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Abstract: We study more properties of Vandiver’s arithmetical function

V (n) =
∏
d|n

(d+ 1),

introduced in [2].
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1 Introduction

This is a continuation of the first part [2], where we have considered the Vandiver arithmetic
function

V (n) =
∏
d|n

(d+ 1),

where d runs through all distinct divisors of n. In the first part we have proved inequalities related
to this function; connections with notions of perfect numbers; equations related to V (n), as well
as some open problems and conjectures. The aim of this second part is to offer more properties
of this function, and particularly to deduce also certain asymptotic results.

2 Main results

Theorem 2.1. One has ∑
d|n

1

d+ 1
< log

V (n)

T (n)
<
σ(n)

n
(n ≥ 1), (2.1)

where T (n) denotes (as in [2]) the product of divisors of n (see Theorem 7 of [2]).
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Proof. Write

log V (n) = log
∏
d|n

(d+ 1) =
∑
d|n

log(d+ 1)

=
∑
d|n

(
log d+ log

(
1 +

1

d

))
=
∑
d|n

log d+
∑
d|n

log
(
1 +

1

d

)
.

Here the first term is log T (n). For the second one apply the double inequality

x

1 + x
< log(1 + x) < x (x > 0) (2.2)

for x =
1

d
, implying

1

d+ 1
< log

(
1 +

1

d

)
<

1

d
. (2.3)

Since ∑
d|n

1

d
=
σ(n)

n
,

relation (2.1) follows.

Remark 2.2. As∑
d|n

1

d+ 1
=
∑
d|n

1

n/d+ 1
=
∑
d|n

d

n+ d
≤
∑
d|n

d

n+ 1
=

σ(n)

n+ 1
,

and ∑
d|n

1

d+ 1
≥
∑
d|n

1

n+ 1
=

d(n)

n+ 1
,

we get
d(n)

n+ 1
≤
∑
d|n

1

d+ 1
≤ σ(n)

n+ 1
≤ d(n)

2
, (2.4)

where the last inequality is a consequence of relation (9) of [2]. The lower bound in (2.4) may be
improved, by using the following inequality due to P. Henrici (see e.g. [1]):

k∑
i=1

1

1 + xi
≥ k

1 + k
√
x1 · · · xk

, where xi ≥ 1(i = 1, k). (2.5)

By letting xi = di = divisors of n, and k = d(n), as x1 · · ·xk = T (n) = nd(n)/2, we get from
(2.5): ∑

d|n

1

d+ 1
≥ d(n)√

n+ 1
, (2.6)

which clearly improves the left-hand side of (2.4). We note that a similar result to (2.6) may be
obtained by the combined use of the arithmetic-geometric mean inequality, and the right-hand
side of (5) from [2]:
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∑
d|n

1

d+ 1
≥ d(n)

1

d(n)

√∏
d|n

(d+ 1)

=
d(n)

(V (n))1/d(n)
(2.7)

∑
d|n

1

d+ 1
≥ d(n)

(V (n))1/d(n)
≥ d(n)

σ(n)/d(n) + 1
=

(d(n))2

σ(n) + d(n)
. (2.8)

However, the second inequality in (2.8) is weaker than (2.6), according to the known result
(see [4])

σ(n)

d(n)
≥
√
n. (2.9)

Corollary 2.3. There exists a positive constant c > 0 such that

V (2n − 1)

T (2n − 1)
< (log n)c (n ≥ 3). (2.10)

Proof. This follows by the right-hand side of (2.1), and an inequality due to P. Erdős [4]:

σ(2n − 1)

2n − 1
< c log log n, n ≥ 3, (2.11)

which completes the proof.

Corollary 2.4. The right-hand side of (2.1) gives a new proof of Theorem 4 of [2], written
equivalently:

log V (n) ∼ log T (n) as n→∞. (2.12)

Proof. It is sufficient to prove that

σ(n)

nd(n) log n
→ 0 as n→∞. (2.13)

Indeed, as T (n) = nd(n)/2, one has log T (n) = (d(n) log n)/2. Relation (2.13) follows, e.g., by
selection (9) of [2], as

σ(n)

d(n)
· 1

n log n
≤ n+ 1

2n log n
→ 0

as n→∞.

