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1 Introduction

In the last ten years, extensive research has been carried out on both the Fibonacci sequence and its
generalizations, as well as the quaternions with Fibonacci coefficients and the generalizations of
these quaternions [2, 12, 15, 20, 21, 32, 33, 45]. Many researchers have developed a great interest
in the Fibonacci numbers because of the concept of the golden ratio obtained by the ratio of
consecutive terms of the Fibonacci sequence, which may occur in nature or in a variety of other
fields such as architecture, finance, art, music, etc.

As it is well known, the Fibonacci numbers are a sequence of integers in which every number
is the sum of two numbers preceding it in the sequence. Thus, the 𝑛-th Fibonacci number denoted
by 𝐹𝑛 satisfies the recurrence relation: 𝐹𝑛 = 𝐹𝑛−1 +𝐹𝑛−2 for all 𝑛 ≥ 2 with the initial conditions
𝐹0 = 0 and 𝐹1 = 1. On the other hand, the 𝑛-th Lucas number denoted by 𝐿𝑛 holds the recurrence
relation: 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 for all 𝑛 ≥ 2 with the initial conditions 𝐿0 = 2 and 𝐿1 = 1

[13, 26, 27, 39]. While the recurrence relations of Fibonacci and Lucas numbers are the same,
some new numbers with different recurrence relations and different initial conditions have been
introduced. Starting from a similar point of view the features analogical to those obtained from
Fibonacci numbers have been examined for these numbers. One of these number sequences is the
Leonardo numbers sequence, which has been first studied by Catarino and Borges [7] (A001595
in [39]). The 𝑛-th Leonardo number denoted by 𝐿𝑒𝑛 satisfies the following recurrence relations:

𝐿𝑒𝑛 = 𝐿𝑒𝑛−1 + 𝐿𝑒𝑛−2 + 1, for all 𝑛 ≥ 2 (1)

or
𝐿𝑒𝑛+1 = 2𝐿𝑒𝑛 − 𝐿𝑒𝑛−2, for all 𝑛 ≥ 2 (2)

with the initial conditions 𝐿𝑒0 = 1, 𝐿𝑒1 = 1 [7].
In the following Table 1, some values can be seen concerning these three types of special

recurrence sequences [3, 7, 26, 39].

Table 1. Some values for Fibonacci, Lucas and Leonardo numbers

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

𝐹𝑛 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 . . .

𝐿𝑛 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 . . .

𝐿𝑒𝑛 1 1 3 5 9 15 25 41 67 109 177 287 465 753 1219 . . .

The studies on the Leonardo numbers, generalizations and matrices of these numbers have
been gathered speed in recent years. For instance, Alp and Koçer have examined some properties
of the Leonardo numbers in [3]. Catarino and Borges have presented the incomplete Leonardo
numbers in [8]. Subsequently, the generalization of the Leonardo sequence has become a current
issue. Shannon [35], Soykan [43], and Kuhapatanakul and Chobsorn [28] have followed different
approaches to this issue. Shannon and Deveci have also studied the generalized and extended
Leonardo sequences in [36]. Vieira et al. have introduced the two-dimensional and three-
dimensional relations of the Leonardo sequence in [47, 49], respectively. Then, Vieira et al.
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have examined the matrix formulas of Leonardo numbers in [48]. Soykan has studied the special
cases of generalized Leonardo numbers in [44]. Karataş has introduced the complex Leonardo
numbers in [23]. Mangueira et al. [31] have determined the Leonardo’s bivariate and complex
polynomials.

The quaternions formed with the Pauli matrices are called Pauli–quaternions [25]. Specifically,
if the coefficients of these type quaternions are Fibonacci and Lucas numbers, respectively, the
obtained quaternions are called the Pauli–Fibonacci quaternions and Pauli–Lucas quaternions
[46].

In this study, we define the Pauli–Leonardo quaternions in the light of the related studies in
the literature, especially [25] and [46]. Additionally, we give several fundamental and important
formulas, properties, and equalities for the Pauli–Leonardo quaternions. We not only study the
Pauli–Leonardo quaternions but also investigate some properties, including the relations between
the Pauli–Leonardo quaternions, Pauli–Fibonacci quaternions, and Pauli–Lucas quaternions.

2 Preliminaries

This section provides some basic information about the Leonardo numbers and Pauli quaternions.
First, some properties of the Leonardo numbers are given.

The characteristic equation of the recurrence relation (2) is 𝑥3 − 2𝑥2 + 1 = 0, and Binet
formula of the Leonardo numbers is given, for all 𝑛 ≥ 0, as

𝐿𝑒𝑛 =
2𝜉𝑛+1 − 2𝛿𝑛+1 − (𝜉 − 𝛿)

𝜉 − 𝛿
(3)

where 𝜉 = 1+
√
5

2
an 𝛿 = 1−

√
5

2
are the roots of the characteristic equation 𝑥3 − 2𝑥2 + 1 = 0 [3,7].

