Notes on Number Theory and Discrete Mathematics

Print ISSN 1310-5132, Online ISSN 2367-8275

2023, Volume 29, Number 1, 130-136

DOI: 10.7546/nntdm.2023.29.1.130-136

On certain equations and inequalities involving the arithmetical functions $\varphi(n)$ and d(n) – II

József Sándor

Department of Mathematics, Babeş-Bolyai University Cluj-Napoca, Romania

e-mail: jsandor@math.ubbcluj.ro

Received: 27 July 2022 **Revised:** 17 February 2023 **Accepted:** 2 March 2023 **Online First:** 7 March 2023

Abstract: In papers [3] and [5] we have studied certain equations and inequalities involving the arithmetical functions $\varphi(n)$ and d(n). In this paper we will consider some other equations. Some open problems will be stated, too.

Keywords: Arithmetic functions, Equations, Inequalities.

2020 Mathematics Subject Classification: 11A25.

1 Introduction

Let $\varphi(n)$ and d(n) denote the Euler totient function and the number of divisors functions, respectively. It is well-known that $\varphi(r)=d(1)=1$, and for $n=p_1^{a_1}\dots p_r^{a_r}>1$ (prime factorization), we have

$$\varphi(n) = p_1^{a_1 - 1} \cdots p_r^{a_r - 1} \cdot (p_1 - 1) \cdots (p_r - 1) \text{ and } d(n) = (a_1 + 1) \cdots (a_r + 1)$$
 (1)

with $p_1(i=\overline{1,r})$ distinct primes, and $a_i(i=\overline{1,r})$ positive integers. In paper [3] we have studied the solutions of the equation $\varphi(n)+d(n)=n$, and proved certain related inequalities. In paper [5] we have solved the equation $\varphi(n)+d(n)=\frac{n}{2}$, and studied the related inequalities. Another equation solved in [5] was $\varphi(n)+d^2(n)=2n$.

Copyright © 2023 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

The aim of this paper is to consider more equations for the arithmetical function $\varphi(n)$ and d(n). Some open problems and conjectures will be stated, too.

2 Main results

First we study two equations, which can be solved by the methods of [3]:

Theorem 1. The equation

$$2\varphi(n) + d(n) = 2n\tag{2}$$

has the only solutions as n = primes. The equation

$$\varphi(n) + 2d(n) = 2n \tag{3}$$

has the only solutions as: n = 3, 4.

Proof. Let n=p= prime. Then, as $\varphi(p)=p-1$ and d(p)=2, as $2\cdot (p-1)+2=2p$, clearly n=p is a solution. Let now n be a composite number. Then, by the known inequalities (see [3]) $\varphi(n) \leq n-\sqrt{n}$ and $d(n)<2\sqrt{n}$ we get $2\varphi(n)+d(n)<2n-2\sqrt{n}+2\sqrt{n}=2n$, so there are no composite solutions for (2).

By the same argument, if n=p is a solution of (3), then p-1+4=2p, so p=3, and this is the only prime solution of (3). Now, if n is composite, then as $\varphi(n)+2d(n)< n-\sqrt{n}+4\sqrt{n}=n+3\sqrt{n}$, if $n+3\sqrt{n}\leq 2n$ (i.e., $n\geq 3\sqrt{n}$, or $\sqrt{n}\geq 3$ or $n\geq 9$), there are no solutions. Now an easy verification for the composite numbers $n\in\{4,6,8\}$ we get that only n=4 is a solution. This finishes the proof of Theorem 1.

Theorem 2. The solution of the equation

$$2\varphi(n) + d(n) = n \tag{4}$$

are n = 18 and $n = 8 \cdot p$, where $p \ge 3$ is a prime.

