On Vandiver's arithmetical function - II

József Sándor
Deparment of Mathematics, Babeş-Bolyai University
Cluj-Napoca, Romania
e-mail: jsandor@math.ubbcluj.ro

Received: 25 March 2021
Revised: 15 October 2022
Accepted: 3 November 2022
Online First: 7 November 2022
Abstract: We study more properties of Vandiver's arithmetical function

$$
V(n)=\prod_{d \mid n}(d+1)
$$

introduced in [2].
Keywords: Arithmetic function, Inequalities, Asymptotic results.
2020 Mathematical Subject Classification: 11A25, 11A41, 11N37, 26D15.

1 Introduction

This is a continuation of the first part [2], where we have considered the Vandiver arithmetic function

$$
V(n)=\prod_{d \mid n}(d+1)
$$

where d runs through all distinct divisors of n. In the first part we have proved inequalities related to this function; connections with notions of perfect numbers; equations related to $V(n)$, as well as some open problems and conjectures. The aim of this second part is to offer more properties of this function, and particularly to deduce also certain asymptotic results.

2 Main results

Theorem 2.1. One has

$$
\begin{equation*}
\sum_{d \mid n} \frac{1}{d+1}<\log \frac{V(n)}{T(n)}<\frac{\sigma(n)}{n} \quad(n \geq 1) \tag{2.1}
\end{equation*}
$$

where $T(n)$ denotes (as in [2]) the product of divisors of n (see Theorem 7 of [2]).

Proof. Write

$$
\begin{aligned}
\log V(n) & =\log \prod_{d \mid n}(d+1)=\sum_{d \mid n} \log (d+1) \\
& =\sum_{d \mid n}\left(\log d+\log \left(1+\frac{1}{d}\right)\right)=\sum_{d \mid n} \log d+\sum_{d \mid n} \log \left(1+\frac{1}{d}\right) .
\end{aligned}
$$

Here the first term is $\log T(n)$. For the second one apply the double inequality

$$
\begin{equation*}
\frac{x}{1+x}<\log (1+x)<x \quad(x>0) \tag{2.2}
\end{equation*}
$$

for $x=\frac{1}{d}$, implying

$$
\begin{equation*}
\frac{1}{d+1}<\log \left(1+\frac{1}{d}\right)<\frac{1}{d} \tag{2.3}
\end{equation*}
$$

Since

$$
\sum_{d \mid n} \frac{1}{d}=\frac{\sigma(n)}{n}
$$

relation (2.1) follows.
Remark 2.2. As

$$
\sum_{d \mid n} \frac{1}{d+1}=\sum_{d \mid n} \frac{1}{n / d+1}=\sum_{d \mid n} \frac{d}{n+d} \leq \sum_{d \mid n} \frac{d}{n+1}=\frac{\sigma(n)}{n+1}
$$

and

$$
\sum_{d \mid n} \frac{1}{d+1} \geq \sum_{d \mid n} \frac{1}{n+1}=\frac{d(n)}{n+1}
$$

we get

$$
\begin{equation*}
\frac{d(n)}{n+1} \leq \sum_{d \mid n} \frac{1}{d+1} \leq \frac{\sigma(n)}{n+1} \leq \frac{d(n)}{2} \tag{2.4}
\end{equation*}
$$

where the last inequality is a consequence of relation (9) of [2]. The lower bound in (2.4) may be improved, by using the following inequality due to P. Henrici (see e.g. [1]):

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{1+x_{i}} \geq \frac{k}{1+\sqrt[k]{x_{1} \cdots x_{k}}}, \text { where } x_{i} \geq 1(i=\overline{1, k}) \tag{2.5}
\end{equation*}
$$

