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Abstract: Suppose every integer is taken to the power of a fixed integer exponent k ≥ 2 and
the remainders of these powers upon division by a fixed integer n ≥ 2 are found. It is natural
to ask how many distinct remainders are produced. By building on the work of Stangl, who
published the k = 2 case in Mathematics Magazine in 1996, we find essentially closed formulas
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1 Introduction

Definition 1.1. Let n ≥ 2 and k ≥ 2 and a be integers. Then a is said to be a k-th power residue
modulo n if there exists an integer x such that

xk ≡ a (mod n).

If a is coprime to n and satisfies the congruence, then we will call a a reduced k-th power residue
modulo n. Modulo n:

1. The set of k-th power residue classes is denoted by Rk(n).

2. The set of reduced k-th power residue classes is denoted by Sk(n).

3. The set of k-th power residue classes that are not reduced, meaningRk(n) excluding Sk(n),
is denoted by Tk(n).
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These sets are well-defined: if a lives in one of these sets, then its entire congruence class modulo
n lives there too. For ease of notation and language, we might speak of a particular integer,
instead of its congruence class, being in Rk(n) or Sk(n) or Tk(n).

Definition 1.2. An arithmetic function is a function whose domain is the positive integers Z+ and
whose codomain is the complex numbers C. An arithmetic function f is said to be multiplicative
if, for any inputs a, b such that gcd(a, b) = 1, it holds that f(ab) = f(a)f(b).

The classic result that |Rk(n)| and |Sk(n)| are multiplicative arithmetic functions, in the
variable n for fixed k, allows one to reduce their computation to the case where n is a prime power
pm. The formula for |Sk(pm)| for odd primes p and the formula for |Sk(2m)| are well-known
results. In 1996, Walter Stangl [4] published formulas in Mathematics Magazine that allowed for
the computation of |R2(n)|. We will prove formulas that allow for the computation of |Rk(n)|
for any integer k ≥ 2, and we will state the aforementioned classical results, along with proofs in
cases where we were unable to find reputable references.

Definition 1.3. Given a positive integer n and a prime p, the p-adic valuation of n is the exponent
of the highest power of p that divides n. It is denoted by νp(n). For example, ν2(40) = 3.

Definition 1.4. Let ε be the parity function. So for integers t, ε(t) =

0 if 2 | t
1 if 2 - t

.

Definition 1.5. For each real number x, let dxe denote the ceiling function of x, which is the least
integer greater than or equal to x.

Definition 1.6. The greatest common divisor of two integers a and b, at least one of which is
non-zero, is the largest integer that divides both a and b. It is denoted by gcd(a, b) or (a, b), the
latter of which is not to be confused with coordinates.

The general formula is the following:

Theorem 1.1. Let p be a prime, and k ≥ 2 and m ≥ 1 be integers. Let r be the remainder of m
upon division by k. Let

α =
p− 1

(k, p− 1)
,

β = (νp(k) + 1)(1− ε(k))(1− ε(p)) + νp(k)ε(p),

γ =

k if k | m
r if k - m

.

Then

|Rk(p
m)| = α ·

(
pk

pβ+1
· p

m − pγ

pk − 1
+

⌈
pγ

pβ+1

⌉)
+ 1

= α ·
⌈

1

pβ+1
· p

m+k − pγ

pk − 1

⌉
+ 1,
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(Note that the
pk

pβ+1
· p

m − pγ

pk − 1
term is necessarily an integer, so it can be absorbed into the

ceiling term
⌈
pγ

pβ+1

⌉
as shown.)

A special case is that, if m = 1 and k ≥ 2 and p is an odd prime such that p - k, then

|Rk(p)| =
p− 1

(k, p− 1)
+ 1.

For example, there are exactly three cubes modulo 7, namely 0, 1, and 6, and there are exactly
four eighth powers modulo 7, namely 0, 1, 2, and 4.

