Notes on Number Theory and Discrete Mathematics

Print ISSN 1310-5132, Online ISSN 2367-8275

2023, Volume 29, Number 1, 30–39

DOI: 10.7546/nntdm.2023.29.1.30-39

Two generalizations of Liouville λ function

André Pierro de Camargo

Federal University of the ABC region, Brazil e-mail: andrecamargo.math@gmail.com

Received: 6 September 2022 **Accepted:** 10 February 2023 **Revised:** 15 December 2022 **Online First:** 13 February 2023

Abstract: We study the properties of two classes of functions λ_k and $\tilde{\lambda}_k$ that generalize the Liouville λ function, including some equivalencies between the Riemann hypothesis and some assertions about the asymptotic behavior of the summatory functions of λ_k and $\tilde{\lambda}_k$. Similar results are obtained for the generalization of the Möbius function considered by Tanaka.

Keywords: Liouville function, Möbius function, Prime Number Theorem, Riemann Hypothesis. **2020 Mathematics Subject Classification:** 11N56, 11N99.

1 Introduction

The Möbius μ and the Liouville λ functions are important and closely related arithmetic functions connected with the distribution of the prime numbers

$$\mu(n) \ = \ \left\{ \begin{array}{ll} (-1)^k, & \mbox{if n is the product of k distinct prime numbers,} \\ 0, & \mbox{otherwise,} \end{array} \right.$$

 $\lambda(n) = (-1)^k$, k is the number of prime factors of n counted with multiplicity.

In fact, the Prime Number Theorem and the Riemann Hypothesis are equivalent [5], respectively, to

$$M(x) = o(x) \quad \text{or} \quad L(x) = o(x) \tag{1}$$

Copyright © 2023 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

and

$$M(x) = O\left(x^{1/2+\epsilon}\right) \ \forall \ \epsilon > 0 \quad \text{or} \ L(x) = O\left(x^{1/2+\epsilon}\right) \ \ \forall \ \epsilon > 0,$$
 (2)

where M and L are the summatory functions of μ and λ , that is,

$$M(x) \ = \ \sum_{j \le x} \mu(j) \quad \text{and} \quad L(x) \ = \ \sum_{j \le x} \lambda(j), \quad x \ge 1$$

(M is known as the Mertens function in the Literature). The equivalences in (1) and (2) can be obtained, for example, via the classical relations [5]

$$M(x) = \sum_{j \le \sqrt{x}} \mu(j) L\left(\frac{x}{j^2}\right), \quad L(x) = \sum_{j \le \sqrt{x}} M\left(\frac{x}{j^2}\right)$$
 (3)

between M and L.

Generalizations of the Möbius function were previously presented by Apostol and Tanaka: Apostol's generalization μ_k of $\mu = \mu_1$, $k \ge 1$, is defined in [2] by:

$$\mu_k(j) = \begin{cases} 0, & \text{if } q_{k+1}(j) = 0, \\ (-1)^r, & \text{if } j = (p_1 p_2 \dots p_r)^k m, \ p_i \text{ prime; } q_k(m) \neq 0, \\ 1, & \text{otherwise,} \end{cases}$$

where q_{ℓ} is the characteristic function of ℓ -free integers:

$$q_{\ell}(n) = \begin{cases} 1, & \text{if } n \text{ is } \ell\text{-free}, \\ 0, & \text{otherwise} \end{cases}$$

(a positive integer n is ℓ -free if n is not divisible by the ℓ -th power of any prime number).

Tanaka's generalization $\tilde{\mu}_k$ of $\mu = \tilde{\mu}_2$ is defined in [9] by:

$$\tilde{\mu}_k(j) = q_k(j)\lambda(j), \ k \ge 2, \ j \ge 1. \tag{4}$$

In our previous paper [3], we rediscovered the curious relation [7]

$$n = \sum_{j=1}^{n} |\mu(j)| \left\lfloor \sqrt{n/j} \right\rfloor, \quad n \ge 1, \tag{5}$$

which can be obtained by the properties of the Liouville function λ and the fact the λ is the Dirichlet inverse of $|\mu|=q_2$. In an attempt of generalizing (5) for $q_k, k\geq 3$, we crossed with two classes of functions which generalizes the Liouville function. The first generalization $\lambda_k, k\geq 2$, of $\lambda=\lambda_2$ is the Dirichlet inverse of q_k . Explicitly (see Section 3.1):

$$\lambda_k(n) = \mu(D_{free}(k, n)), \ n \ge 1, \tag{6}$$

where $D_{free}(k, n)$ is the k-free part of n, that is

$$\frac{n}{D_{free}(k,n)} \tag{7}$$

is the largest k-th integral power that divides n.