By letting $x_{i}=d_{i}=$ divisors of n, and $k=d(n)$, as $x_{1} \cdots x_{k}=T(n)=n^{d(n) / 2}$, we get from (2.5):

$$
\begin{equation*}
\sum_{d \mid n} \frac{1}{d+1} \geq \frac{d(n)}{\sqrt{n}+1} \tag{2.6}
\end{equation*}
$$

which clearly improves the left-hand side of (2.4). We note that a similar result to (2.6) may be obtained by the combined use of the arithmetic-geometric mean inequality, and the right-hand side of (5) from [2]:

$$
\begin{align*}
& \sum_{d \mid n} \frac{1}{d+1} \geq d(n) \frac{1}{\sqrt[d(n)]{\prod_{d \mid n}(d+1)}}=\frac{d(n)}{(V(n))^{1 / d(n)}} \tag{2.7}\\
& \sum_{d \mid n} \frac{1}{d+1} \geq \frac{d(n)}{(V(n))^{1 / d(n)}} \geq \frac{d(n)}{\sigma(n) / d(n)+1}=\frac{(d(n))^{2}}{\sigma(n)+d(n)} . \tag{2.8}
\end{align*}
$$

However, the second inequality in (2.8) is weaker than (2.6), according to the known result (see [4])

$$
\begin{equation*}
\frac{\sigma(n)}{d(n)} \geq \sqrt{n} \tag{2.9}
\end{equation*}
$$

Corollary 2.3. There exists a positive constant $c>0$ such that

$$
\begin{equation*}
\frac{V\left(2^{n}-1\right)}{T\left(2^{n}-1\right)}<(\log n)^{c} \quad(n \geq 3) . \tag{2.10}
\end{equation*}
$$

Proof. This follows by the right-hand side of (2.1), and an inequality due to P. Erdős [4]:

$$
\begin{equation*}
\frac{\sigma\left(2^{n}-1\right)}{2^{n}-1}<c \log \log n, \quad n \geq 3 \tag{2.11}
\end{equation*}
$$

which completes the proof.
Corollary 2.4. The right-hand side of (2.1) gives a new proof of Theorem 4 of [2], written equivalently:

$$
\begin{equation*}
\log V(n) \sim \log T(n) \text { as } n \rightarrow \infty \tag{2.12}
\end{equation*}
$$

Proof. It is sufficient to prove that

$$
\begin{equation*}
\frac{\sigma(n)}{n d(n) \log n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.13}
\end{equation*}
$$

Indeed, as $T(n)=n^{d(n) / 2}$, one has $\log T(n)=(d(n) \log n) / 2$. Relation (2.13) follows, e.g., by selection (9) of [2], as

$$
\frac{\sigma(n)}{d(n)} \cdot \frac{1}{n \log n} \leq \frac{n+1}{2 n \log n} \rightarrow 0
$$

as $n \rightarrow \infty$.
Theorem 2.5.

$$
\begin{equation*}
\log \frac{V(n)}{T(n)}=\frac{\sigma(n)}{n}+O(1) . \tag{2.14}
\end{equation*}
$$

Proof. By the proof of Theorem 2.1 one has

$$
\log \frac{V(n)}{T(n)}=\sum_{d \mid n} \log \left(1+\frac{1}{d}\right)
$$

Since $\log (1+x)=x+O\left(x^{2}\right)(x>0)$, we get

$$
\sum_{d \mid n} \log \left(1+\frac{1}{d}\right)=\sum_{d \mid n} \frac{1}{d}+O\left(\sum_{d \mid n} \frac{1}{d^{2}}\right)
$$

By

$$
\sum_{d \mid n} \frac{1}{d^{2}}<\sum_{d=1}^{\infty} \frac{1}{d^{2}}=\frac{\pi^{2}}{6}
$$

the result follows.
A more concrete proof is based on the double inequality

$$
\begin{equation*}
\frac{\sigma(n)}{n}-\frac{\pi^{2}}{12}<\log \frac{V(n)}{T(n)}<\frac{\sigma(n)}{n} \tag{2.15}
\end{equation*}
$$

The left-hand side inequality follows by the logarithmic inequality

$$
\begin{equation*}
\log (1+x)>x-\frac{x^{2}}{2} \quad(x>0) \tag{2.16}
\end{equation*}
$$

(which is stronger than the left-hand side of (2.2)); applied to $x:=\frac{1}{d}$.
Since

$$
\frac{1}{2} \sum_{d \mid n} \frac{1}{d^{2}}<\frac{1}{2} \sum_{d=1}^{\infty} \frac{1}{d^{2}}=\frac{\pi^{2}}{12},
$$

(2.15) follows.