For all 𝑛 ≥ 0, the Leonardo numbers satisfy the following equations given by [7]

𝐿𝑒𝑛 = 2𝐹𝑛+1 − 1, (4)

𝐿𝑒𝑛 =
2

5
(𝐿𝑛+2 + 𝐿𝑛) − 1, (5)

𝐿𝑒𝑛+3 =
1

5
(𝐿𝑛+7 + 𝐿𝑛+1) − 1, (6)

𝐿𝑒𝑛 = 𝐿𝑛+2 − 𝐹𝑛+2 − 1, (7)

and for all 𝑛 ≥ 1, the equations given by [3]

𝐿𝑒𝑛−1 + 𝐿𝑒𝑛+1 = 2𝐿𝑛+1 − 2, (8)

𝐿𝑒𝑛 + 2𝐹𝑛 = 𝐿𝑒𝑛+1, (9)

𝐿𝑒𝑛 + 𝐹𝑛 + 𝐿𝑛 = 2𝐿𝑒𝑛 + 1. (10)

The (−𝑛)-th Leonardo number with negative subscript is defined as follows [3]:

𝐿𝑒−𝑛 = (−1)𝑛 (𝐿𝑒𝑛−2 + 1) − 1, for all 𝑛 ≥ 2. (11)
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Furthermore, the recurrence relation concerning negative subscripted Leonardo numbers
is presented in [48] as:

𝐿𝑒−𝑛 = −𝐿𝑒−𝑛+1 + 𝐿𝑒−𝑛+2 − 1, for all 𝑛 > 0 (12)

and some values of negative subscripted Leonardo numbers are: 𝐿𝑒−1 = −1, 𝐿𝑒−2 = 1,

𝐿𝑒−3 = −3, 𝐿𝑒−4 = 3, 𝐿𝑒−5 = −7.
Additionally, Alp and Koçer [3] have presented the matrix representation of Leonardo numbers

as a 3 × 3 matrix: ⎛⎜⎝ 2 1 0

0 0 1

−1 0 0

⎞⎟⎠
and found some properties with respect to the matrix. Vieira et al. have studied the matrix
formulas for Leonardo numbers in [48] for both non-negative and negative subscripts (see the
studies [28, 43, 44] including matrix methods of the Leonardo numbers). We want to refer to
also the studies [14, 22, 24, 30, 34, 37, 40–42, 50–53] including impressive techniques of matrix
representations of some special numbers.

On the other hand, the quaternions introduced by Hamilton have various application areas
and importance as the expansion of the complex numbers [17–19]. They are used in many areas,
such as pure mathematics, applied mathematics, motion geometry, differential geometry, graph
theory, computer animation, robotics, and others (cf. [1, 4, 9]). The algebra of quaternions is
associative, non-commutative, and 4-dimensional Clifford algebra. The quaternion set is denoted
by H and defined as: H = {𝑞|𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘, 𝑞0, 𝑞1, 𝑞2, 𝑞3 ∈ R} where 𝑖, 𝑗, 𝑘 are
the quaternionic units that satisfy the rules (for real quaternions): 𝑖2 = 𝑗2 = 𝑘2 = −1,

𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗 [17–19].
The Pauli matrices determined by W. Pauli are Hermitian and unitary and given as follows

[10, 25, 46]:

1 =

(︃
1 0

0 1

)︃
, 𝜎1 =

(︃
0 1

1 0

)︃
, 𝜎2 =

(︃
0 −𝑖

𝑖 0

)︃
, 𝜎3 =

(︃
1 0

0 −1

)︃
,

where the following rules are held:

𝜎2
1 = 1,𝜎2

2 = 1,𝜎2
3 = 1,

𝜎1𝜎2 = −𝜎2𝜎1 = 𝑖𝜎3, 𝜎2𝜎3 = −𝜎3𝜎2 = 𝑖𝜎1, 𝜎3𝜎1 = −𝜎1𝜎3 = 𝑖𝜎2.
(13)

The basis of Pauli quaternions is {1, 𝑖𝜎1, 𝑖𝜎2, 𝑖𝜎3} and the set is isomorphic to the set H.
Besides, an isomorphism exists from H to the set obtained via the map: 1 → 1, 𝑖 → −𝑖𝜎1,

𝑗 → −𝑖𝜎2, 𝑘 → −𝑖𝜎3 or 1 → 1, 𝑖 → 𝑖𝜎1, 𝑗 → 𝑖𝜎2, 𝑘 → 𝑖𝜎3 [5, 6, 10, 25, 29, 46]. The Pauli
matrices have wide application areas such as mathematics, physics, mathematical physics; see
more detailed information in [5, 6, 10, 11, 16, 25, 29, 38, 46].

In [25], Kim has examined the Pauli quaternions as: 𝑝 = 𝑥01 + 𝑥1𝜎1 + 𝑥2𝜎2 + 𝑥3𝜎3. Then,
Torunbalcı Aydın [46] has defined the Pauli–Fibonacci quaternions and Pauli–Lucas quaternions
as follows, respectively:
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𝑄𝑝𝐹𝑛 = 𝐹𝑛1 + 𝐹𝑛+1𝜎1 + 𝐹𝑛+2𝜎2 + 𝐹𝑛+3𝜎3, (14)

𝑄𝑝𝐿𝑛 = 𝐿𝑛1 + 𝐿𝑛+1𝜎1 + 𝐿𝑛+2𝜎2 + 𝐿𝑛+3𝜎3. (15)

For more detailed information about the Pauli quaternions, Pauli–Fibonacci quaternions, and
Pauli–Lucas quaternions, we can refer to the studies [25, 46].

3 Pauli–Leonardo quaternions

In this section, we introduce the Pauli–Leonardo quaternions, and then we give some special
formulas and properties of them.

Definition 3.1. For all 𝑛 ≥ 0, the 𝑛𝑡ℎ Pauli–Leonardo quaternion is defined as follows:

ℒ𝑛 = 𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3 (16)

where 𝐿𝑒𝑛 is the 𝑛-th Leonardo number, and 𝜎1,𝜎2,𝜎3 satisfies the rules (13). The set of all
Pauli–Leonardo quaternions is denoted by L.