The definition of λ_k is motivated by the generalizations of the Möbius function mentioned above, which extends the relation between μ and q_2 :

$$q_k = |\mu_{k-1}| = |\tilde{\mu}_k|, \ k \ge 2.$$
 (8)

The second generalization of λ is defined by

$$\tilde{\lambda}_k(n) = \lambda(D_{free}(k, n)), \ n \ge 1, \tag{9}$$

and is obtained by replacing μ by λ in (6). Our interest here in $\tilde{\lambda}_k$ is only for k odd because

$$\tilde{\lambda}_{2\ell} = \lambda \,\forall \, \ell \ge 1. \tag{10}$$

In this note we present some properties of λ_k and $\tilde{\lambda}_k$. We generalize (3) and obtain analogues of (1) and (2) for λ_k , $\tilde{\lambda}_k$ and for Tanakas's generalization $\tilde{\mu}_k$ of $\mu = \tilde{\mu}_2$ and we also give an asymptotic formula for the summatory function of $|\lambda_k|$.

Remark 1. After we finished the paper, we found that this subject was partially explored in the unpublished paper [4]. However, our results and our methodology are significantly distinct from that of [4], as the reader will conclude by himself/herself.

2 Preliminaries

Lemma 2.1. If $\beta = \beta_s$ is a completely multiplicative function (occasionally depending on a complex parameter s) and g is defined by

$$g(x) = \sum_{j \le x} \beta(j),$$

for every $k \geq 2$ and $x \geq 1$,

$$\sum_{j \le x} q_k(j)\beta(j) = \sum_{j \le \sqrt[k]{x}} \mu(j)\beta(j)^k g\left(\frac{x}{j^k}\right). \tag{11}$$

Proof. For $j \leq \sqrt[k]{x}$, we have

$$\sum_{i \le \frac{x}{jk}} \beta(j^k i) = \beta(j^k) g\left(\frac{x}{j^k}\right).$$

Hence,

$$\begin{split} \sum_{j \leq \sqrt[k]{x}} \mu(j) \beta \left(j^k \right) g \left(\frac{x}{j^k} \right) &= \sum_{j \leq \sqrt[k]{x}} \mu(j) \sum_{i \leq \frac{x}{j^k}} \beta \left(j^k i \right) \\ &= \sum_{n \leq x} \sum_{ij^k = n} \mu(j) \beta \left(j^k i \right) . \\ &= \sum_{n \leq x} \beta(n) \sum_{j^k \mid n} \mu(j). \end{split}$$

The proof is completed by using that [8]

$$\sum_{j^k|n} \mu(j) = q_k(n). \qquad \Box$$

We will also use the following generalization of Theorem 2.22 of [1].

Lemma 2.2. For $k \geq 1$, if α has a Dirichlet inverse α^{-1} and f and g are arithmetic functions related by

$$g(x) = \sum_{j \le \sqrt[k]{x}} \alpha(j) f(x/j^k), x \ge 1,$$

then

$$f(x) = \sum_{j \le k/\overline{x}} \alpha^{-1}(j) g(x/j^k), x \ge 1.$$

Proof. In fact,

$$\sum_{j \le \sqrt[k]{x}} \alpha^{-1}(j) g\left(x/j^k\right) = \sum_{j \le \sqrt[k]{x}} \alpha^{-1}(j) \left(\sum_{i \le \sqrt[k]{\frac{x}{j^k}}} \alpha(i) f\left([x/j^k]/i^k\right)\right)$$
$$= \sum_{n \le \sqrt[k]{x}} \sum_{i j = n} \alpha^{-1}(j) \alpha(i) f\left(x/n^k\right) = f(x).$$