Corollary 2.6. It holds true that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{1}{\log \log n} \cdot \log \frac{V(n)}{T(n)}=e^{\gamma}, \tag{2.17}
\end{equation*}
$$

where γ is Euler's constant.
Indeed, by (2.14) one has

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{\log \log n} \cdot \log \frac{V(n)}{T(n)}=\lim _{n \rightarrow \infty} \sup \frac{\sigma(n)}{n \log \log n}=e^{\gamma}
$$

the last equality is a famous result due to T. H. Gronwall (see e.g. [4]).

Theorem 2.7. It holds true that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{V(\sigma(n))}{T(\sigma(n))}=+\infty, \text { on a set of density one } \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{1-\frac{\pi^{2}}{12}} \leq \lim _{n \rightarrow \infty} \inf \frac{V(\sigma(n))}{T(\sigma(n))} \leq e \tag{2.19}
\end{equation*}
$$

Proof. Applying the left-hand side of (2.15) for $n:=\sigma(n)$, we get

$$
\begin{equation*}
\log \frac{V(\sigma(n))}{T(\sigma(n))}>\frac{\sigma(\sigma(n))}{\sigma(n)}-\frac{\pi^{2}}{12} . \tag{2.20}
\end{equation*}
$$

Now, by a result of P. Erdôs and M. V. Subbarao (see [3]) one has

$$
\begin{equation*}
\frac{\sigma(\sigma(n))}{\sigma(n)} \rightarrow \infty(\text { as } n \rightarrow \infty) \text { on a set of density one, } \tag{2.21}
\end{equation*}
$$

so this combined with (2.20) yields (2.18). Particularly

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{V(\sigma(n))}{T(\sigma(n))}=+\infty \tag{2.22}
\end{equation*}
$$

For the proof of (2.19) apply again (2.15), and the following limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{\sigma(\sigma(n))}{\sigma(n)}=1 \tag{2.2.2}
\end{equation*}
$$

This follows by the inequality $\frac{\sigma(m)}{m}>1$ for any $m>1$, and the limit due to R. Bojanić (see [4]).

$$
\begin{equation*}
\lim _{p \rightarrow \infty, p \text { prime }} \frac{\sigma\left(2^{p}-1\right)}{2^{p}-1}=1 . \tag{2.24}
\end{equation*}
$$

As for $n=2^{p-1}$ one has $\frac{\sigma(\sigma(n))}{\sigma(n)}=\frac{\sigma\left(2^{p}-1\right)}{2^{p}-1}$, relation (2.23) follows.
Remark 2.8. Relation (2.19) shows that the $\lim \inf$ of $\frac{V(\sigma(n))}{T(\sigma(n))}$ is finite, and lies in the interval $\left[e^{1-\pi^{2} / 12}, e\right]$. The exact determination of this value is not known to the author.

Theorem 2.9. It holds true that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{V(\varphi(n))}{T(\varphi(n))}=+\infty \tag{2.25}
\end{equation*}
$$

Let

$$
\begin{equation*}
k=\lim _{n \rightarrow \infty} \inf \frac{\sigma(\varphi(n))}{n} . \tag{2.26}
\end{equation*}
$$

Then

$$
\begin{equation*}
e^{k-\pi^{2} / 12} \leq \lim _{n \rightarrow \infty} \frac{V(\varphi(n))}{T(\varphi(n))} \leq e^{k} \tag{2.27}
\end{equation*}
$$

Proof. Apply (2.15) for $n:=\varphi(n)$. Then one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{\sigma(\varphi(n))}{\varphi(n)}=+\infty \tag{2.28}
\end{equation*}
$$