Proof. An easy verification shows that n=p (prime) and $n=2^k$ $(k\geq 1)$ are not solutions. Indeed, $2\cdot (p-1)+2=2p>p$ and $2\cdot 2^{k-1}+k+1>2^k$. Let now $n=2^k\cdot p$, when we get $2^k\cdot (p-1)+2\cdot (k+1)=2^k\cdot p$, or $2^{k-1}=k+1$. This has the only solution k=3, as $k\neq 1, k\neq 2$, and for $k\geq 4$ one has $2^{k-1}>k+1$. Therefore, $n=2^3\cdot p=8p$ is always a solution for $p\geq 3$ a prime. Let now $n=2^k\cdot N$ where N is odd and composite. The equation (3) becomes

$$2^k \cdot \varphi(N) + (k+1)d(N) = 2^k \cdot N. \tag{5}$$

Now, as $k+1 \le 2^k$ and $\varphi(N) + d(N) \le N$ (with equality only for N=9, see [3]), we get that the left side of (5) is \le right side, with equality only for k=1 and N=9. Thus the solution $n=2^1\cdot 9=18$ is obtained. Finally, if n is odd remark that d(n) should be odd, so $n=m^2$. Then we get that m should divide $d(m^2)$, so m=3 (see [3]), and we do not obtain solutions. \square

Theorem 3. The equation

$$\varphi(n) + 2d(n) = n \tag{6}$$

has the only solutions as n = 14, 18, 20, 24.

Proof. As in the proof of Theorem 2, it is immediate that n=p (prime) and $n=2^k$ are not solutions. On the other hand, it is also immediate that the only solution of the form $n=p\cdot 2^k$ is $n=3\cdot 2^3=24$. Indeed, the equation in this case becomes $2^{k-1}\cdot (p+1)=4\cdot (k+1)$, and as $2^{k-1}\geq k+1$ for $k\geq 3$ and $p+1\geq 4$, the result follows for $k\geq 3$. For k=1 we get the solution p=7, while for k=2 we get p=5. Therefore, all solutions of the form $n=2^k\cdot p$ are n=14,20,24. Let now $n=2^k\cdot N$, with $N\geq 3$ odd and composite. The equation (6) becomes

$$2^{k+1} \cdot \varphi(N) + (k+1)d(N) = 2^k \cdot N. \tag{7}$$

Remark that for $k \geq 3$ one has $k+1 \leq 2^{k-1}$, so the left side of (7) is $\leq 2^{k-1} \cdot [\varphi(N) + d(N)] \leq 2^{k-1} \cdot N$, by the known inequality $\varphi(N) + d(N) \leq N$. Thus, if (7) is true, then $2^k \cdot N \leq 2^{k-1} \cdot N$, which is impossible.

For k = 1 the equation becomes

$$\varphi(N) + 4d(N) = 2N \tag{8}$$

By the inequality $\varphi(N) + d(N) \le N$ (with equality only for N = 9), remark that if the following inequality would be true:

$$3d(N) \le N,\tag{9}$$

then the equation could have a single solution, namely N=9.

As $d(N) < 2\sqrt{N}$, and $2\sqrt{N} \le \frac{N}{3}$ if $N \ge 36$, a simple verification for $N \in \{9, 15, 21, 25, 27, 33, 35\}$ shows that (9) holds true, with equality only for N = 9. Thus we have obtained in this case the solution $n = 2 \cdot 9 = 18$.

Let now k=2, when we get $n=4\cdot N$, so the equation becomes $2\varphi(N)+6d(N)=4N$, or

$$\varphi(N) + 3d(N) = 2N. \tag{10}$$

As $\varphi(N) + d(N) \le N$, and 2d(N) < N by (9) (as $\frac{N}{3} < \frac{N}{2}$), clearly (10) is impossible. Thus, in this case no solution is obtained, and as clearly there are no odd solutions, the proof of Theorem 3 is complete.

Theorem 4. The equation

$$(\varphi(n))^{\varphi(n)} + (d(n))^{d(n)} = n^n \tag{11}$$

has no solutions.

The only solution to the equation

$$(\varphi(n))^{\varphi(n)} \cdot (d(n))^{d(n)} = n^n \tag{12}$$

is n=2

Proof. Equation (11) is a particular case of a general equation $a^a + b^b = c^c$.