Our calculations are based on straightforward, albeit technical, extensions of Stangl’s methods
on various cases which may be brought together as above. We have not seen this unified formula
stated elsewhere in the literature.

2 Preliminary results for all moduli

We will need the following result, a sort of Chinese remainder theorem (CRT) for power residues,
to reduce the formulas for |Rk(n)| and |Sk(n)| to the case that n is a prime power. We could not
find a textbook reference for the result, but it is certainly known.

Lemma 2.1. Let t ≥ 2 and k ≥ 2 be integers, n1 and n2 be coprime positive integers. Then there
exist bijections

rk : Rk(n1)×Rk(n2)→ Rk(n1n1),

sk : Sk(n1)× Sk(n2)→ Sk(n1n2).

This proves that the arithmetic cardinality functions |Rk(n)| and |Sk(n)| are multiplicative in n
when k is fixed.

Proof. Let a1 and a2 be any integers. The Chinese remainder theorem asserts the existence of an
integer a that simultaneously satisfies the congruences

a ≡ a1 (mod n1),

a ≡ a2 (mod n2)

and that all solutions are given by those integers that are congruent to a modulo n1n2. Let k ≥
2 be an integer. We will first prove that both a1 ∈ Rk(n1) and a2 ∈ Rk(n2) if and only if
a ∈ Rk(n1n2). We will then deduce that both a1 ∈ Sk(n1) and a2 ∈ Sk(n2) if and only if
a ∈ Sk(n1n2).

In one direction, it is clear that if a is a k-th power modulo n1n2, then it is a k-th power
modulo both n1 and n2 because n1, n2 | n1n2. So we turn our attention to the other direction. Let
a be the common CRT solution to the system of congruences, where a is unique up to congruence
modulo n1n2. We want a to be a k-th power residue modulo n1n2, assuming that there exists an
integers b1 and b2 such that
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bk1 ≡ a1 (mod n1),

bk2 ≡ a2 (mod n2).

We apply CRT again to get an integer b such that

b ≡ b1 (mod n1),

b ≡ b2 (mod n2),

where b is unique up to congruence modulo n1n2. Then we find that

bk ≡ bk1 ≡ a1 ≡ a (mod n1),

bk ≡ bk2 ≡ a2 ≡ a (mod n2),

which proves that
bk ≡ a (mod n1n2)

because n1 and n2 are coprime. Therefore, the common solution a is a k-th power modulo n1n2,
as is every integer in its residue class modulo n1n2.

This result can be restricted to reduced k-th power residues as follows. By the Euclidean
algorithm, (a, ni) = (ai, ni) for each i = 1, 2. The multiplicativity of the two-entry gcd function
with one entry fixed yields

(a1, n1)(a2, n2) = (a, n1)(a, n2) = (a, n1n2).

Therefore, (a, n1n2) = 1 if and only if (a1, n1) = 1 and (a2, n2) = 1.
To find the desired bijections, we use the maps that are the restrictions of the CRT map to k-th

power residues or their reduced variants. The earlier part of this proof shows that these are indeed
maps with the domains and ranges given by

rk : Rk(n1)×Rk(n2)→ Rk(n1n2),

sk : Sk(n1)× Sk(n2)→ Sk(n1n2).

So we just need to prove bijectivity. Since the mapping

(a1, a2) 7→ a,

where a is the common solution to the two congruences, has a being unique modulo n1n2, we
find that rk and its restriction sk are injective. For surjectivity, note that every integer in Rk(n1n2)

is a k-th power residue modulo n1 and n2, so those k-th powers to which it reduces then maps to
it. The restricted map sk is also surjective because we proved that (a, n1n2) = 1 if and only if
(a1, n1) = 1 and (a2, n2) = 1. Therefore, rk and sk are bijective. By the multiplication principle
from combinatorics,

|Rk(n1)| · |Rk(n2)| = |Rk(n1n2)|,
|Sk(n1)| · |Sk(n2)| = |Sk(n1n2)|,

so |Rk(n)| and |Sk(n)| are multiplicative functions in the variable n for fixed k.