Now, let us give the algebraic properties concerning the Pauli–Leonardo quaternions, such as
equality, addition, subtraction, multiplication by a scalar, multiplication of any two Pauli–Leonardo
quaternions, conjugate, norm, scalar and vector parts, respectively. Let us take ℒ𝑛,ℒ𝑚 ∈ L, then
we have:

∙ Equality:

ℒ𝑛 = ℒ𝑚 ⇔ 𝐿𝑒𝑛 = 𝐿𝑒𝑚, 𝐿𝑒𝑛+1 = 𝐿𝑒𝑚+1, 𝐿𝑒𝑛+2 = 𝐿𝑒𝑚+2, 𝐿𝑒𝑛+3 = 𝐿𝑒𝑚+3

∙ Addition/Subtraction:

ℒ𝑛 ± ℒ𝑚 = (𝐿𝑒𝑛 ± 𝐿𝑒𝑚) 1 + (𝐿𝑒𝑛+1 ± 𝐿𝑒𝑚+1)𝜎1 + (𝐿𝑒𝑛+2 ± 𝐿𝑒𝑚+2)𝜎2

+ (𝐿𝑒𝑛+3 ± 𝐿𝑒𝑚+3)𝜎3

∙ Multiplication by a scalar:

𝑐ℒ𝑛 = 𝑐𝐿𝑒𝑛1 + 𝑐𝐿𝑒𝑛+1𝜎1 + 𝑐𝐿𝑒𝑛+2𝜎2 + 𝑐𝐿𝑒𝑛+3𝜎3, 𝑐 ∈ R

∙ Multiplication:

ℒ𝑛ℒ𝑚 = (𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3) (𝐿𝑒𝑚1 + 𝐿𝑒𝑚+1𝜎1 + 𝐿𝑒𝑚+2𝜎2 + 𝐿𝑒𝑚+3𝜎3)

= (𝐿𝑒𝑛𝐿𝑒𝑚 + 𝐿𝑒𝑛+1𝐿𝑒𝑚+1 + 𝐿𝑒𝑛+2𝐿𝑒𝑚+2 + 𝐿𝑒𝑛+3𝐿𝑒𝑚+3) 1

+ [(𝐿𝑒𝑛𝐿𝑒𝑚+1 + 𝐿𝑒𝑛+1𝐿𝑒𝑚) + 𝑖 (𝐿𝑒𝑛+2𝐿𝑒𝑚+3 − 𝐿𝑒𝑛+3𝐿𝑒𝑚+2)]𝜎1

+ [(𝐿𝑒𝑛𝐿𝑒𝑚+2 + 𝐿𝑒𝑛+2𝐿𝑒𝑚) + 𝑖 (𝐿𝑒𝑛+3𝐿𝑒𝑚+1 − 𝐿𝑒𝑛+1𝐿𝑒𝑚+3)]𝜎2

+ [(𝐿𝑒𝑛𝐿𝑒𝑚+3 + 𝐿𝑒𝑛+3𝐿𝑒𝑚) + 𝑖 (𝐿𝑒𝑛+1𝐿𝑒𝑚+2 − 𝐿𝑒𝑛+2𝐿𝑒𝑚+1)]𝜎3
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Also, the multiplication can be expressed as:

ℒ𝑛ℒ𝑚 =

⎡⎢⎢⎢⎣
𝐿𝑒𝑛 𝐿𝑒𝑛+1 𝐿𝑒𝑛+2 𝐿𝑒𝑛+3

𝐿𝑒𝑛+1 𝐿𝑒𝑛 −𝑖𝐿𝑒𝑛+3 𝑖𝐿𝑒𝑛+2

𝐿𝑒𝑛+2 𝑖𝐿𝑒𝑛+3 𝐿𝑒𝑛 −𝑖𝐿𝑒𝑛+1

𝐿𝑒𝑛+3 −𝑖𝐿𝑒𝑛+2 𝑖𝐿𝑒𝑛+1 𝐿𝑒𝑛

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝐿𝑒𝑚
𝐿𝑒𝑚+1

𝐿𝑒𝑚+2

𝐿𝑒𝑚+3

⎤⎥⎥⎥⎦
∙ Conjugate:

ℒ𝑛 = 𝐿𝑒𝑛1 − 𝐿𝑒𝑛+1𝜎1 − 𝐿𝑒𝑛+2𝜎2 − 𝐿𝑒𝑛+3𝜎3 (17)

∙ Norm:

𝑁 (ℒ𝑛) =
√︁⃒⃒

ℒ𝑛ℒ𝑛

⃒⃒
=
√︁⃒⃒

ℒ𝑛ℒ𝑛

⃒⃒
=
√︁⃒⃒

𝐿𝑒2𝑛 − 𝐿𝑒2𝑛+1 − 𝐿𝑒2𝑛+2 − 𝐿𝑒2𝑛+3

⃒⃒
Here, if 𝑁(ℒ𝑛) = 1, then ℒ𝑛 is called unit Pauli–Leonardo quaternion.

∙ Scalar and Vector Parts: The scalar part of ℒ𝑛 is represented as 𝑆ℒ𝑛 , and 𝑆ℒ𝑛 = 𝐿𝑒𝑛1.
The vector part of ℒ𝑛 is represented by 𝑉ℒ𝑛 and 𝑉ℒ𝑛 = 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3.

Therefore, 𝑆ℒ𝑛±ℒ𝑚 = 𝑆ℒ𝑛 ± 𝑆ℒ𝑚 = (ℒ𝑛 ± ℒ𝑚) 1 and 𝑉ℒ𝑛±ℒ𝑚 = 𝑉ℒ𝑛 ± 𝑉ℒ𝑚 .