Theorem 2.3. Let g be an arithmetic function. For $k \geq 2$, let \tilde{g} and \tilde{G} be defined by

$$\tilde{g}(n) = g(D_{free}(k,n)), \ n \ge 1, \quad \tilde{G}(x) = \sum_{j \le x} \tilde{g}(j), \ x \ge 1,$$

with D_{free} defined by (7). For $x \geq 1$,

$$\sum_{j \le x} q_k(j)g(j) = \sum_{j \le \sqrt[k]{x}} \mu(j)\tilde{G}\left(\frac{x}{j^k}\right). \tag{12}$$

Proof. For $j \leq \sqrt[k]{x}$, we have

$$\sum_{i \le \frac{x}{ik}} \tilde{g}\left(j^k i\right) = \sum_{i \le \frac{x}{ik}} \tilde{g}(i) = \tilde{G}\left(\frac{x}{j^k}\right). \tag{13}$$

Hence,

$$\sum_{j \leq \sqrt[k]{x}} \mu(j) \tilde{G}\left(\frac{x}{j^k}\right) = \sum_{j \leq \sqrt[k]{x}} \mu(j) \left(\sum_{i \leq \frac{x}{j^k}} \tilde{g}\left(j^k i\right)\right) \\
= \sum_{n \leq x} \sum_{ij^k = n} \mu(j) \tilde{g}\left(j^k i\right).$$
(14)

Write each $n \le x$ as $n = u^k v$, with v k-free. The summatory above extends over all divisors j of u and i is uniquely determined by $i = (u/j)^k v$, that is

$$\sum_{ij^{k}=n} \mu(j)\tilde{g}\left(j^{k}i\right) = \sum_{j|u} \mu(j)\tilde{g}\left(j^{k}(u/j)^{k}v\right) = \sum_{j|u} \mu(j)\tilde{g}\left(v\right)$$

$$\stackrel{(7)}{=} \begin{cases} \tilde{g}(n), & u=1, \\ 0, & u>1. \end{cases}$$
(15)

Recalling that $\tilde{g} = g$ over k-free integers, by (14) and (15),

$$\sum_{j \le \frac{k}{\sqrt{x}}} \mu(j) \tilde{G}\left(\frac{x}{j^k}\right) = \sum_{n \le x} q_k(n) g(n). \tag{16}$$

This completes the proof.

3 Some properties of λ_k and $\tilde{\lambda}_k$

As we can see by (6) and (9), λ_k and $\tilde{\lambda}_k$ are multiplicative for $k \geq 3$, but are completely multiplicative only for k = 2.

The following well known properties of λ , [7] and [1], p. 38, are extended to λ_k .

Lemma 3.1. For $k \ge 2$ and $x \ge 1$, we have

$$\sum_{d|n} \lambda_k(d) = \begin{cases} 1, & \text{if } n = m^k \text{ for some } m \in \mathbb{N}, \\ 0, & \text{otherwise}, \end{cases}$$
 (17)

$$\sum_{j \le x} \lambda_k(j) \left\lfloor \frac{x}{j} \right\rfloor = \lfloor \sqrt[k]{x} \rfloor. \tag{18}$$

Proof. Write $n = u^k v$ with v k-free. Note that, for each divisor d of n, there are unique u', v', b such that u = bu'

$$d = b^k v', \quad v' | (u')^k v \quad \text{and} \quad v' \text{ is } k - \text{free}.$$

Hence,

$$\sum_{d|n} \lambda_k(d) = \sum_{u'|u} \sum_{v'|(u')^k v} q_k(v') \lambda_k(v') \stackrel{(6)}{=} \sum_{u'|u} \sum_{v'|(u')^k v} \mu(v')$$

$$= \begin{cases}
1, & v = 1 \\
0, & v > 1.
\end{cases}$$

This proves (17).