733



The following result is the key recursion that, in conjunction with classical computations of
|Sk(n)|, will allow us to find |Rk(n)|.

Lemma 2.2. If p is any prime and m > k ≥ 2 are integers, then

|Tk(pm)| = |Rk(p
m−k)|.

Proof. We will produce a bijection from Rk(p
m−k) to Tk(pm). Choose a least representative b

from a class in Rk(p
m−k) so that 0 ≤ b < pm−k. Then there exists an integer c such that

ck ≡ b (mod pm−k)

(cp)k ≡ bpk (mod pm).

Moreover,
0 ≤ b < pm−k =⇒ 0 ≤ bpk < pm.

So b 7→ bpk is a well-defined map from least representatives in Rk(p
m−k) to least representatives

in Tk(pm), since bpk is not coprime to pm. We will show that this map is bijective.
For injectivity, suppose some least representatives b1, b2 modulo pm−k get mapped to the same

element. Then

b1p
k ≡ b2p

k (mod pm)

b1 ≡ b2 (mod pm−k),

which leads to b1 = b2 as integers because they are least non-negative residues modulo pm−k.
This establishes injectivity.

For surjectivity, suppose y ∈ Tk(pm) is a least residue. Then there exist integers x and z such
that

xk ≡ y (mod pm)

xk = y + pmz.

Since gcd(y, pm) > 1, we know that p | y. Then p | xk, leading to pk | xk. Since m > k, we find
that pk | xk − pmz = y. So let b be the integer such that bpk = y. Then

0 ≤ bpk < pm =⇒ 0 ≤ b < pm−k

tells us that b is a least residue in Rk(p
m−k) that maps to the least residue y ∈ Tk(pm).

As a result,

|Rk(p
m)| = |Sk(pm)|+ |Tk(pm)|

= |Sk(pm)|+ |Rk(p
m−k)|.

Lemma 2.3. If p is any prime, k ≥ 2 is an integer, and m is an integer such that 0 < m ≤ k,
then Tk(pm) consists of only the residue class of 0. Thus, |Tk(pm)| = 1.
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Proof. Suppose y ∈ Tk(pm). Then there exist integers x and z such that

xk ≡ y (mod pm)

xk = y + pmz.

As in the preceding proof, it holds that

gcd(y, pm) > 1 =⇒ p | y =⇒ p | xk =⇒ pk | xk.

Since the premise is that 0 < m ≤ k, we find that

y ≡ xk ≡ 0 (mod pm).

So the only residue class in Tk(pm) is the class of 0. Thus, |Tk(pm)| = 1.

Combining the last two results yields the following formulas that will be the crux of our
computations, as they reduce finding the more complicated |Rk(n)| to finding the well-understood
|Sk(n)|. We will need the preceding lemma at the end of each recursive calculation in Lemma
2.4.

Lemma 2.4. Let p be any prime. If m and k are integers such that 1 ≤ m ≤ k and k ≥ 2, then

|Rk(p
m)| = |Sk(pm)|+ 1.

Now let m > k ≥ 2 be integers. If k | m, then

|Rk(p
m)| = |Sk(pm)|+ |Sk(pm−k)|+ · · ·+ |Sk(p2k)|+ |Sk(pk)|+ 1.

If k - m, let r be the remainder upon Euclidean division of m by k. That is, m = qk+ r for some
quotient q and remainder r such that 0 < r < k. Then

|Rk(p
m)| = |Sk(pm)|+ |Sk(pm−k)|+ · · ·+ |Sk(pr+k)|+ |Sk(pr)|+ 1.

As a final general note, we will need an unusual variant of the formula for a finite geometric
series, as written below.

Lemma 2.5. Let z 6= 1 be a real number and α, β, γ be integers such that γ = α − qβ for some
non-negative integer q. Then

zα + zα−β + zα−2β + · · ·+ zγ =
zα+β − zγ

zβ − 1
.