Theorem 2.5.
log

V (n)

T (n)
=
σ(n)

n
+O(1). (2.14)

Proof. By the proof of Theorem 2.1 one has

log
V (n)

T (n)
=
∑
d|n

log

(
1 +

1

d

)
.

Since log(1 + x) = x+O(x2) (x > 0), we get∑
d|n

log

(
1 +

1

d

)
=
∑
d|n

1

d
+O

(∑
d|n

1

d2

)
.
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By ∑
d|n

1

d2
<

∞∑
d=1

1

d2
=
π2

6
,

the result follows.
A more concrete proof is based on the double inequality

σ(n)

n
− π2

12
< log

V (n)

T (n)
<
σ(n)

n
. (2.15)

The left-hand side inequality follows by the logarithmic inequality

log(1 + x) > x− x2

2
(x > 0) (2.16)

(which is stronger than the left-hand side of (2.2)); applied to x :=
1

d
.

Since
1

2

∑
d|n

1

d2
<

1

2

∞∑
d=1

1

d2
=
π2

12
,

(2.15) follows.

Corollary 2.6. It holds true that

lim
n→∞

sup
1

log log n
· log V (n)

T (n)
= eγ, (2.17)

where γ is Euler’s constant.

Indeed, by (2.14) one has

lim
n→∞

sup
1

log log n
· log V (n)

T (n)
= lim

n→∞
sup

σ(n)

n log log n
= eγ,

the last equality is a famous result due to T. H. Gronwall (see e.g. [4]).

Theorem 2.7. It holds true that

lim
n→∞

V (σ(n))

T (σ(n))
= +∞, on a set of density one, (2.18)

and

e1−
π2

12 ≤ lim
n→∞

inf
V (σ(n))

T (σ(n))
≤ e. (2.19)

Proof. Applying the left-hand side of (2.15) for n := σ(n), we get

log
V (σ(n))

T (σ(n))
>
σ(σ(n))

σ(n)
− π2

12
. (2.20)

Now, by a result of P. Erdős and M. V. Subbarao (see [3]) one has

σ(σ(n))

σ(n)
→∞ (as n→∞) on a set of density one, (2.21)

713



so this combined with (2.20) yields (2.18). Particularly

lim
n→∞

sup
V (σ(n))

T (σ(n))
= +∞. (2.22)

For the proof of (2.19) apply again (2.15), and the following limit

lim
n→∞

inf
σ(σ(n))

σ(n)
= 1. (2.23)

This follows by the inequality σ(m)

m
> 1 for any m > 1, and the limit due to R. Bojanić (see [4]).

lim
p→∞, p prime

σ(2p − 1)

2p − 1
= 1. (2.24)

As for n = 2p−1 one has σ(σ(n))
σ(n)

=
σ(2p − 1)

2p − 1
, relation (2.23) follows.

Remark 2.8. Relation (2.19) shows that the lim inf of V (σ(n))

T (σ(n))
is finite, and lies in the interval

[e1−π
2/12, e]. The exact determination of this value is not known to the author.

Theorem 2.9. It holds true that

lim
n→∞

sup
V (ϕ(n))

T (ϕ(n))
= +∞. (2.25)

Let

k = lim
n→∞

inf
σ(ϕ(n))

n
. (2.26)

Then

ek−π
2/12 ≤ lim

n→∞

V (ϕ(n))

T (ϕ(n))
≤ ek. (2.27)

Proof. Apply (2.15) for n := ϕ(n). Then one has

lim
n→∞

sup
σ(ϕ(n))

ϕ(n)
= +∞. (2.28)

Relation (2.28) follows by

lim
n→∞

sup
σ(ϕ(n))

n
= +∞ (2.29)

due to L. Alaoglu and P. Erdős [4] and the remark that

σ(ϕ(n))

ϕ(n)
≥ σ(ϕ(n))

n
.