Relation (18) is obtained by summing up in n:

$$\sum_{j \leq n+1} \lambda_k(j) \lfloor (n+1)/j \rfloor - \sum_{j \leq n} \lambda_k(j) \lfloor n/j \rfloor$$

$$= \sum_{j \leq n+1} \lambda_k(j) \left(\lfloor (n+1)/j \rfloor - \lfloor n/j \rfloor \right)$$

$$= \sum_{d \mid n+1} \lambda_k(d) \stackrel{\text{(17)}}{=} \begin{cases} 1, & \text{if } (n+1) = m^k \text{ for some } m \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}$$

Recalling that λ_k is the Dirichlet inverse of q_k , we obtain the following generalization of (5) by (18) and Lemma 2.2:

Corollary 1. For $n \ge 1$ and $k \ge 2$,

$$n = \sum_{j=1}^{n} q_k(j) \left\lfloor \sqrt[k]{n/j} \right\rfloor. \tag{19}$$

The Dirichlet convolution $1*\tilde{\lambda}_k$ has not a much simpler form (see next section). Consequently, there are no simple analogues of (17), (18) and (19) for $\tilde{\lambda}_k$. However, note that

$$f(j) \in \{-1, 1\} \, \forall j \ge 1$$
 (20)

holds for $f = \tilde{\lambda}_k$, but not for $f = \lambda_k$ for $k \geq 3$. In addition, recall that

$$\mu(j) = \lambda(j)$$

whenever $\mu(j) \neq 0$. This relation extends to $\tilde{\lambda}_k$ and Tanaka's generalization $\tilde{\mu}_k$ (4) of the Möbius function:

$$\tilde{\mu}_k(j) = \tilde{\lambda}_k(j) \tag{21}$$

whenever $\tilde{\mu}_k(j) \neq 0$. Nevertheless, (21) holds for λ_k in the place of $\tilde{\lambda}_k$ only when $\tilde{\mu}_k$ and λ_k are both non-vanishing.

3.1 Dirichlet series associated to λ_k and $\tilde{\lambda}_k$

The Dirichlet series associated to q_k is [8]

$$\sum_{j=1}^{\infty} \frac{q_k(j)}{j^s} = \frac{\zeta(s)}{\zeta(ks)}, \, \Re e(s) > 1$$

 $(\zeta \text{ is the Riemann zeta function}).$ Because λ_k is the Dirichlet inverse of q_k , we have

$$\sum_{j=1}^{\infty} \frac{\lambda_k(j)}{j^s} = \frac{\zeta(ks)}{\zeta(s)}.$$
 (22)

Consequently,

$$\lambda_k(n) = \sum_{j^k i = n} \mu(i) = \sum_{j^k \mid n} \mu\left(\frac{n}{j^k}\right).$$

Clearly, $\mu\left(\frac{n}{j^k}\right) = 0$ if $\frac{n}{j^k}$ is not k-free and we obtain (6). Once we now that $|\lambda_k(j)| \le 1 \ \forall j \ge 1$, we have that the series in the left-hand side of (22) converges absolutely for $\Re(s) > 1$.

The Dirichlet series associated to $\tilde{\lambda}_k$, k odd, can be obtained as follows. First, note that, taking the limit $x \to \infty$ in (11), for $\beta_s(j) := \frac{\lambda(j)}{j^s}$ and $\Re e(s) > 1$,

$$\sum_{j=1}^{\infty} \frac{q_k(j)\lambda(j)}{j^s} = \left(\sum_{j=1}^{\infty} \mu(j) \frac{\lambda(j)^k}{j^{ks}}\right) \left(\sum_{j=1}^{\infty} \frac{\lambda(j)}{j^s}\right)$$

$$\stackrel{k \text{ is odd}}{=} \left(\sum_{j=1}^{\infty} \frac{|\mu(j)|}{j^{ks}}\right) \left(\sum_{j=1}^{\infty} \frac{\lambda(j)}{j^s}\right)$$

$$= \frac{\zeta(ks)}{\zeta(2ks)} \frac{\zeta(2s)}{\zeta(s)}$$
(23)

(relation (23) was reported in [9]. In fact, the left-hand side of (23) is the Dirichlet series associated to $\tilde{\mu}_k$).