Theorem 3.1 (Recurrence Relation). Let ℒ𝑛 be 𝑛-th Pauli–Leonardo quaternion. For all 𝑛 ≥ 2,
the following recurrence relation holds:

ℒ𝑛 = ℒ𝑛−1 + ℒ𝑛−2 + 𝑊 (18)

where 𝑊 = 1 + 𝜎1 + 𝜎2 + 𝜎3. Additionally, for all 𝑛 ≥ 2 the following recurrence relation is
satisfied for Pauli–Leonardo quaternions:

ℒ𝑛+1 = 2ℒ𝑛 − ℒ𝑛−2. (19)

Proof. By using the equations (1) and (16), the following can be written:

ℒ𝑛 =𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3

= (𝐿𝑒𝑛−1 + 𝐿𝑒𝑛−2 + 1) 1 + (𝐿𝑒𝑛 + 𝐿𝑒𝑛−1 + 1)𝜎1 + (𝐿𝑒𝑛+1 + 𝐿𝑒𝑛 + 1)𝜎2

+ (𝐿𝑒𝑛+2 + 𝐿𝑒𝑛+1 + 1)𝜎3

= 𝐿𝑒𝑛−11 + 𝐿𝑒𝑛𝜎1 + 𝐿𝑒𝑛+1𝜎2 + 𝐿𝑒𝑛+2𝜎3 + 𝐿𝑒𝑛−21 + 𝐿𝑒𝑛−1𝜎1 + 𝐿𝑒𝑛𝜎2

+ 𝐿𝑒𝑛+1𝜎3 + 1 + 𝜎1 + 𝜎2 + 𝜎3

=ℒ𝑛−1 + ℒ𝑛−2 + 𝑊

where we use the expression 𝑊 = 1 +𝜎1 +𝜎2 +𝜎3 for the sake of brevity. The other recurrence
relation can be proved by using (2).

We can also define the negative subscripted Pauli–Leonardo quaternions as follows:

ℒ−𝑛 = 𝐿𝑒−𝑛1 + 𝐿𝑒−𝑛+1𝜎1 + 𝐿𝑒−𝑛+2𝜎2 + 𝐿𝑒−𝑛+3𝜎3, for all 𝑛 > 0. (20)
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Theorem 3.2. Let ℒ−𝑛 be the (−𝑛)-th Pauli–Leonardo quaternion and 𝐿𝑒𝑛 be the 𝑛-th Leonardo
number, respectively. The following equations are valid.

ℒ−𝑛 = (−1)𝑛 [(𝐿𝑒𝑛−2 + 1) 1 + (𝐿𝑒𝑛−4 + 1)𝜎2]

+ (−1)𝑛−1 [(𝐿𝑒𝑛−3 + 1)𝜎1 + (𝐿𝑒𝑛−5 + 1)𝜎3] −𝑊, for all 𝑛 ≥ 2
(21)

ℒ−𝑛 = −ℒ−𝑛+1 + ℒ−𝑛+2 −𝑊, for all 𝑛 > 0 (22)

Proof. By using the equations (11) (for equation (21)), (12) (for equation (22)) and (20), the proof
can be completed.

In the following Table 2 and Table 3, we construct numerical algorithms in order to calculate
the 𝑛-th and (𝑛 + 1)-th terms of the Pauli–Leonardo quaternions.

Table 2. Numerical Algorithm 1

A Numerical Algorithm for Finding 𝑛-th Term of the Pauli–Leonardo Quaternion
1. Begin
2. Input ℒ0,ℒ1 and 𝑊

3. Compose ℒ𝑛 according to the equation (18) for all 𝑛 ≥ 2

4. Count up ℒ𝑛

5. Output ℒ𝑛 = 𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3

6. Finish

Table 3. Numerical Algorithm 2

A Numerical Algorithm for Finding (𝑛+1)-th Term of the Pauli–Leonardo Quaternion
1. Begin
2. Input ℒ0 and ℒ1

3. Compose ℒ𝑛 according to the equation (19) for all 𝑛 ≥ 2

4. Count up ℒ𝑛+1

5. Output ℒ𝑛+1 = 𝐿𝑒𝑛+11 + 𝐿𝑒𝑛+2𝜎1 + 𝐿𝑒𝑛+3𝜎2 + 𝐿𝑒𝑛+4𝜎3

6. Finish

In the following Table 4, we also form a numerical algorithm for calculating the (−𝑛)𝑡ℎ term
of the Pauli–Leonardo quaternion.

Table 4. Numerical Algorithm 3

A Numerical Algorithm for Finding (−𝑛)-th Term of the Pauli–Leonardo Quaternion
1. Begin
2. Input ℒ−1,ℒ0 and 𝑊

3. Compose ℒ−𝑛 according to the equation (22) for all 𝑛 > 0

4. Count up ℒ−𝑛

5. Output ℒ−𝑛 = 𝐿𝑒−𝑛1 + 𝐿𝑒−𝑛+1𝜎1 + 𝐿𝑒−𝑛+2𝜎2 + 𝐿𝑒−𝑛+3𝜎3

6. Finish
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It should be noted that we are interested in the non-negative Pauli–Leonardo quaternions
in general terms throughout this paper. We also give the definition of negative subscripted
Pauli–Leonardo quaternions (20), and equations (21) and (22). The following equations, formulas,
and properties can be expressed separately for negative subscripted Pauli–Leonardo quaternions.

Theorem 3.3. Let ℒ𝑛 be the 𝑛𝑡ℎ Pauli–Leonardo quaternion. For all 𝑛 ≥ 0, the following
relations exist.

(i) ℒ𝑛 + ℒ𝑛 = 2𝐿𝑒𝑛1

(ii) ℒ2
𝑛 = 2𝐿𝑒𝑛ℒ𝑛1 − ℒ𝑛ℒ𝑛

(iii) ℒ𝑛1 − ℒ𝑛+1𝜎1 − ℒ𝑛+2𝜎2 − ℒ𝑛+3𝜎3 = (𝐿𝑒𝑛 − 𝐿𝑒𝑛+2 − 𝐿𝑒𝑛+4 − 𝐿𝑒𝑛+6) 1

Proof. (i) By using the (16) and (17), we can establish:

ℒ𝑛 + ℒ𝑛 = 𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3 + 𝐿𝑒𝑛1 − 𝐿𝑒𝑛+1𝜎1

− 𝐿𝑒𝑛+2𝜎2 − 𝐿𝑒𝑛+3𝜎3

= 2𝐿𝑒𝑛1.