Relation (2.28) follows by

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{\sigma(\varphi(n))}{n}=+\infty \tag{2.29}
\end{equation*}
$$

due to L. Alaoglu and P. Erdős [4] and the remark that

$$
\frac{\sigma(\varphi(n))}{\varphi(n)} \geq \frac{\sigma(\varphi(n))}{n} .
$$

Therefore, (2.25) is true. Inequalities (2.27) are consequences of (2.15).
Remark 2.10. The exact value of k is not known. A. Makovski and A. Schinzel [3] have shown that

$$
\begin{equation*}
k \leq \frac{1}{2}+\frac{1}{2^{34}-4} \tag{2.30}
\end{equation*}
$$

and conjectured an inequality (which is the famous Makowski-Schinzel conjecture; see, e.g., [3,4]), namely:

$$
\begin{equation*}
\frac{\sigma(\varphi(n))}{n} \geq \frac{1}{2} \text { for all } n \geq 1 \tag{2.31}
\end{equation*}
$$

If (2.31) is true, then we get $k \geq \frac{1}{2}$. We know that $k>0$, and even that $k>\frac{1}{39.4}$, due to K. Ford (see [3]).

The next result involves the normal order of magnitude of functions. Recall that we say that the the normal order of magnitude of arithmetical function $f(n)$ is $g(n)$ if for every $\varepsilon>0$, one has

$$
\begin{equation*}
(1-\varepsilon) g(n)<f(n)<(1+\varepsilon) g(n) \tag{2.32}
\end{equation*}
$$

for almost all integer n (i.e. the set of integers not satisfying (2.32) has density zero). Thus $f(n) \sim g(n)$ as $n \rightarrow \infty$, excepting $o(n)$ integers.

Theorem 2.11. The normal order of magnitude of $\log \log V(n)$ is

$$
\begin{equation*}
(1+\log 2) \cdot \log \log n \tag{2.33}
\end{equation*}
$$

The same is true for $\log \log T(n)$.
Proof. We shall use the following lemma.
Lemma 2.12. If $x_{n}, y_{n}>0$ and $x_{n} \sim y_{n}(n \rightarrow \infty)$, where $y_{n} \rightarrow \infty$, then $\log x_{n} \sim \log y_{n}$.
Indeed, as $\frac{x_{n}}{y_{n}} \rightarrow 1$, we get $\log \left(\frac{x_{n}}{y_{n}}\right) \rightarrow 0$, so $\log x_{n}-\log y_{n} \rightarrow 0$, giving $\frac{\log x_{n}-\log y_{n}}{\log y_{n}} \rightarrow 0$. $0=0$, so $\frac{\log x_{n}}{\log y_{n}} \rightarrow 1$.

By Theorem 4 of [2], the above Lemma implies

$$
\begin{equation*}
\log \log V(n) \sim \log \log T(n) \tag{2.34}
\end{equation*}
$$

Therefore, it will be sufficient to prove the result for $\log \log T(n)$. As $T(n)=n^{d(n) / 2}$, we get

$$
\begin{equation*}
\log \log T(n)=\log \frac{d(n)}{2}+\log \log n \tag{2.35}
\end{equation*}
$$

By a classical result of G. H. Hardy and S. Ramanujan (see [4]), the normal order of magnitude of $\log d(n)$ is $(\log 2) \cdot \log \log n$. Clearly, the same is true for $\log \frac{d(n)}{2}$, therefore by (2.35) the result follows.

Theorem 2.13. i) If $n \geq 6$ is even, then

$$
\begin{equation*}
V(n) \geq 3(n+1)(n+2) . \tag{2.36}
\end{equation*}
$$

There is equality only if $n=2 p$, where $p \geq 3$ is a prime.
ii) If $n \geq 12$ is divisible by 4 , then

$$
\begin{equation*}
V(n) \geq \frac{15}{4} \cdot(n+1)(n+2)(n+4) \tag{2.37}
\end{equation*}
$$

There is equality only if $n=4 p$, where $p \geq 3$ is a prime.