By (23) and the fact that $\mathbb{N} = \bigcup_{r \geq 1} V_r$ is the disjoint union of the sets

$$V_r = \{r^k j : j \in \mathbb{N}, q_k(j) \neq 0\}, r \geq 1,$$

we get

$$\sum_{j=1}^{\infty} \frac{\tilde{\lambda}_k(j)}{j^s} = \sum_{r \ge 1} \sum_{n \in V_r} \frac{\tilde{\lambda}_k(n)}{n^s}$$

$$= \sum_{r \ge 1} \sum_{j=1}^{\infty} \frac{q_k(j)\lambda(j)}{(r^k j)^s}$$

$$= \frac{\zeta(ks)^2}{\zeta(2ks)} \frac{\zeta(2s)}{\zeta(s)}.$$
(24)

Therefore, we have

Lemma 3.2. For $\Re e(s) > 1$,

$$\sum_{j=1}^{\infty} \frac{\tilde{\lambda}_k(j)}{j^s} \stackrel{\text{(10)}}{=} \begin{cases} \frac{\zeta(ks)^2}{\zeta(2ks)} \frac{\zeta(2s)}{\zeta(s)}, & k \text{ odd}, \\ \frac{\zeta(2s)}{\zeta(s)}, & k \text{ even.} \end{cases}$$
 (25)

4 On the summatory functions of λ_k , $\tilde{\lambda}_k$ and $\tilde{\mu}_k$

For $k \geq 2$, let L_k and \tilde{L}_k be the summatory functions of λ_k and $\tilde{\lambda}_k$, that is,

$$L_k(x) = \sum_{j \le x} \lambda_k(j), \quad \tilde{L}_k(x) = \sum_{j \le x} \tilde{\lambda}_k(j) \quad x \ge 1.$$

The explicit expressions for the Dirichlet series associated to λ_k and $\tilde{\lambda}_k$ obtained in the previous section can be used to analyze the asymptotic behavior of L_k and \tilde{L}_k via standard analytical methods. Below we present an alternative analysis which explores the relations between L_k and \tilde{L}_k and M and L.

We generalize (3) for L_k as follows.

Corollary 2. For $k \ge 2$ and $x \ge 1$,

$$M(x) = \sum_{j \le k/\overline{x}} \mu(j) L_k\left(\frac{x}{j^k}\right), \quad L_k(x) = \sum_{j \le k/\overline{x}} M\left(\frac{x}{j^k}\right). \tag{26}$$

Proof. The first relation in (26) is obtained by Theorem 2.3 for $g = \mu$. The second relation in (26) is obtained by the previous one and Lemma 2.2.

Put

$$\tilde{M}_k(x) = \sum_{j \le x} \tilde{\mu}_k(j), \quad x \ge 1,$$

with $\tilde{\mu}_k$ defined by (4). Theorem 2.3 and Lemma 2.2 give the next Corollary 3.

Corollary 3. For $k \ge 1$ and $x \ge 1$,

$$\tilde{M}_k(x) = \sum_{j \le \sqrt[k]{x}} \mu(j) \tilde{L}_k\left(\frac{x}{j^k}\right), \quad \tilde{L}_k(x) = \sum_{j \le \sqrt[k]{x}} \tilde{M}_k\left(\frac{x}{j^k}\right). \tag{27}$$

In addition, Lemma 2.1 and Lemma 2.2 yields the following Corollary 4.

Corollary 4. For $k \geq 2$ and $x \geq 1$,

$$\tilde{M}_k(x) = \sum_{j \le \sqrt[k]{x}} \mu(j)^{k+1} L\left(\frac{x}{j^k}\right), \quad L(x) = \sum_{j \le \sqrt[k]{x}} \tilde{M}_k\left(\frac{x}{j^k}\right), \quad (k \text{ even})$$
 (28)

and

$$L(x) = \sum_{j \le \frac{k}{\sqrt{x}}} \lambda(j) \tilde{M}_k \left(\frac{x}{j^k}\right), \quad (k \text{ odd}).$$
 (29)

Using Corollaries 2, 3 and 4, one can readily extend the equivalencies in (1) and (2) to L_k , \tilde{L}_k and \tilde{M}_k :

Corollary 5. For $k \ge 2$, $k' \ge 2$ and $k'' \ge 2$, the following are equivalent:

$$L_k(x) = o(x), \quad \tilde{L}_{k'}(x) = o(x), \quad \tilde{M}_{k''}(x) = o(x).$$
 (30)