(ii) By means of the equation which is seen in part (i), we get:

ℒ𝑛ℒ𝑛 = ℒ𝑛

(︀
2𝐿𝑒𝑛1 − ℒ𝑛

)︀
⇒ 2𝐿𝑒𝑛ℒ𝑛1 − ℒ𝑛ℒ𝑛.

(iii) Via (16) and (13), we have:

ℒ𝑛1 − ℒ𝑛+1𝜎1 − ℒ𝑛+2𝜎2 − ℒ𝑛+3𝜎3

= (𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3) 1

− (𝐿𝑒𝑛+11 + 𝐿𝑒𝑛+2𝜎1 + 𝐿𝑒𝑛+3𝜎2 + 𝐿𝑒𝑛+4𝜎3)𝜎1

− (𝐿𝑒𝑛+21 + 𝐿𝑒𝑛+3𝜎1 + 𝐿𝑒𝑛+4𝜎2 + 𝐿𝑒𝑛+5𝜎3)𝜎2

− (𝐿𝑒𝑛+31 + 𝐿𝑒𝑛+4𝜎1 + 𝐿𝑒𝑛+5𝜎2 + 𝐿𝑒𝑛+6𝜎3)𝜎3

= (𝐿𝑒𝑛 − 𝐿𝑒𝑛+2 − 𝐿𝑒𝑛+4 − 𝐿𝑒𝑛+6) 1.

Theorem 3.4. Let ℒ𝑛 and 𝑄𝑝𝐹𝑛 be the 𝑛𝑡ℎ Pauli–Leonardo quaternion and Pauli–Fibonacci
quaternion respectively. The following relations are satisfied.

(i) ℒ𝑛 = 2𝑄𝑝𝐹𝑛+1 −𝑊, for all𝑛 ≥ 0

(ii) ℒ𝑛+1 = ℒ𝑛 + 2𝑄𝑝𝐹𝑛, for all𝑛 ≥ 1

Proof. By using (16), (4) and (14), we have:

ℒ𝑛 = 𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3

= (2𝐹𝑛+1 − 1) 1 + (2𝐹𝑛+2 − 1)𝜎1 + (2𝐹𝑛+3 − 1)𝜎2 + (2𝐹𝑛+4 − 1)𝜎3

= 2 (𝐹𝑛+11 + 𝐹𝑛+2𝜎1 + 𝐹𝑛+3𝜎2 + 𝐹𝑛+4𝜎3) − (1 + 𝜎1 + 𝜎2 + 𝜎3)

= 2𝑄𝑝𝐹𝑛+1 −𝑊.

The other property can be shown easily by using the equation (9).
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Theorem 3.5. Let ℒ𝑛 and 𝑄𝑝𝐿𝑛 be the 𝑛𝑡ℎ Pauli–Leonardo quaternion and Pauli–Lucas quaternion,
respectively. The following equalities are satisfied.

(i) ℒ𝑛 =
2

5
(𝑄𝑝𝐿𝑛+2 + 𝑄𝑝𝐿𝑛) −𝑊, for all𝑛 ≥ 0

(ii) ℒ𝑛+3 =
1

5
(𝑄𝑝𝐿𝑛+7 + 𝑄𝑝𝐿𝑛+1) −𝑊, for all𝑛 ≥ 0

(iii) ℒ𝑛−1 + ℒ𝑛+1 = 2𝑄𝑝𝐿𝑛+1 − 2𝑊, for all𝑛 ≥ 1

Proof. Via utilizing the equations (5), (6), (8), (15) and (16), we can complete the proof.

Theorem 3.6. Let ℒ𝑛, 𝑄𝑝𝐹𝑛 and 𝑄𝑝𝐿𝑛 be the 𝑛𝑡ℎ Pauli–Leonardo quaternion, Pauli–Fibonacci
quaternion and Pauli–Lucas quaternion, respectively. The following equalities are held.

(i) ℒ𝑛 = 𝑄𝑝𝐿𝑛+2 −𝑄𝑝𝐹𝑛+2 −𝑊, for all𝑛 ≥ 0

(ii) 𝑄𝑝𝐹𝑛 + 𝑄𝑝𝐿𝑛 = ℒ𝑛 + 𝑊, for all𝑛 ≥ 1

Proof. We can complete the proof easily by using (7), (10), (14), (15) and (16).

Theorem 3.7 (Binet Formula). Let ℒ𝑛 be 𝑛-th Pauli–Leonardo quaternion. For all 𝑛 ≥ 0, the
following Binet formula is satisfied for Pauli–Leonardo quaternions:

ℒ𝑛 = 2

(︃
𝜉𝑛+1𝜉 − 𝛿𝑛+1𝛿

𝜉 − 𝛿

)︃
−𝑊

where {︃
𝜉 = 1 + 𝜉𝜎1 + 𝜉2𝜎2 + 𝜉3𝜎3,

𝛿 = 1 + 𝛿𝜎1 + 𝛿2𝜎2 + 𝛿3𝜎3.