Proof. i) If $n \geq 6$ is even, then $1,2, \frac{n}{2}, n$ are distinct divisors of n, so

$$
V(n) \geq(1+1)(2+1) \cdot\left(\frac{n}{2}+1\right)(n+1)=3(n+1)(n+2)
$$

There is equality iff there are no other divisors, i.e., when $\frac{n}{2}=p$ is a prime.
ii) $1,2, \frac{n}{2}, \frac{n}{4}, n$ are distinct divisors. The proof is similar to the case i).

Corollary 2.14. It holds true that:

1) $\lim _{n \rightarrow \infty} \sup \frac{V(n-1)}{V(n)}=+\infty ; \lim _{n \rightarrow \infty} \sup \frac{V(n+1)}{V(n)}=+\infty$
2) $\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \sup \frac{V(p-1)}{p^{2}}=+\infty ; \lim _{p \rightarrow \infty} \sup \frac{V(p+1)}{p^{2}}=+\infty$
3) $\lim _{p \rightarrow \infty} \frac{V(p-1)}{p^{2}}=3$,
if one assumes the existence of infinitely many primes p of the form $p=2 q+1$, where q is a prime.
4) $\lim _{n \rightarrow \infty} \sup \frac{V(p+1)}{p^{2}}=3$,
if one assumes the existence of infinitely many primes p of the from $p=2 q-1, q$ prime.
Proof. 1) Let $n=p \geq 7$ be a prime. Then $V(p)=2 \cdot(p+1)$, while by (2.36) one has $V(p-1) \geq 3 p(p+1)$. Similarly, for $p \geq 5$ one has $V(p+1) \geq 3(p+2)(p+3)$, so (2.38) follows.
5) Let p be a prime of the form $4 k+1$. Then, by (2.37) one has

$$
V(p-1)=V(4 k) \geq \frac{15}{4} \cdot(k+1)(k+2)(k+4), \quad(k \geq 3)
$$

so

$$
\frac{V(p-1)}{p^{2}} \geq \frac{15(k+1)(k+2)(k+4)}{4 \cdot(4 k+1)^{2}} \rightarrow \infty \text { as } k \rightarrow \infty
$$

The similar proof applies to $\frac{V(p+1)}{p^{2}}$.
3) As

$$
\frac{V(p-1)}{p^{2}} \geq \frac{3 p(p+1)}{p^{2}}=3 \cdot\left(1+\frac{1}{p}\right)
$$

clearly

$$
\lim _{p \rightarrow \infty} \frac{V(p-1)}{p^{2}} \geq 3
$$

On the other hand, if $p=2 q+1$, then $V(p-1)=3 \cdot(2 q+1)(2 q+2)$, so

$$
\frac{V(p-1)}{p^{2}}=\frac{3 \cdot(2 q+1)(2 q+2)}{2(q+1)^{2}} \rightarrow 3
$$

as $q \rightarrow \infty$. This proves (2.40).
4) The proof of (2.41) is similar.

Remark 2.15. The existence of infinitely many primes p of the form $p=2 q+1$ (or $p=2 q-1$) is one of the difficult open problems of Number theory (see $[3,4]$).

The number $V(n-1)$ behaves differently as $V(n)$, it was shown by the case $n=$ prime. As

$$
\frac{\log \log (n-1)}{\log (n-1)} \sim \frac{\log \log n}{\log n}
$$

by (2.24) of [2], we can write also

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \log \log V(n-1) \frac{\log \log n}{\log n}=\log 2 \tag{2.42}
\end{equation*}
$$

One has:
Theorem 2.16. It holds true that:

$$
\begin{equation*}
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \log \log V(p-1) \cdot \frac{\log \log p}{\log p}>0 \tag{2.43}
\end{equation*}
$$

Proof. By the left-hand side of relation (5) of [2] we can write

$$
\begin{equation*}
\log \log V(p-1)>\log d(p-1)+\log \log (\sqrt{p-1}+1) \tag{2.44}
\end{equation*}
$$

Now, by a result of K. Prachar [3] there exists $c>0$ such that

$$
\begin{equation*}
\log d(q-1)>c \cdot \frac{\log q}{\log \log q} \tag{2.45}
\end{equation*}
$$

for infinitely many primes q. This combined with (2.44) implies (2.43).
Theorem 2.17. The series $\sum_{n=1}^{\infty} \frac{1}{V(n)}$ is divergent, while $\sum_{n=1}^{\infty} \frac{1}{(V(n))^{1+a}}$ is convergent for any $a>0$.