Corollary 6. For $k \geq 2$, $k' \geq 2$ and $k'' \geq 2$, the following are equivalent:

$$L_{k}(x) = O\left(x^{1/2+\epsilon}\right) \ \forall \ \epsilon > 0, \quad \tilde{L}_{k'}(x) = O\left(x^{1/2+\epsilon}\right) \ \forall \ \epsilon > 0,$$

$$\tilde{M}_{k''}(x) = O\left(x^{1/2+\epsilon}\right) \ \forall \ \epsilon > 0.$$
(31)

Remark 2. Tanaka remarked that $\tilde{M}_k(x) = O\left(x^{1/2+\epsilon}\right) \ \forall \ \epsilon > 0$ under the Riemann hypothesis [9].

5 On the summatory functions of $|\lambda_k|$ and $| ilde{\lambda}_k|$

Let $|L|_k$ and $|\tilde{L}|_k$ be defined by

$$|L|_k(x) = \sum_{j \le x} |\lambda_k(j)|$$
 and $|\tilde{L}|_k(x) = \sum_{j \le x} |\tilde{\lambda}_k(j)|, \quad x \ge 1.$

By (20), we get

$$|\tilde{L}|_k(x) = \lfloor x \rfloor, \ k \ge 1, \ x \ge 1.$$
 (32)

For $|L|_k$, we have the following theorem.

Theorem 5.1. For $k \geq 2$,

$$|L|_k(x) = \frac{\zeta(k)}{\zeta(2)}x + O\left(\sqrt{x}\right). \tag{33}$$

Proof. We only need to prove the case $k \geq 3$. Applying Theorem 2.3 for $g = |\mu|$, we get

$$Q(x) = \sum_{j \le \sqrt[k]{x}} \mu(j) |L|_k \left(\frac{x}{j^k}\right), \quad Q(x) := \sum_{j \le x} |\mu(j)| \tag{34}$$

(the case k=1 of (34) is well-known [6]: $Q(x)=\sum_{j\leq \sqrt{x}}\mu(j)\left\lfloor\frac{x}{j^2}\right\rfloor$). Hence, by Lemma 2.2,

$$|L|_k(x) = \sum_{j \le \sqrt[k]{x}} Q\left(\frac{x}{j^k}\right), \ x \ge 1.$$

Using that [6]

$$Q(x) = \frac{1}{\zeta(2)}x + O(\sqrt{x}),$$

and recalling that $k \geq 3$, we obtain

$$|L|_k(x) = \frac{1}{\zeta(2)} \left(\sum_{j \le \sqrt[k]{x}} \frac{1}{j^k} \right) x + O(\sqrt{x}) = \frac{\zeta(k)}{\zeta(2)} x + O(\sqrt{x}).$$

For $k\geq 2$, let $\lambda_k^+,\tilde{\lambda}_k^+,\lambda_k^-$ and $\tilde{\lambda}_k^-$ be defined by

$$\lambda_k^{\pm}(j) = \frac{|\lambda_k(j)| \pm \lambda_k(j)}{2}, \quad \tilde{\lambda}_k^{\pm}(j) = \frac{|\tilde{\lambda}_k(j)| \pm \tilde{\lambda}_k(j)}{2}, \ j \ge 1.$$

The functions $\lambda^+:=\lambda_2^+=\tilde{\lambda}_2^+$ and $\lambda^-:=\lambda_2^-=\tilde{\lambda}_2^-$ are the characteristic functions of the sets of the numbers that have an even and an odd number of prime factors, respectively. The version L(x)=o(x) of the Prime Number Theorem states that these two sets of integers have asymptotically the same density:

$$\sum_{j \le x} \lambda^+(j) \sim \frac{1}{2} x \quad \text{and} \quad \sum_{j \le x} \lambda^-(j) \sim \frac{1}{2} x. \tag{35}$$

Using (32) and (33) and the versions $L_k(x) = o(x)$ and $\tilde{L}_k(x) = o(x)$ of the Prime Number Theorem given in Corollary 5, we can generalize (35).

