, 1 ≤ 𝑗 ≤ 𝑡}.

Since |𝑉 (𝐺)| = 𝑛, |𝐸(𝐺)| = 𝑛+𝑠−1, and the maximum degree ∆ = 𝑛− 𝑡−1, according to the
Theorem 2.2, es(𝐺) ≥ max{⌈𝑛+𝑠

2
⌉, 𝑛−𝑡−1}. Since𝑛−𝑡−1 > ⌈𝑛+𝑠

2
⌉ for 𝑠 = 𝑡 = 𝑛−2𝑠−2𝑡−1,

es(𝐺) ≥ 𝑛− 𝑡− 1.
To prove the equality, it suffices to prove the existence of an edge irregular (𝑛−𝑡−1)−labeling.

Define a labeling 𝜓 on vertex set of 𝐺 as follows:
Let 𝜓 : 𝑉 (𝐺) → {1, 2, . . . , 𝑛− 𝑡− 1} such that

𝜓(𝑥) = 1;

𝜓(𝑥𝑖) = (𝑛− 2𝑠− 𝑡− 1) + 𝑖 for 1 ≤ 𝑖 ≤ 2𝑠;

𝜓(𝑥𝑖) = 𝑖− 2𝑠 for 2𝑠+ 1 ≤ 𝑖 ≤ 𝑛− 𝑡− 1;

𝜓(𝑦𝑗) = (𝑛− 2𝑡− 1) + 𝑗 for 1 ≤ 𝑗 ≤ 𝑡.

The edge weights are as follows:

𝑧𝜓(𝑥𝑥𝑖) = (𝑛− 2𝑠− 𝑡) + 𝑖 for 1 ≤ 𝑖 ≤ 2𝑠;

𝑧𝜓(𝑥𝑥𝑖) = 𝑖− 2𝑠+ 1 for 2𝑠+ 1 ≤ 𝑖 ≤ 𝑛− 𝑡− 1;

𝑧𝜓(𝑥𝑙𝑥𝑙+1) = 2(𝑛− 2𝑠− 𝑡) + 2𝑙 − 1 for 𝑙 = 2𝑖− 1, 1 ≤ 𝑖 ≤ 𝑠;

𝑧𝜓(𝑥𝑖𝑦𝑗) = (𝑛− 2𝑠− 2𝑡− 1) + 𝑖+ 𝑗 for 𝑛− 2𝑡 ≤ 𝑖 ≤ 𝑛− 𝑡− 1, 1 ≤ 𝑗 ≤ 𝑡.

On the basis of above calculations we see that the edge weights are distinct for all pairs of distinct
edges. Therefore, es(𝐺) = 𝑛− 𝑡− 1. This completes the proof.

As an example, for the graph 𝐺 of Figure 3, 𝑠 = 2, 𝑡 = 2, 𝑛 − 2𝑠 − 2𝑡 − 1 = 2. Hence,
es(𝐺) = 8.
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Figure 3. Edge irregularity strength of 𝐹2,2,2
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In the next theorem, we determine the exact value of edge irregularity strength of firefly graph
for any 𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛− 2𝑠− 2𝑡− 1 ≥ 1 and 𝑛− 2𝑠− 2𝑡− 1 > 𝑠+ 𝑡, 𝑡 ≥ 𝑠.

Theorem 3.2. Let 𝐺 = 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 (𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛 − 2𝑠 − 2𝑡 − 1 ≥ 1) be the firefly graph.
Then es(𝐺) = 𝑛− 𝑡− 1 for 𝑛− 2𝑠− 2𝑡− 1 > 𝑠+ 𝑡, 𝑡 ≥ 𝑠.
Proof. Let 𝐺 = 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 (𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛 − 2𝑠 − 2𝑡 − 1 ≥ 1) be the firefly graph, where
𝑛− 2𝑠− 2𝑡− 1 > 𝑠 + 𝑡, 𝑡 ≥ 𝑠. Let us consider the vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺) of 𝐺 as
follows:

𝑉 (𝐺) = {𝑥, 𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑛− 𝑡− 1} ∪ {𝑦𝑗 : 1 ≤ 𝑗 ≤ 𝑡};

𝐸(𝐺) = {𝑥𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑛− 𝑡− 1} ∪ {𝑥𝑙𝑥𝑙+1 : 𝑙 = 𝑛− 2𝑠− 𝑡+ 2(𝑖− 1), 1 ≤ 𝑖 ≤ 𝑠}∪
{𝑥𝑖𝑦𝑗 : 𝑛− 2𝑠− 2𝑡 ≤ 𝑖 ≤ 𝑛− 2𝑠− 𝑡− 1, 1 ≤ 𝑗 ≤ 𝑡}.