Proof. This is simply a geometric series.

3 Prime power moduli with primitive roots

Now we turn to computing |Rk(p
m)| where pm is a prime power that has a primitive root. We will

need the following results from [3, p. 104]:

Lemma 3.1. Let n ≥ 2 be an integer. Then there exists a primitive root modulo n if and only if
n = 2, 4, pm, or 2pm where p is an odd prime and m is a positive integer.
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We will be focused on using the fact that a primitive root exists modulo n = 2, 4 and pm. The
case n = 2pm will not concern us because it is not a prime power.

Lemma 3.2 (Generalized Euler’s criterion). Let n ≥ 2 be an integer such that there exists a
primitive root modulo n. Let a be an integer coprime to n, and k ≥ 2 be an integer. Then the
congruence

xk ≡ a (mod n)

has a solution x, meaning a is a reduced k-th power residue modulo n, if and only if

a` ≡ 1 (mod n),

where ` =
ϕ(n)

(k, ϕ(n))
. Here, ϕ is Euler’s totient function.

These results allow us to derive the following classical formula. The main cases of Lemma 3.3
appear in [5, p. 113], but the n = 2, 4 cases are excluded, so we have provided a quick separate
proof here.

Lemma 3.3. Let n ≥ 2 be an integer such that there exists a primitive root modulo n. Let k ≥ 2

be an integer. Then

|Sk(n)| =
ϕ(n)

(k, ϕ(n))
.

Proof. We are seeking the number of reduced k-th powers modulo n. Let ` = ϕ(n)
(k,ϕ(n))

. For
gcd(a, n) = 1, from Lemma 3.2, a is such a residue if and only if a` ≡ 1 (mod n). Note that
a` ≡ 1 (mod n) if and only if ordn(a) | `, where ordn(a) is the least positive exponent that sends
a to 1. By a result on cyclic groups [2, pp. 57-58], if d is a divisor of ϕ(n), then the number of
distinct elements of order d is ϕ(d) (this works as long as n has a primitive root). By the fact that
the arithmetic summation function of ϕ is the identity function, we sum ϕ(d) over all positive
divisors d of ` (` is a divisor of ϕ(n), and thus so are all divisors d of `) to get

|Sk(n)| =
∑
d|`

ϕ(d) = ` =
ϕ(n)

(k, ϕ(n))
.

Lemma 3.4. Let p be an odd prime, and m ≥ 1 and k ≥ 2 be integers. If m ≥ k, then

|Sk(pm)| =
p− 1

(k, p− 1)
· 1

pνp(k)+1
· pm.

Proof. By Lemma 3.3, we know that

|Sk(pm)| =
ϕ(pm)

(k, ϕ(pm))
=

pm−1(p− 1)

(k, pm−1(p− 1))

=
pm−1(p− 1)

(k, pm−1)(k, p− 1)
=

p− 1

(k, p− 1)
· 1

(k, pm−1)
· pm−1.

So it suffices to prove that m − 1 ≥ νp(k), as that would allow us to evaluate (k, pm−1) to be
pνp(k). For any positive integer k,
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2k−1 ≥ k =⇒ pk−1 ≥ 2k−1 ≥ k ≥ pνp(k),

m ≥ k =⇒ m− 1 ≥ k − 1 ≥ νp(k).

The fact that 2k−1 ≥ k can be proven by induction on k ≥ 1. Moreover, k ≥ pνp(k) holds because
the right side is a divisor of the left side.

We are now ready for the first theorems pertaining to the casework on |Rk(n)|.

Theorem 3.1. Let p be an odd prime and m and k be integers such that k ≥ 2 and k ≥ m ≥ 1,
or let p = 2 with m = 1 or m = 2 and k ≥ 2. Then

|Rk(p
m)| = p− 1

(k, p− 1)
·
⌈

1

pνp(k)+1
· pm

⌉
+ 1.