Proof. By utilizing the definition of Pauli–Leonardo quaternion (16) and the Binet formula of the
Leonardo numbers (3), we get:

ℒ𝑛 = 𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3

=

[︃
2

(︃
𝜉𝑛+1 − 𝛿𝑛+1

𝜉 − 𝛿

)︃
− 1

]︃
1 +

[︃
2

(︃
𝜉𝑛+2 − 𝛿𝑛+2

𝜉 − 𝛿

)︃
− 1

]︃
𝜎1

+

[︃
2

(︃
𝜉𝑛+3 − 𝛿𝑛+3

𝜉 − 𝛿

)︃
− 1

]︃
𝜎2 +

[︃
2

(︃
𝜉𝑛+4 − 𝛿𝑛+4

𝜉 − 𝛿

)︃
− 1

]︃
𝜎3

= 2

[︃
𝜉𝑛+1 (1 + 𝜉𝜎1 + 𝜉2𝜎2 + 𝜉3𝜎3) − 𝛿𝑛+1 (1 + 𝛿𝜎1 + 𝛿2𝜎2 + 𝛿3𝜎3)

𝜉 − 𝛿

]︃
−𝑊

= 2

(︃
𝜉𝑛+1𝜉 − 𝛿𝑛+1𝛿

𝜉 − 𝛿

)︃
−𝑊.
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Theorem 3.8 (Generating Function). Let ℒ𝑛 be 𝑛-th Pauli–Leonardo quaternion. For all 𝑛 ≥ 0,
the generating function for Pauli–Leonardo quaternions is written as follows:

∞∑︁
𝑛=0

ℒ𝑛 =
ℒ0 + (ℒ1 − 2ℒ0)𝑥 + (ℒ2 − 2ℒ1)𝑥

2

1 − 2𝑥 + 𝑥3
.

Proof. Assume that the following equality is the generating function of the Pauli–Leonardo
quaternions.

∞∑︁
𝑛=0

ℒ𝑛𝑥
𝑛 = ℒ0 + ℒ1𝑥 + ℒ2𝑥

2 + · · · + ℒ𝑛𝑥
𝑛 + · · ·

By using the equation (19), it can be also written as:

∞∑︁
𝑛=0

ℒ𝑛𝑥
𝑛 = ℒ0 + ℒ1𝑥 + ℒ2𝑥

2 +
∞∑︁
𝑛=3

ℒ𝑛𝑥
𝑛

= ℒ0 + ℒ1𝑥 + ℒ2𝑥
2 +

∞∑︁
𝑛=3

(2ℒ𝑛−1 − ℒ𝑛−3)𝑥
𝑛

= ℒ0 + ℒ1𝑥 + ℒ2𝑥
2 +

∞∑︁
𝑛=3

2ℒ𝑛−1𝑥
𝑛 −

∞∑︁
𝑛=3

ℒ𝑛−3𝑥
𝑛

= ℒ0 + ℒ1𝑥 + ℒ2𝑥
2 + 2

∞∑︁
𝑛=2

ℒ𝑛𝑥
𝑛+1 −

∞∑︁
𝑛=0

ℒ𝑛𝑥
𝑛+3

= ℒ0 + ℒ1𝑥 + ℒ2𝑥
2 + 2𝑥

∞∑︁
𝑛=2

ℒ𝑛𝑥
𝑛 − 𝑥3

∞∑︁
𝑛=0

ℒ𝑛𝑥
𝑛

= ℒ0 + ℒ1𝑥 + ℒ2𝑥
2 + 2𝑥

(︃
∞∑︁
𝑛=0

ℒ𝑛𝑥
𝑛 − ℒ0 − ℒ1𝑥

)︃
− 𝑥3

∞∑︁
𝑛=0

ℒ𝑛𝑥
𝑛.

Then, we have:
∞∑︁
𝑛=0

ℒ𝑛 =
ℒ0 + (ℒ1 − 2ℒ0)𝑥 + (ℒ2 − 2ℒ1)𝑥

2

1 − 2𝑥 + 𝑥3
.

Theorem 3.9 (Exponential Generating Function). Let ℒ𝑛 be the 𝑛-th Pauli–Leonardo quaternion.
For all 𝑛 ≥ 0, the exponential generating function for Pauli–Leonardo quaternions is given as:

∞∑︁
𝑛=0

ℒ𝑛

𝑦𝑛

𝑛!
= 2

(︃
𝜉𝜉𝑒𝜉𝑦 − 𝛿𝛿𝑒𝛿𝑦

𝜉 − 𝛿

)︃
−𝑊𝑒𝑦.

Proof. By means of the equation (3.7), we get:

∞∑︁
𝑛=0

ℒ𝑛

𝑦𝑛

𝑛!
=

∞∑︁
𝑛=0

[︃
2

(︃
𝜉𝑛+1𝜉 − 𝛿𝑛+1𝛿

𝜉 − 𝛿

)︃
−𝑊

]︃
𝑦𝑛

𝑛!

=
2𝜉𝜉

𝜉 − 𝛿

∞∑︁
𝑛=0

(𝜉𝑦)𝑛

𝑛!
−

2𝛿𝛿

𝜉 − 𝛿

∞∑︁
𝑛=0

(𝛿𝑦)𝑛

𝑛!
−𝑊

∞∑︁
𝑛=0

𝑦𝑛

𝑛!

= 2

(︃
𝜉𝜉𝑒𝜉𝑦 − 𝛿𝛿𝑒𝛿𝑦

𝜉 − 𝛿

)︃
−𝑊𝑒𝑦.
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Thanks to the summation formulas for the Leonardo numbers given in [7], we get the following
summation formulas for our new type of particular number system titled the Pauli–Leonardo
quaternions (see also the studies [28, 43, 44] which include the summation formulas with respect
to the Leonardo numbers).

Theorem 3.10. Let ℒ𝑛 be the 𝑛-th Pauli–Leonardo quaternion. For all 𝑚,𝑛 ≥ 0, the following
summation formulas are satisfied.