Therefore, (2.25) is true. Inequalities (2.27) are consequences of (2.15).

Remark 2.10. The exact value of k is not known. A. Makovski and A. Schinzel [3] have shown
that

k ≤ 1

2
+

1

234 − 4
, (2.30)
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and conjectured an inequality (which is the famous Makowski–Schinzel conjecture; see, e.g.,
[3, 4]), namely:

σ(ϕ(n))

n
≥ 1

2
for all n ≥ 1. (2.31)

If (2.31) is true, then we get k ≥ 1

2
. We know that k > 0, and even that k > 1

39.4
, due to K. Ford

(see [3]).
The next result involves the normal order of magnitude of functions. Recall that we say that

the the normal order of magnitude of arithmetical function f(n) is g(n) if for every ε > 0, one
has

(1− ε)g(n) < f(n) < (1 + ε)g(n) (2.32)

for almost all integer n (i.e. the set of integers not satisfying (2.32) has density zero). Thus
f(n) ∼ g(n) as n→∞, excepting o(n) integers.

Theorem 2.11. The normal order of magnitude of log log V (n) is

(1 + log 2) · log log n (2.33)

The same is true for log log T (n).

Proof. We shall use the following lemma.

Lemma 2.12. If xn, yn > 0 and xn ∼ yn (n→∞), where yn →∞, then log xn ∼ log yn.

Indeed, as xn
yn
→ 1, we get log

(
xn
yn

)
→ 0, so log xn − log yn → 0, giving log xn − log yn

log yn
→ 0.

0 = 0, so log xn
log yn

→ 1.

By Theorem 4 of [2], the above Lemma implies

log log V (n) ∼ log log T (n). (2.34)

Therefore, it will be sufficient to prove the result for log log T (n). As T (n) = nd(n)/2, we get

log log T (n) = log
d(n)

2
+ log log n. (2.35)

By a classical result of G. H. Hardy and S. Ramanujan (see [4]), the normal order of magnitude
of log d(n) is (log 2) · log log n. Clearly, the same is true for log d(n)

2
, therefore by (2.35) the result

follows.

Theorem 2.13. i) If n ≥ 6 is even, then

V (n) ≥ 3(n+ 1)(n+ 2). (2.36)

There is equality only if n = 2p, where p ≥ 3 is a prime.

ii) If n ≥ 12 is divisible by 4, then

V (n) ≥ 15

4
· (n+ 1)(n+ 2)(n+ 4). (2.37)

There is equality only if n = 4p, where p ≥ 3 is a prime.
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Proof. i) If n ≥ 6 is even, then 1, 2,
n

2
, n are distinct divisors of n, so

V (n) ≥ (1 + 1)(2 + 1) ·
(
n

2
+ 1

)
(n+ 1) = 3(n+ 1)(n+ 2).

There is equality iff there are no other divisors, i.e., when n

2
= p is a prime.

ii) 1, 2, n
2
,
n

4
, n are distinct divisors. The proof is similar to the case i).

Corollary 2.14. It holds true that:

1) lim
n→∞

sup
V (n− 1)

V (n)
= +∞; lim

n→∞
sup

V (n+ 1)

V (n)
= +∞ (2.38)

2) lim
p→∞
p prime

sup
V (p− 1)

p2
= +∞; lim

p→∞
sup

V (p+ 1)

p2
= +∞ (2.39)

3) lim
p→∞

V (p− 1)

p2
= 3, (2.40)

if one assumes the existence of infinitely many primes p of the form p = 2q + 1, where q is a
prime.

4) lim
n→∞

sup
V (p+ 1)

p2
= 3, (2.41)

if one assumes the existence of infinitely many primes p of the from p = 2q − 1, q prime.

Proof. 1) Let n = p ≥ 7 be a prime. Then V (p) = 2 · (p + 1), while by (2.36) one has
V (p−1) ≥ 3p(p+1). Similarly, for p ≥ 5 one has V (p+1) ≥ 3(p+2)(p+3), so (2.38) follows.