Proof. Since k ≥ m ≥ 1, applying Lemma 2.4 and Lemma 3.3 tells us that

|Rk(p
m)| = |Sk(pm)|+ 1

=
p− 1

(k, p− 1)
· pm−1

(k, pm−1)
+ 1 =

p− 1

(k, p− 1)
·
⌈
pm−νp(k)−1

⌉
+ 1,

which is equivalent to what we want.

Corollary 3.1. Let k ≥ 2 be an integer. It holds that

|Rk(2)| = |Sk(2)|+ 1 = 2,

|Rk(2
2)| = |Sk(22)|+ 1 =

2 if 2 | k
3 if 2 - k

.

Theorem 3.2. Let p be an odd prime, and m and k be integers such that m > k ≥ 2 and k | m.
Then

|Rk(p
m)| = p− 1

(k, p− 1)
· 1

pνp(k)+1
· p

m+k − pk

pk − 1
+ 1.

Proof. By Lemma 2.4, Lemma 3.4, and Lemma 2.5,

|Rk(p
m)| = |Sk(pm)|+ |Sk(pm−k)|+ |Sk(pm−2k)|+ · · ·+ |Sk(pk)|+ 1

=
p− 1

(k, p− 1)
· 1

pνp(k)+1
· (pm + pm−k + pm−2k + · · ·+ pk) + 1

=
p− 1

(k, p− 1)
· 1

pνp(k)+1
· p

m+k − pk

pk − 1
+ 1,

which is equal to the formula that we are seeking.

Theorem 3.3. Let p be an odd prime, and m and k be integers such that m > k ≥ 2 and k - m.
Let the remainder upon Euclidean division of m by k be r. Then

|Rk(p
m)| = p− 1

(k, p− 1)
·
⌈

1

pνp(k)+1
· p

m+k − pr

pk − 1

⌉
+ 1.
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Proof. By Lemma 2.4, Lemma 3.4, and Lemma 2.5,

|Rk(p
m)| = |Sk(pm)|+ |Sk(pm−k)|+ · · ·+ |Sk(pr+k)|+ |Sk(pr)|+ 1

=
p− 1

(k, p− 1)
· 1

pνp(k)+1
· (pm + pm−k + · · ·+ pr+k) +

ϕ(pr)

(k, ϕ(pr))
+ 1

=
p− 1

(k, p− 1)
· 1

pνp(k)+1
· p

m+k − pr+k

pk − 1
+

p− 1

(k, p− 1)
· pr−1

(k, pr−1)
+ 1

=
p− 1

(k, p− 1)
·
(
pk−νp(k)−1 · p

m − pr

pk − 1
+
⌈
pr−νp(k)−1

⌉)
+ 1.

Since pk−νp(k)−1 · p
m − pr

pk − 1
is an integer, we can absorb it into the ceiling function and simplify to

get the desired formula.

4 Prime power moduli without primitive roots

Definition 4.1. For each positive integer n, we will use the symbol [n] to denote the first n positive
integers {1, 2, . . . , n}.

With the results complete for n = 2, 4, and odd prime powers pm, we turn to computing
|Rk(2

m)| for m ≥ 3. When the prime is 2, it will be possible to absorb the m = 1, 2 cases into
the m = 3 case as will later be shown.

The structure of units modulo 2m is understood well, as the following result from [3, p. 105]
shows.

Lemma 4.1. Let m ≥ 3 be an integer. Then

ord2m(5) = 2m−2.

Moreover, the set
X =

{
±5i : i ∈ [2m−2]

}
of 2m−1 elements form a system of all reduced residues modulo 2m. Finally, these representations
are unique in the sense that, if a is odd, then there exist integers x, y such that

a ≡ (−1)x · 5y (mod 2m)

where x is unique modulo 2 and y is unique modulo 2m−2.

The following result from [1, p. 432] will be helpful.

Lemma 4.2. Let a and n ≥ 2 be coprime integers, and k be a positive integer. Then

ordn(a
k) =

ordn(a)

(k, ordn(a))
.