One has the asymptotic formula

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{V(n)}=\frac{1}{2} \log \log x+O(1) \tag{2.46}
\end{equation*}
$$

Proof. As $V(p)=2(p+1)$, and

$$
\sum_{n=1}^{\infty} \frac{1}{V(n)}>\frac{1}{2} \sum_{p \text { prime }} \frac{1}{p+1}>\frac{1}{4} \sum_{p \text { prime }} \frac{1}{p}
$$

the divergence follows by the known divergence of the series $\sum_{p} 1 / p$.
Let now consider the series of general term $\frac{1}{(V(n))^{1+a}}$. Clearly,

$$
\sum_{n \geq 1} \frac{1}{(V(n))^{1+a}}=\sum_{p \text { prime }} \frac{1}{(2(p+1))^{1+a}}+\sum_{n \text { composite }} \frac{1}{(V(n))^{1+a}}
$$

Now, as $\frac{1}{(2(p+1))^{1+a}}<\frac{1}{p^{1+a}}$, remark that the series $\sum_{p \text { prime }} \frac{1}{p^{1+a}}$ is known to be convergent. This follows, e.g., by the remark that, if p_{k} denotes the k-th prime, then $p_{k}>k$, so

$$
\sum_{k \geq 1} \frac{1}{p_{k}^{1+a}}<\sum_{k \geq 1} \frac{1}{k^{1+a}}=\zeta(1+a)<\infty
$$

for $a>0$.

On the other hand,

$$
\begin{aligned}
\sum_{n \text { composite }} \frac{1}{(V(n))^{1+a}} & \leq \sum_{n \text { composite }} \frac{1}{(\sqrt{n}+1)^{d(n)(1+a)}} \leq \sum_{n} \frac{1}{(\sqrt{n}+1)^{3(1+a)}} \\
& <\sum_{n} \frac{1}{n^{3(1+a) / 2}}<\infty \text { as } 3(1+a) / 2>1
\end{aligned}
$$

For the proof of (2.46) remark that

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{V(n)}=\frac{1}{2} \sum_{\substack{p \leq x \\ p \text { prime }}} \frac{1}{p+1}+\sum_{\substack{n \leq x \\ n \text { composite }}} \frac{1}{V(n)} \tag{2.47}
\end{equation*}
$$

As above, it is immediate that the second term of (2.47) is $<C$, where C is a positive constant. For the first term of (2.47) however, we will use the known fact that

$$
\begin{equation*}
\sum_{p \leq x} \frac{1}{p}=\log \log x+O(1) \tag{2.48}
\end{equation*}
$$

(see [4]). Now

$$
\sum_{p \leq x}\left(\frac{1}{p}-\frac{1}{p+1}\right)=\sum_{p \leq x} \frac{1}{(p(p+1))}<\sum_{p \leq x} \frac{1}{p^{2}}<\sum_{p \leq x} \frac{1}{n^{2}}<\pi^{2} / 6
$$

so

$$
\sum_{p \leq x} \frac{1}{p+1}=\sum_{p \leq x} \frac{1}{p}+O(1)
$$

and by (2.47) the result follows.

References

[1] Mitrinovic, D. S. (1970). Analytic Inequalities. Springer Verlag.
[2] Sándor, J. (2021). On Vandiver's arithmetical function - I. Notes on Number Theory and Discrete Mathematics, 27(3), 29-38.
[3] Sándor, J., \& Crstici, B. (2005). Handbook of Number Theory, II, Springer.
[4] Sándor, J., Mitrinovic, D. S., \& Crstici, B. (2006). Handbook of Number Theory, I, Springer.