Lemma 1. The equation

$$a^a + b^b = c^c (13)$$

cannot be solved in positive integers a, b, c.

Proof. Suppose that $b \ge a$. Then $a^a + b^b \le 2b^b$. On the other hand, clearly from (13) it follows that c > b, so $c \ge b + 1$ as c, b are positive integers. This implies

$$c^c \ge (b+1)^{b+1} = (b+1) \cdot (b+1)^b > (b+1) \cdot b^b \ge 3b^b$$

if $b \ge 2$. This is a contradiction, as the left side of (13) is $\le 2b^b$. If b = 1, then a = 1 and (13) becomes $2 = c^c$, which has no solutions, as for c = 1, $c^c = 1$ and for $c \ge 2$, one has $c^c \ge 4$

Remark 1. The similar equation

$$a^a \cdot b^b = c^c \tag{14}$$

is not known to be solved in the general cases (see, e.g., [1], Section D13). Thus equation (12) must be treated separately.

Using the representation (1), as equation (12) implies

$$(\varphi(n))^{\varphi(n)} \mid n^n, \tag{15}$$

we get that

$$p_1^{na_1 - \varphi(n).(a_1 - 1)} \cdots p_r^{n.a_r - \varphi(n).(a_r - 1)} = K \cdot (p_1 - 1)^{\varphi(n)} \cdots (p_r - 1)^{\varphi(n)}$$
(16)

where $K \ge 1$ is an integer. Let $p_1 < p_2 < \cdots < p_r$, $r \ge 2$. As $p_r - 1 > p_{r-1}$, excepting $p_1 = 2$, $p_2 = 3$, when $p_2 - 1 = p_1$; clearly $p_r - 1$ cannot divide the left side of (16), thus we get that we can have only $p_r = 3$, $p_{r-1} = 2$; i.e., n has the form $n = 2^a \cdot 3^b$.

In this case, equation (12) becomes

$$(a+1)^{d(n)} \cdot (b+1)^{d(n)} = 2^{a(n-\varphi(n))} \cdot 3^{b(n-\varphi(n))}.$$
 (17)

As, $n - \varphi(n) = 2^a \cdot 3^b - 2^a \cdot 3^{b-1} = 2^{a+1} \cdot 3^{b-1} = 2\varphi(n)$, (17) can be written as

$$(a+1)^{d(n)} \cdot (b+1)^{d(n)} = 2^{2a\varphi(n)} \cdot 3^{2b\varphi(n)}. \tag{18}$$

Now, $2^a \ge a+1$ and $3^b > b+1$, it will be sufficient to consider the inequality

$$2\varphi(n) \ge d(n). \tag{19}$$

Lemma 2. Inequality (19) holds true for any $n \ge 1$, with equality only for n = 2 and n = 6.

Proof. Remark that $2p_1^{a_1-1}\cdot (p_1-1)\geq a_1+1$ for $p_1\geq 2$ and $p_2^{a_2-1}\cdot (p_2-1)\geq a_2+1$ for $p_2\geq 3$, with equality only for $p_1=2$, $a_1=1$ and $p_2=3$, $a_2=1$. On the other hand, $p_3^{a_3-1}\cdot (p_3-1)>a_3+1$, for $p_3\geq 5$ and $a_3\geq 1$, etc, so

$$2\varphi(n) = 2p_1^{a_1-1} \cdot (p_1-1) \cdot p_2^{a_2-1} \cdot (p_2-1) \cdots p_r^{a_r-1} \cdot (p_r-1) \ge (a_1+1) \dots (a_r+1),$$

with equality only for r = 1 and r = 2; when we get the solutions n = 2 and n = 6.

By Lemma 2 it follows that (18) is impossible so equation (12) cannot be solved when $r \ge 2$. As for $n \ge 3$, $\varphi(n)$ is even, n should be even, and the only possibility is n = 2.