(i)
𝑚∑︀

𝑛=0

ℒ𝑛 = ℒ𝑚+2 − (𝑚𝑊 + 21 + 4𝜎1 + 6𝜎2 + 10𝜎3)

(ii)
𝑚∑︀

𝑛=0

ℒ2𝑛 = ℒ2𝑚+1 − [𝑚𝑊 + 2 (𝜎1 + 𝜎2 + 2𝜎3)]

(iii)
𝑚∑︀

𝑛=0

ℒ2𝑛+1 = ℒ2𝑚+2 − (𝑚𝑊 + 2𝜎1 + 4𝜎2 + 6𝜎3)

Proof. (i) By using the definition of Pauli–Leonardo quaternions (16), we have:

𝑚∑︁
𝑛=0

ℒ𝑛 =
𝑚∑︁

𝑛=0

(𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3)

=
𝑚∑︁

𝑛=0

𝐿𝑒𝑛1 +
𝑚∑︁

𝑛=0

𝐿𝑒𝑛+1𝜎1 +
𝑚∑︁

𝑛=0

𝐿𝑒𝑛+2𝜎2 +
𝑚∑︁

𝑛=0

𝐿𝑒𝑛+3𝜎3

where the following sum formula is given in [7]

𝑚∑︁
𝑛=0

𝐿𝑒𝑛 = 𝐿𝑒𝑚+2 − (𝑚 + 2) . (23)

Also, by using (23), we obtain
𝑚∑︀

𝑛=0

𝐿𝑒𝑛+1,
𝑚∑︀

𝑛=0

𝐿𝑒𝑛+2 and
𝑚∑︀

𝑛=0

𝐿𝑒𝑛+3.

Then, we have:

𝑚∑︁
𝑛=0

ℒ𝑛 = [𝐿𝑒𝑚+2 − (𝑚 + 2)] 1 + [𝐿𝑒𝑚+3 − (𝑚 + 4)]𝜎1 + [𝐿𝑒𝑚+4 − (𝑚 + 6)]𝜎2

+ [𝐿𝑒𝑚+5 − (𝑚 + 10)]𝜎3

= 𝐿𝑒𝑚+21 + 𝐿𝑒𝑚+3𝜎1 + 𝐿𝑒𝑚+4𝜎2 + 𝐿𝑒𝑚+5𝜎3

− [(𝑚 + 2)1 + (𝑚 + 4)𝜎1 + (𝑚 + 6)𝜎2 + (𝑚 + 10)𝜎3]

= ℒ𝑚+2 − [(𝑚 + 2)1 + (𝑚 + 4)𝜎1 + (𝑚 + 6)𝜎2 + (𝑚 + 10)𝜎3]

= ℒ𝑚+2 − (𝑚𝑊 + 21 + 4𝜎1 + 6𝜎2 + 10𝜎3) .

The other parts can be obtained in the same manner.

Inspired by the studies [3, 48], we also establish the matrix equalities for Pauli–Leonardo
quaternions in the following Theorem 3.11.
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Theorem 3.11. Let ℒ𝑛 be the 𝑛-th Pauli–Leonardo quaternion. For all 𝑛 > 0, the following
matrix equalities are held.⎛⎜⎝ℒ3 ℒ2 ℒ1

ℒ2 ℒ1 ℒ0

ℒ1 ℒ0 ℒ−1

⎞⎟⎠
⎛⎜⎝ 2 1 0

0 0 1

−1 0 0

⎞⎟⎠
𝑛

=

⎛⎜⎝ℒ𝑛+3 ℒ𝑛+2 ℒ𝑛+1

ℒ𝑛+2 ℒ𝑛+1 ℒ𝑛

ℒ𝑛+1 ℒ𝑛 ℒ𝑛−1

⎞⎟⎠
(︁
ℒ0 ℒ1 ℒ2

)︁⎛⎜⎝0 0 −1

1 0 0

0 1 2

⎞⎟⎠
𝑛

=
(︁
ℒ𝑛 ℒ𝑛+1 ℒ𝑛+2

)︁
Proof. The proof is obvious by the mathematical induction on 𝑛, so we omit the proof.

Now, the R–linear transformations which representing the left and right multiplications in
L via utilizing de Moivre’s formula are presented by following the same manner in the studies
[6, 25, 46].

Consider ℒ𝑛,ℒ𝑚 ∈ L, then the followings are given:

𝜑𝐿ℒ𝑛
: L → L
ℒ𝑚 → 𝜑𝐿ℒ𝑛

(ℒ𝑚) = ℒ𝑛ℒ𝑚

where 𝜑𝐿ℒ𝑛
is written as

𝐴𝜑𝐿ℒ𝑛
=

⎛⎜⎜⎜⎝
𝐿𝑒𝑛 𝐿𝑒𝑛+1 𝐿𝑒𝑛+2 𝐿𝑒𝑛+3

𝐿𝑒𝑛+1 𝐿𝑒𝑛 −𝑖𝐿𝑒𝑛+3 𝑖𝐿𝑒𝑛+2

𝐿𝑒𝑛+2 𝑖𝐿𝑒𝑛+3 𝐿𝑒𝑛 −𝑖𝐿𝑒𝑛+1

𝐿𝑒𝑛+3 −𝑖𝐿𝑒𝑛+2 𝑖𝐿𝑒𝑛+1 𝐿𝑒𝑛

⎞⎟⎟⎟⎠
and

𝜑𝑅ℒ𝑛
: L → L
ℒ𝑚 → 𝜑𝑅ℒ𝑛

(ℒ𝑚) = ℒ𝑚ℒ𝑛

where 𝜑𝑅ℒ𝑛
is also written as

𝐴𝜑𝑅ℒ𝑛
=

⎛⎜⎜⎜⎝
𝐿𝑒𝑛 𝐿𝑒𝑛+1 𝐿𝑒𝑛+2 𝐿𝑒𝑛+3

𝐿𝑒𝑛+1 𝐿𝑒𝑛 𝑖𝐿𝑒𝑛+3 −𝑖𝐿𝑒𝑛+2

𝐿𝑒𝑛+2 −𝑖𝐿𝑒𝑛+3 𝐿𝑒𝑛 𝑖𝐿𝑒𝑛+1

𝐿𝑒𝑛+3 𝑖𝐿𝑒𝑛+2 −𝑖𝐿𝑒𝑛+1 𝐿𝑒𝑛

⎞⎟⎟⎟⎠ .