Corollary 7. For $k \geq 2$,

$$\sum_{j \le x} \lambda_k^{\pm}(j) \sim \frac{\zeta(k)}{2\zeta(2)} x \quad and \quad \sum_{j \le x} \tilde{\lambda}_k^{\pm}(j) \sim \frac{1}{2} x. \tag{36}$$

6 Summary

The next Table 1 summarizes the properties of the Liouville function which we extended to λ_k or / and $\tilde{\lambda}_k$. It shows that λ_k and $\tilde{\lambda}_k$ inherit different properties of λ , but also have several similar properties. They also have different interactions with Tanakas's generalization of the Möbius function: (3) can be extended to $\tilde{\lambda}_k$ and $\tilde{\mu}_k$ with the same index k, while

$$|\tilde{\mu}_k| \stackrel{(8)}{=} \lambda_k^{-1}, k \ge 2.$$

Hence, we may say that there is no favorite among λ_k and $\tilde{\lambda}_k$.

Just to finish, let us mention that the generalization $\mu_k, k \geq 1$, of the Möbius function cited at the introductory section was introduced by Apostol [2] ten years earlier than Tanaka's work, but μ_k has a distinct behavior than $\mu_1 = \mu$ in general. For instance, the summatory function of μ_k satisfies

$$\sum_{j \le x} \mu_k(j) = o(x)$$

only for k = 1.

Table 1. Some properties of λ and their extensions to λ_k and $\tilde{\lambda}_k$.

holds for λ	has a simple analogue for λ_k	has a simple analogue for $\tilde{\lambda}_k$
$\sum_{d n} \lambda(d) = \begin{cases} 1, & \text{if } n = m^2 \text{ for some } m \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}$	√(see (17))	
$\sum_{\substack{j \le x \\ 2}} \lambda\left(j\right) \left\lfloor \frac{x}{j} \right\rfloor = \left\lfloor \sqrt{x} \right\rfloor$	√(see (18))	
$n = \sum_{j=1}^{n} \mu(j) \left\lfloor \sqrt{n/j} \right\rfloor, \ n \ge 1$	√(see (19))	
$\lambda(j) \in \{-1, 1\} \ \forall j \ge 1$		√(see (20))
$\mu(j) = \lambda(j) \text{ for } \mu(j) \neq 0$		√(see (21))
$M(x) = \sum_{j \le \sqrt{x}} \mu(j) L\left(\frac{x}{j^2}\right), L(x) = \sum_{j \le \sqrt{x}} M\left(\frac{x}{j^2}\right)$	√(see (26))	√(see (27))
L(x) = o(x)	√(see (30))	√(see (30))
$L(x) = O\left(x^{1/2+\epsilon}\right) \ \forall \ \epsilon > 0$ is equivalent to the Riemann Hypothesis	√(see (31))	√(see (31))
$\sum_{j \le x} \lambda^{\pm}(j) \sim \frac{1}{2}x$	√(see (36))	√(see (36))

References

- [1] Apostol, T. M. (1976). *Introduction to Analytic Number Theory*. New York: Springer–Verlag.
- [2] Apostol, T. M. (1970). Möbius functions of order k. Pacific Journal of Mathematics, 32(1), 21–27.
- [3] Camargo, A. (2021). Dirichlet matrices: Determinants, permanents and the Factorisatio Numerorum problem. *Linear Algebra and Its Applications*, 628, 115–129.
- [4] Fujisawa, Y. H. (2014). *On Mobius and Liouville functions of order k*. arXiv:1305.6015v2 [math.NT].
- [5] Humphries, P. (2013). The distribution of weighted sums of the Liouville function and Pólya's conjecture. *Journal of Number Theory*, 133, 545–582.
- [6] Moser, L., & MacLeod. R. A. (1966). The error term for squarefree integers. *Canadian Mathematical Bulletin*, 9(3), 303–306.
- [7] Panaitopol, L. (2001). Some properties of Liouville's function. *Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie*, 92(4), 365–370.
- [8] Pappalardi, F. (2005). A survey on *k*-freeness. In: S. D. Adhikari, R. Balasubramanian, & K. Srinivas (Eds.), *Number Theory. Lecture Notes Series*, Vol. 1, pp. 71–88. Mysore: Ramanujan Mathematical Society.
- [9] Tanaka, M. (1980). On Möbius and allied functions. *Tokyo Journal of Mathematics*, 3(2), 215–218.