Theorem 5. The equation

$$\varphi(n) + (d(n))^2 = n \tag{20}$$

has the solutions n = 68, 128, 384, 864.

Proof. First we prove that equation (20) cannot have odd solutions. Let $n = p_1^{a_1} \cdots p_r^{a_r}$ be the prime factorization of n, with $3 \le p_1 < \cdots < p_r$. Then (20) can be written as

$$(a_1+1)^2 \cdots (a_r+1)^2 = p_1^{a_1-1} \cdots p_r^{a_r-1} \cdot [p_1 \cdots p_r - (p_1-1) \cdots (p_r-1)]. \tag{21}$$

Clearly, each part of the product in the right side of (21) is odd, so the right side of (21) is an odd number. Then, if $a_r=1$, then (21) is impossible, as the left side is even. Suppose that $a_r>1$. Then, $(p_r,(p_1-1)\cdots(p_r-1))=1$, the right side of (21) can be written as $p_r^{a_r-1}\cdot X$, where $(p_r,X)=1$. By (21), this should be a perfect square, so we should have $p_r^{a_r-1}=A^2$, $X=B^2$, where (A,B)=1. But p_r being prime, $p_r^{a_r-1}=A^2$ implies that a_r-1 is even, so a_r+1 is even, too. Thus the left side of (21) is again even number, a contradiction.

Let now n be an even solution to (20). As n is even, by the known inequality $\varphi(n) \leq \frac{n}{2}$ we get from (20) that $\frac{n}{2} \leq d^2(n)$, so $d(n) \geq \sqrt{\frac{n}{2}}$. But from the known inequality $d(n) < 4 \cdot \sqrt[3]{n}$, if $4 \cdot \sqrt[3]{n} < \sqrt{\frac{n}{2}}$, this will be impossible, as then we would have $d(n) < \sqrt{\frac{n}{2}}$. As $4 \cdot \sqrt[3]{n} < \sqrt{\frac{n}{2}}$ is equivalent with $n > 8 \cdot 4^6 = 32768 = n_0$, this means that for such values $n > n_0$, there are no even solutions. It is not difficult to obtain by a computer that for n even and $n \leq 32766$ the only solutions to (20) are n = 68, 128, 384 and 864. This finishes the proof of Theorem 5.

In paper [5] we have studied the equation $\varphi(n) + d(n) = \frac{n}{2}$, which had a single solution. Now, we will consider the equation $\varphi(n) + d(n) = \frac{n}{4}$.

Theorem 6. The equation

$$\varphi(n) + d(n) = \frac{n}{4} \tag{22}$$

has all solutions of the form n=4m, where m is an even number. One has $\omega(m) \geq 4$.

Proof. Clearly, n is a multiple of 4, let n = 4m. Then equation (22) becomes

$$\varphi(4m) + d(4m) = m. \tag{23}$$

Let us now suppose that m is odd. Then, as (4,m)=1, (23) can be written as $2\varphi(m)+3d(m)=m$. This implies that d(m) should be odd, so m should be a perfect square: $m=M^2$. As $\varphi(M^2)=M\varphi(M)$, this implies that

$$M \mid 3d(M^2). \tag{24}$$

First suppose that (M,3)=1. Then $M\mid d(M^2)$, and it is shown in [3] that M=3, which is impossible. Let $M=3\cdot K$ and let $K=p_1^{a_1}p_2^{a_2}\dots p_r^{a_r}$ be the prime factorization of K. As (24) can be written now as

$$K \mid d(9K^2) \tag{25}$$

we get $p_1^{a_1} \cdots p_r^{a_r} \mid 3 \cdot (2a_1+1) \dots (2a_r+1)$. Remark that for any $a_1, a_2 \geq 1$ one has $5^{a_1} \cdot 7^{a_2} \geq 3 \cdot (2a_1+1)(2a_2+1)$, and as $p_r^{a_r} > 2a_r+1$ for any $p_r \geq 11$, clearly the above

divisibility cannot be true if $p_1 \ge 5$, $p_r > p_{r1} > \cdots > p_2$, since $5^{a_1} \ge 3 \cdot (2a_1 + 1)$ for $a_1 \ge 2$; we should have $a_1 = 1$ so K = p (prime), and $p \mid d(3^2 \cdot p^2) = 9$ is possible only when p = 3. Thus, K = 3 and M = 9 and we do not get a solution.