According to the Theorem 2.2, es(𝐺) ≥ 𝑛− 𝑡− 1. To prove the equality, it suffices to prove the
existence of an edge irregular (𝑛− 𝑡− 1)−labeling.

Let 𝜓 : 𝑉 (𝐺) → {1, 2, . . . , 𝑛− 𝑡− 1} be the labeling on vertex set of 𝐺 such that:
𝜓(𝑥) = 1;

𝜓(𝑥𝑖) = 𝑖 for 1 ≤ 𝑖 ≤ 𝑛− 𝑡− 1;

𝜓(𝑦𝑗) = 2𝑠+ 𝑡+ 1 for 1 ≤ 𝑗 ≤ 𝑡.

The edge weights are as follows:
𝑧𝜓(𝑥𝑥𝑖) = 𝑖+ 1 for 1 ≤ 𝑖 ≤ 𝑛− 𝑡− 1;

𝑧𝜓(𝑥𝑙𝑥𝑙+1) = 2𝑙 + 1 for 𝑙 = 𝑛− 2𝑠− 𝑡− 2 + 2𝑖 , 1 ≤ 𝑖 ≤ 𝑠;

𝑧𝜓(𝑥𝑖𝑦𝑗) = 𝑛− 𝑡+ 𝑗 for 𝑛− 2𝑡− 2𝑠 ≤ 𝑖 ≤ 𝑛− 𝑡− 2𝑠− 1, 1 ≤ 𝑗 ≤ 𝑡.

On the basis of above calculations we see that the edge weights are distinct for all pairs of
distinct edges. Therefore, es(𝐺) = 𝑛− 𝑡− 1 for 𝑛− 2𝑠− 2𝑡− 1 > 𝑠+ 𝑡, 𝑡 ≥ 𝑠. This completes
the proof.

As an example, for the graph 𝐺 of Figure 4, 𝑠 = 2, 𝑡 = 3, 𝑛 − 2𝑠 − 2𝑡 − 1 = 6. Hence,
es(𝐺) = 13. Similarly, for the graph 𝐺 of Figure 5, 𝑠 = 1, 𝑡 = 1, 𝑛 − 2𝑠 − 2𝑡 − 1 = 3. Hence,
es(𝐺) = 6.
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Figure 4. Edge irregularity strength of 𝐹 (2, 3, 6)
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Figure 5. Edge irregularity strength of 𝐹 (1, 1, 3)

In the next theorem, we determine the exact value of edge irregularity strength of firefly graph
for any 𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛−2𝑠−2𝑡−1 ≥ 1 and 𝑡 ≥ 𝑠+(𝑛−2𝑠−2𝑡−1), 𝑛−2𝑠−2𝑡−1 ≥ 1, 𝑠 = 1.

Theorem 3.3. Let 𝐺 = 𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 (𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛 − 2𝑠 − 2𝑡 − 1 ≥ 1) be the firefly graph.
Then es(𝐺) = 𝑛− 𝑡− 1 for 𝑡 ≥ 𝑠+ (𝑛− 2𝑠− 2𝑡− 1) and 𝑛− 2𝑠− 2𝑡− 1 ≥ 1, 𝑠 = 1.

Proof. The proof is similar to the proof of Theorem 3.2 and so the proof is omitted here.

As an example, for the graph 𝐺 of Figure 6, 𝑠 = 1, 𝑡 = 3, 𝑛 − 2𝑠 − 2𝑡 − 1 = 1. Hence,
es(𝐺) = 6. Similarly, for the graph 𝐺 of Figure 7, 𝑠 = 1, 𝑡 = 5, 𝑛 − 2𝑠 − 2𝑡 − 1 = 4. Hence,
es(𝐺) = 11.
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Figure 6. Edge irregularity strength of 𝐹 (1, 3, 1)
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4 Conclusion
In this note, the exact value of edge irregularity strength of different cases of firefly graph
𝐹𝑠,𝑡,𝑛−2𝑠−2𝑡−1 for any 𝑠 ≥ 1, 𝑡 ≥ 1, 𝑛 − 2𝑠 − 2𝑡 − 1 ≥ 1 is computed. However, determining
the exact value of edge irregularity strength of firefly graph for many other cases, such as
𝑠 ≥ 𝑡+(𝑛−2𝑠−2𝑡−1) and 𝑡 ≥ 𝑛−2𝑠−2𝑡−1; 𝑠 ≥ 𝑡+(𝑛−2𝑠−2𝑡−1) and 𝑛−2𝑠−2𝑡−1 > 𝑡,
etc., still remain open.
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