We will also need the following result from [3, p. 108], where it is stated as a problem at the
end of a section.

Lemma 4.3. Let k ≥ 2 and n ≥ 2 be integers. The k-th power map modulo an integer n is
bijective on the set of reduced residue classes modulo n if and only if (k, ϕ(n)) = 1.
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It is extremely likely that the following result is known, but we have been unable to find a
textbook reference, so we have proven it here.

Lemma 4.4. Let k ≥ 2 and m ≥ 3 be integers. Then

|Sk(2m)| =


2m−2

(k, 2m−2)
if 2 | k

2m−1 if 2 - k
.

Proof. Let k = 2jbwhere b is an odd integer. If j = 0, then k is odd, making it coprime to 2m. By
Lemma 4.3, this means that all residue classes coprime to 2m are in Sk(2m), so |Sk(2m)| = 2m−1.

For the rest of the argument, assume that j ≥ 1. The k-th power map takes each element of

X =
{
±5i : i ∈ [2m−2]

}
to the power of b, followed by taking the power of 2j of each element. Again by the preceding
result, the first map has no effect because it is simply a bijection on X . The application of the
second map to X is what we have to carefully observe. Since j ≥ 1, the exponent is even and so

Sk(2
m) =

{
(5i)2

j

(mod 2m) : i ∈ [2m−2]
}
.

Not every (5i)2
j is necessarily distinct modulo 2m so we have count the number of distinct

elements. We exchange exponents to rewrite each term as (52j)i for i ∈ [2m−2]. Since ord2m(5) =

2m−2, we get
(52

j

)2
m−2 ≡ (52

m−2

)2
j ≡ 12

j ≡ 1 (mod 2m),

and higher powers of 52j are repeats of lower powers. So all powers of 52j are in Sk(2m), and
every element of Sk(2m) is a power of 52j . Since powers of an element cycle if the element is
coprime to the modulus, the number of distinct elements of Sk(2m), is

|Sk(2m)| = ord2m(5
2j) =

ord2m(5)

(2j, ord2m(5))
=

2m−2

(2j, 2m−2)
=

2m−2

(k, 2m−2)
.

Lemma 4.5. Let k ≥ 2 and m ≥ 1 be integers. Then

|Sk(2m)| =


⌈
2m−ν2(k)−2

⌉
if 2 | k

2m−1 if 2 - k

=

⌈
2m−1

2(ν2(k)+1)(1−ε(k))

⌉
.

Proof. In the 2 | k case,

|Sk(2)| = 1 =
⌈
21−ν2(k)−2

⌉
,

|Sk(22)| = 1 =
⌈
22−ν2(k)−2

⌉
,

|Sk(2m)| =
2m−2

(k, 2m−2)
=
⌈
2m−ν2(k)−2

⌉
,

where m ≥ 3 in the third line and we used Lemma 4.4. In the 2 - k case,

|Sk(2)| = 1 = 20,

|Sk(22)| = 2 = 21,

so m = 1, 2 match the formula 2m−1 for m ≥ 3 from Lemma 4.4.
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Lemma 4.6. Let m ≥ 3 and k ≥ 2 be integers. If m > k and 2 | k, then

|Sk(2m)| =
1

2ν2(k)+2
· 2m.

Proof. By Lemma 4.4, we know that

|Sk(2m)| =
2m−2

(k, 2m−2)
.

So it suffices to prove that m − 2 ≥ ν2(k), as that would allow us to evaluate (k, 2m−2) to be
2ν2(k). Since

m > k =⇒ m− 1 ≥ k =⇒ m− 2 ≥ k − 1,

we find that
2k−1 ≥ k ≥ 2ν2(k) =⇒ m− 2 ≥ k − 1 ≥ ν2(k).

This is very similar to the reasoning for Lemma 3.4.

We are now ready to complete the casework on |Rk(n)|.