If $p_1 = 3$, then $K = 3^{a_1} \cdot p_2^{a_2} \cdots p_r^{a_r}$ and (25) becomes

$$3^{a_1} \cdot p_2^{a_2} \cdots p_r^{a_r} \mid (2a_1 + 3)(2a_2 + 1) \cdots (2a_1 + 1).$$
 (26)

Now, if $a_1 \ge 2$, by $3^{a_1} > 2a_1 + 3$ and $p_2^{a_2} \ge 5^{a_2} > 2a_2 + 1, \ldots$, clearly (26) will be impossible. If $a_1 = 1$, (26) becomes

$$3 \cdot p_2^{a_2} \cdots p_r^{a_r} = 5(2a_2 + 1) \cdots (2a_r + 1)$$

and as $3 \cdot 5^{a_2} \ge 5(2a_2+1)$, $p_3^{a_3} \ge 7^{a_3} > 2a_3+1,\ldots$, we can have only $a_2=1$ and r=2, so we get again K=3 and K=9. These do not provide again solutions to (23). Thus, finally m cannot be odd.

Let us now assume $\omega(m)=1$, i.e., $m=2^k$ (as m is even). Then, as $2^{k+1}+k+3>2^k$, clearly (23) is impossible.

Let $\omega(m)=2$, i.e., $m=2^k\cdot p^a$ where $p\geq 3$ is a prime. Then $4m=2^{k+2}\cdot p^a$ and after elementary transformations (23) becomes $2^k\cdot p^{a-1}\cdot (2-p)=(k+3)(a+1)$, which is impossible, as 2-p<0.

Let $\omega(m)=3$, i.e., $m=2^k\cdot p^a\cdot q^b$ where $p\geq 3$, $q\geq 5$ are primes. As $4m=2^{k+2}\cdot p^a\cdot q^b$, after elementary transformations, the equation (23) can be written as

$$2^k \cdot p^{a-1} \cdot q^{k-1} \cdot [2(p+q+1) - p \cdot q] = (k+3)(a+1)(b+1). \tag{27}$$

Remark that $pq - 2(p+q-1) = pq - 2p - 2q + 2 = (p-2)(q-2) - 2 \ge 3 - 2 = 1$, as $p-2 \ge 1$, $q-2 \ge 3$. Thus the left side of (27) is $\le -1 < 0$, a contradiction.

The following theorem offers particular solutions to equation (23).

Theorem 7. All solutions to (23) of the type $m = 2^a \cdot 3^b \cdot 5^c \cdot p$, where $p \ge 7$ is a prime, are $m = 2^2 \cdot 3^2 \cdot 5 \cdot 11$, $m = 2^2 \cdot 3 \cdot 5^2 \cdot 13$ and $m = 2^3 \cdot 3^2 \cdot 5 \cdot 13$.

A solution with $\omega(m) = 5$ is $m = 2^4 \cdot 3 \cdot 5 \cdot 17 \cdot 251$.

Proof. Equation (23) for $m = 2^a \cdot 3^b \cdot 5^c \cdot p$ can be written as

$$2^{a} \cdot 3^{b-1} \cdot 5^{c-1} \cdot (16-p) = 2(a+3)(b+1)(c+1).$$
(28)