For the unit Pauli–Leonardo quaternion ℒ𝑛, the mapping 𝜑ℒ𝑛 : L → L is defined as
𝜑ℒ𝑛 = 𝜑𝐿ℒ𝑛

∘ 𝜑𝑅ℒ𝑛
, 𝑐 is a real number and 𝜑ℒ𝑛 = 𝜑𝑅ℒ𝑛

∘ 𝜑𝐿ℒ𝑛
, and also 𝜑𝐿ℒ𝑛

and 𝜑𝑅ℒ𝑛
are

operators, which are identified as in 𝐴𝜑𝐿ℒ𝑛
and 𝐴𝜑𝑅ℒ𝑛

.
Also, for all ℒ𝑛,ℒ𝑚,ℒ𝑘 ∈ L and 𝑐 ∈ R, the listed equalities are satisfied.

(i) ℒ𝑛 = ℒ𝑚 if and only if 𝜑𝐿ℒ𝑛
(ℒ𝑚) = 𝜑𝐿ℒ𝑛

(ℒ𝑘) and 𝜑𝑅ℒ𝑛
(ℒ𝑚) = 𝜑𝑅ℒ𝑛

(ℒ𝑘)

(ii) 𝜑𝐿ℒ𝑛
(ℒ𝑚 + ℒ𝑘) = 𝜑𝐿ℒ𝑛

(ℒ𝑚) + 𝜑𝐿ℒ𝑛
(ℒ𝑘) and 𝜑𝑅ℒ𝑛

(ℒ𝑚 + ℒ𝑘) = 𝜑𝑅ℒ𝑛
(ℒ𝑚) + 𝜑𝑅ℒ𝑛

(ℒ𝑘)

(iii) 𝜑𝐿ℒ𝑛
(𝑐ℒ𝑚) = 𝑐𝜑𝐿ℒ𝑛

(ℒ𝑚) and 𝜑𝑅ℒ𝑛
(𝑐ℒ𝑚) = 𝑐𝜑𝑅ℒ𝑛

(ℒ𝑚)
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(iv) 𝜑𝐿ℒ𝑛
(ℒ𝑚)𝜑𝑅ℒ𝑛

(ℒ𝑚) = 𝜑𝑅ℒ𝑛
(ℒ𝑚)𝜑𝐿ℒ𝑛

(ℒ𝑚)

In addition to these, the mappings of 𝜗𝐿 and 𝜗𝑅 which are obtained as follows:

𝜗𝐿 : (L,+, ·) → (𝑀(4,R),⊕,⊗)

𝜗𝐿(𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3) =

⎛⎜⎜⎜⎝
𝐿𝑒𝑛 𝐿𝑒𝑛+1 𝐿𝑒𝑛+2 𝐿𝑒𝑛+3

𝐿𝑒𝑛+1 𝐿𝑒𝑛 −𝑖𝐿𝑒𝑛+3 𝑖𝐿𝑒𝑛+2

𝐿𝑒𝑛+2 𝑖𝐿𝑒𝑛+3 𝐿𝑒𝑛 −𝑖𝐿𝑒𝑛+1

𝐿𝑒𝑛+3 −𝑖𝐿𝑒𝑛+2 𝑖𝐿𝑒𝑛+1 𝐿𝑒𝑛

⎞⎟⎟⎟⎠
and

𝜗𝑅 : (L,+, ·) → (𝑀(4,R),⊕,⊗)

𝜗𝑅(𝐿𝑒𝑛1 + 𝐿𝑒𝑛+1𝜎1 + 𝐿𝑒𝑛+2𝜎2 + 𝐿𝑒𝑛+3𝜎3) =

⎛⎜⎜⎜⎝
𝐿𝑒𝑛 𝐿𝑒𝑛+1 𝐿𝑒𝑛+2 𝐿𝑒𝑛+3

𝐿𝑒𝑛+1 𝐿𝑒𝑛 𝑖𝐿𝑒𝑛+3 −𝑖𝐿𝑒𝑛+2

𝐿𝑒𝑛+2 −𝑖𝐿𝑒𝑛+3 𝐿𝑒𝑛 𝑖𝐿𝑒𝑛+1

𝐿𝑒𝑛+3 𝑖𝐿𝑒𝑛+2 −𝑖𝐿𝑒𝑛+1 𝐿𝑒𝑛

⎞⎟⎟⎟⎠
are isomorphisms. Besides, 𝜗𝐿 and 𝜗𝑅 are bijective 𝜗𝐿(ℒ𝑛ℒ𝑚) = 𝜗𝐿(ℒ𝑛)𝜗𝐿(ℒ𝑚) and
𝜗𝑅(ℒ𝑛ℒ𝑚) = 𝜗𝑅(ℒ𝑛)𝜗𝑅(ℒ𝑚).

4 Conclusions

In this paper, we have investigated a new type of number system, which is named a system of
Pauli–Leonardo quaternions. We scrutinize some special formulas and equalities concerning
them. Considering the Pauli–Fibonacci and Pauli–Lucas quaternions introduced in [46], we
have obtained the relations between these quaternions and the Pauli–Fibonacci quaternions. We
have given the recurrence relation, Binet formula, generating function, exponential generating
function, matrix formulas, and summation formulas for the newly defined number system.
Moreover, we have constructed some algorithms for finding the terms of the Pauli–Leonardo
quaternions. Also, we have presented the matrix representation and R-linear transformation for
them.
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