Theorem 4.1. Let m and k be integers such that k ≥ 2 and k ≥ m ≥ 3. Then

|Rk(2
m)| =

⌈
1

2(ν2(k)+1)(1−ε(k))+1
· 2m

⌉
+ 1.

This works for m = 1, 2 as well, matching Corollary 3.1.

Proof. Lemma 2.4 and Lemma 4.5 tell us

|Rk(2
m)| = |Sk(2m)|+ 1 =

⌈
2m−1

2(ν2(k)+1)(1−ε(k))

⌉
+ 1.

Theorem 4.2. Let m and k be integers such that m > k ≥ 2 and k | m. Then

|Rk(2
m)| =

⌈
1

2(ν2(k)+1)(1−ε(k))+1
· 2

m+k − 2k

2k − 1

⌉
+ 1.

Proof. By Lemmas 2.4, 4.6, 2.5, and 4.5, if 2 | k, then

|Rk(2
m)| = |Sk(2m)|+ |Sk(2m−k)|+ · · ·+ |Sk(22k)|+ |Sk(2k)|+ 1

=
1

2ν2(k)+2
· (2m + 2m−k + 2m−2k + · · ·+ 22k) + |Sk(2k)|+ 1

=
1

2ν2(k)+2
· 2

m+k − 22k

2k − 1
+
⌈
2k−ν2(k)−2

⌉
+ 1

= 2k−ν2(k)−2 · 2
m − 2k

2k − 1
+
⌈
2k−ν2(k)−2

⌉
+ 1.

Since 2k−ν2(k)−2 · 2
m − 2k

2k − 1
is an integer, we can absorb it into the ceiling function and simplify to

get

|Rk(2
m)| =

⌈
2k−ν2(k)−2 · 2

m − 1

2k − 1

⌉
+ 1.
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For the 2 - k case, we compute

|Rk(2
m)| = |Sk(2m)|+ |Sk(2m−k)|+ |Sk(2m−2k)|+ · · ·+ |Sk(2k)|+ 1

=
1

2
· (2m + 2m−k + 2m−2k + · · ·+ 2k) + 1

=
1

2
· 2

m+k − 2k

2k − 1
+ 1.

The two formulas are special cases into which the stated formula breaks.

Theorem 4.3. Let m and k be integers such that m > k ≥ 2 and k - m. Let the remainder upon
Euclidean division of m by k be r. Then

|Rk(2
m)| =

⌈
1

2(ν2(k)+1)(1−ε(k))+1
· 2

m+k − 2r

2k − 1

⌉
+ 1.

Proof. By Lemma 2.4, Lemma 4.6, and Lemma 2.5, if 2 | k, then

|Rk(2
m)| = |Sk(2m)|+ |Sk(2m−k)|+ · · ·+ |Sk(2r+k)|+ |Sk(2r)|+ 1

=
1

2ν2(k)+2
· (2m + 2m−k + 2m−2k + · · ·+ 2r+k) + |Sk(2r)|+ 1

=
1

2ν2(k)+2
· 2

m+k − 2r+k

2k − 1
+
⌈
2r−ν2(k)−2

⌉
+ 1

= 2k−ν2(k)−2 · 2
m − 2r

2k − 1
+
⌈
2r−ν2(k)−2

⌉
+ 1.

Since 2k−ν2(k)−2 · 2
m − 2r

2k − 1
is an integer, we can absorb it into the ceiling function and simplify to

derive

|Rk(2
m)| =

⌈
1

2ν2(k)+2
· 2

m+k − 2r

2k − 1

⌉
+ 1.

For the 2 - k case, we find that

|Rk(2
m)| = |Sk(2m)|+ |Sk(2m−k)|+ |Sk(2m−2k)|+ · · ·+ |Sk(2r)|+ 1

=
1

2
· (2m + 2m−k + 2m−2k + · · ·+ 2r) + 1

=
1

2
· 2

m+k − 2r

2k − 1
+ 1.