This implies $p \le 13$. First we prove that p = 7 is impossible. Indeed, in this case (28) becomes

$$2^{a-1} \cdot 3^{b+1} \cdot 5^{c-1} = (a+3)(b+1)(c+1). \tag{29}$$

Remark that $5^{c-1}>c+1$ if $c\geq 2$, $3^{b+1}>b+1$ for $b\geq 1$, $2^{a-1}\geq a+3$ for $a\geq 4$. If c=1, then $2^{a-1}\cdot 3^{b+1}=2(a+3)\cdot (b+1)$ can be rewritten as $2^{a-2}\cdot 3^{b+1}=(a+3)(b+1)$. For $a\geq 4$ this cannot provide solutions, and also for a=1, a=2, a=3 we cannot find solutions. Thus for $b\geq 1$, $c\geq 1$ and $a\geq 4$ there are no solutions. For a=1, the left side is odd, the right side even, for a=2 we get $2\cdot 3^{b+1}\cdot 5^{c-1}=5(b+1)\cdot (c+1)$ and as $2\cdot 5^{c-2}\geq c+1$ for any $c\geq 3$,

we should consider c=2, when we get $2\cdot 3^{b+1}=(b+1)\cdot 3$ and this cannot have solutions as $3^b>b+1$. Finally, for a=3 we get the equation $2^2\cdot 3^{b+1}\cdot 5^{c-1}=2\cdot 3\cdot (b+1)\cdot (c+1)$ or $2\cdot 3^b\cdot 5^{c-1}=(b+1)\cdot (c+1)$. As $3^b>b+1$, $2\cdot 5^{c-1}\geq c+1$, this equation cannot have solutions.

For p = 11 the equation (28) becomes

$$2^{a-1} \cdot 3^{b-1} \cdot 5c = (a+3)(b+1)(c+2) \tag{30}$$

and as above, we can show, by using elementary inequalities, that a=2,b=2,c=1.

For p = 13, equation (28) becomes

$$2^{a-1} \cdot 3^b \cdot 5^{c-1} = (a+3)(b+1)(c+1), \tag{31}$$

and by the above elementary considerations (which we omit here) it can be shown that a=2, $b=1,\,c=2$ or $a=3,\,b=2,\,c=1$.

Let now m have the form

$$m = 2^k \cdot p_1 \cdots p_r \tag{32}$$

where p_1, \ldots, p_r are distinct odd primes.

In this case, equation (23) becomes

$$2^{k-r} \cdot [p_1 \cdots p_r - 2(p_1 - 1) \cdots (p_r - 1)] = k + 1.$$
(33)

Therefore, for $r \ge k+1$, (23) has no solutions of the form (32). When k=r, equation (33) becomes

$$p_1 \cdots p_r - 2(p_1 - 1) \cdots (p_r - 1) = r + 1.$$
 (34)

When r = 4, $p_1 = 3$, $p_2 = 5$ we get from (34) the equation $15p_3p_4 - 16(p_3 - 1)(p_4 - 1) = 5$, which can be written equivalently as $(p_3 - 16)(p_4 - 16) = 235$.

As $235 = 5 \cdot 47$ for $p_3 - 16 = 1$, $p_4 - 16 = 235$, we get the solutions $p_3 = 17$, $p_4 = 251$, which is a prime. Therefore, a solution of the form (32) is

$$m = 2^4 \cdot 3 \cdot 5 \cdot 17 \cdot 251.$$

Conjecture 1. *The equation* (23) *has infinitely many solutions.*

Conjecture 2. The equation (34) has infinitely many solutions in primes p_1, \ldots, p_r .

References

- [1] Guy, R. K. (2004). Unsolved Problems in Number Theory (3rd ed.). Springer-Verlag.
- [2] Sándor, J., Mitrinović, D. S., & Crstici, B. (2005). Handbook of Number Theory I. Springer.
- [3] Sándor, J. (2020). On the equation on $\varphi(n) + d(n) = n$ and related inequalities. *Notes on Number Theory and Discrete Mathematics*, 26(3), 1–4.
- [4] Sándor, J., & Atanassov, K. T. (2021). Arithmetic Functions. Nova Science Publ., New York.
- [5] Sándor, J., & Bhattacharjee, S. (2022). On certain equations and inequalities involving the arithmetical functions $\varphi(n)$ and d(n). Notes on Number Theory and Discrete Mathematics, 28(2), 376–379.