2) Let p be a prime of the form 4k + 1. Then, by (2.37) one has

V (p− 1) = V (4k) ≥ 15

4
· (k + 1)(k + 2)(k + 4), (k ≥ 3),

so
V (p− 1)

p2
≥ 15(k + 1)(k + 2)(k + 4)

4 · (4k + 1)2
→∞ as k →∞.

The similar proof applies to V (p+ 1)

p2
.

3) As
V (p− 1)

p2
≥ 3p(p+ 1)

p2
= 3 ·

(
1 +

1

p

)
,

clearly

lim
p→∞

V (p− 1)

p2
≥ 3.

On the other hand, if p = 2q + 1, then V (p− 1) = 3 · (2q + 1)(2q + 2), so

V (p− 1)

p2
=

3 · (2q + 1)(2q + 2)

2(q + 1)2
→ 3

as q →∞. This proves (2.40).

4) The proof of (2.41) is similar.
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Remark 2.15. The existence of infinitely many primes p of the form p = 2q + 1 (or p = 2q − 1)
is one of the difficult open problems of Number theory (see [3, 4]).

The number V (n− 1) behaves differently as V (n), it was shown by the case n = prime.
As

log log(n− 1)

log(n− 1)
∼ log log n

log n
,

by (2.24) of [2], we can write also

lim
n→∞

sup log log V (n− 1)
log log n

log n
= log 2. (2.42)

One has:

Theorem 2.16. It holds true that:

lim
p→∞
p prime

log log V (p− 1) · log log p
log p

> 0. (2.43)

Proof. By the left-hand side of relation (5) of [2] we can write

log log V (p− 1) > log d(p− 1) + log log(
√
p− 1 + 1). (2.44)

Now, by a result of K. Prachar [3] there exists c > 0 such that

log d(q − 1) > c · log q

log log q
(2.45)

for infinitely many primes q. This combined with (2.44) implies (2.43).

Theorem 2.17. The series
∞∑
n=1

1

V (n)
is divergent, while

∞∑
n=1

1

(V (n))1+a
is convergent for any

a > 0.

One has the asymptotic formula∑
n≤x

1

V (n)
=

1

2
log log x+O(1). (2.46)

Proof. As V (p) = 2(p+ 1), and
∞∑
n=1

1

V (n)
>

1

2

∑
p prime

1

p+ 1
>

1

4

∑
p prime

1

p
,

the divergence follows by the known divergence of the series
∑

p 1/p.

Let now consider the series of general term 1

(V (n))1+a
. Clearly,∑

n≥1

1

(V (n))1+a
=
∑

p prime

1

(2(p+ 1))1+a
+

∑
n composite

1

(V (n))1+a
.

Now, as 1

(2(p+ 1))1+a
<

1

p1+a
, remark that the series

∑
p prime

1

p1+a
is known to be convergent. This

follows, e.g., by the remark that, if pk denotes the k-th prime, then pk > k, so∑
k≥1

1

p1+ak

<
∑
k≥1

1

k1+a
= ζ(1 + a) <∞

for a > 0.
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On the other hand,∑
n composite

1

(V (n))1+a
≤

∑
n composite

1

(
√
n+ 1)d(n)(1+a)

≤
∑
n

1

(
√
n+ 1)3(1+a)

<
∑
n

1

n3(1+a)/2
<∞ as 3(1 + a)/2 > 1.

For the proof of (2.46) remark that∑
n≤x

1

V (n)
=

1

2

∑
p≤x

p prime

1

p+ 1
+

∑
n≤x

n composite

1

V (n)
. (2.47)

As above, it is immediate that the second term of (2.47) is < C, where C is a positive constant.
For the first term of (2.47) however, we will use the known fact that∑

p≤x

1

p
= log log x+O(1) (2.48)

(see [4]). Now ∑
p≤x

(
1

p
− 1

p+ 1

)
=
∑
p≤x

1

(p(p+ 1))
<
∑
p≤x

1

p2
<
∑
p≤x

1

n2
< π2/6,

so ∑
p≤x

1

p+ 1
=
∑
p≤x

1

p
+O(1),

and by (2.47) the result follows.
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