The two cases can be unified as stated.

5 Conclusion

The various cases for odd primes p and p = 2 may be unified to produce Theorem 1.1. As the
reader might expect, substituting k = 2 into our formulas yields those of Stangl; we have checked
this. In addition, we ran tests on a computer program to ensure that the number of k-th power
residues counted by the program matched those predicted by Theorem 1.1.
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p odd, k ≥ m : |R8(3
4)| = 28,

p odd,m > k, k | m : |R6(3
12)| = 59131,

p odd,m > k, k - m : |R5(3
11)| = 118587,

p = 2, k ≥ m ≥ 3, 2 | k : |R6(2
4)| = 3,

|R8(2
6)| = 3,

p = 2, k ≥ m ≥ 3, 2 - k : |R7(2
5)| = 17,

|R7(2
6)| = 33,

p = 2,m > k,m ≥ 3, k | m, 2 | k : |R4(2
16)| = 4370,

|R12(2
24)| = 1048833,

p = 2,m > k,m ≥ 3, k | m, 2 - k : |R5(2
15)| = 16913,

|R7(2
21)| = 1056833,

p = 2,m > k,m ≥ 3, k - m, 2 | k : |R4(2
9)| = 36, r = 1

|R4(2
10)| = 70, r = 2

|R4(2
11)| = 138, r = 3

p = 2,m > k,m ≥ 3, k - m, 2 - k : |R5(2
11)| = 1058, r = 1

|R5(2
12)| = 2115, r = 2

|R5(2
13)| = 4229, r = 3.

Below is the Python program that was implemented:

1 def residue_counter(k,p,m):

2 residueset = set()

3 for x in range(0,p**m):

4 residueset.add((x**k) % (p**m))

5 return(len(residueset))

This program is very slow for large inputs. We have also implemented a program that uses
our formulas instead and it is empirically much faster, assuming the prime factorization of n is
known.

Aside from the natural and intrinsically interesting formulation of the problem tackled in this
paper, it can be motivated in relation to other problems. In the context of modular power residues,
there are several other worthy pursuits. One hope is that this “power-counting problem” will shed
light on more difficult problems, which, in order of increasing difficulty, are to:

1. Given an integer a, determine whether it is a k-th power residue modulo n. We call this the
“power-identification problem”; it is related to reciprocity laws in number theory.

2. Given an integer a, determine the number of residues x whose k-th powers are congruent
to a modulo n. We call this the “root-counting problem.”

3. Given an integer a, determine all (if any) residues x whose k-th powers are congruent to a
modulo n. We call this the “root-taking problem.”
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The power-counting problem is also relevant to what we refer to as the “modular arithmetic
contradiction trick” for polynomial Diophantine equations. This technique takes a multivariable
polynomial equation with integer coefficients, and reduces it modulo some (miraculously chosen)
modulus so that all of the (finitely many) substitutions of residues into the variables lead to
contradictory (i.e., non-zero) computations. Therefore, this technique shows that there exist
no integer solutions. Although this method is used widely both professionally and in math
competitions, there is, to the best of our knowledge, no known method of coming up with the
modulus n. However, an accepted heuristic is that, since we know the degrees of the univariate
components of terms like xk, we should pick a modulus that will minimize the number of k-th
power residues or minimize the fraction of residues that are k-th power residues. The reasoning
is that minimizing the amount of values that xk can undertake lowers the “probability” of it being
able to collide with other terms in order to produce the 0 residue class in the end. Although
this reasoning is not airtight, in conjunction with a second heuristic - annihilate coefficients
by choosing a modulus that is a factor of several coefficients - it is useful in practice. The
power-counting problem might be helpful in reverse-engineering candidates for moduli when
we are following the first heuristic, and we can further curate the list using the second heuristic
(or vice versa).

The interested reader might wish to explore replacing xk with univariate or multivariable
polynomials, which would take us further along the path of intelligently choosing a modulus for
this Diophantine contradiction trick.
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