Notes on Number Theory and Discrete Mathematics

Print ISSN 1310-5132, Online ISSN 2367-8275

2022, Volume 28, Number 4, 692–697

DOI: 10.7546/nntdm.2022.28.4.692-697

On a generalization of a function of J. Sándor

V. Siva Rama Prasad 1 and P. Anantha Reddy 2

¹ Professor (Retired), Department of Mathematics, Osmania University Hyderabad, Telangana-500007, India e-mail: vangalasrp@yahoo.co.in

> ² Government Polytechnic Mahabubnagar, Telangana-509001, India e-mail: ananth_palle@yahoo.co.in

Received: 31 May 2021 **Revised:** 25 October 2022 **Accepted:** 27 October 2022 **Online First:** 28 October 2022

Abstract: Using a strictly increasing function $\alpha:[1,\infty)\to[1,\infty)$, we define below (see(1.1) and (1.2)) two functions $S_\alpha:[1,\infty)\to\mathbb{N}$ and $S_\alpha^*:[1,\infty)\to\mathbb{N}$, where \mathbb{N} is the set of all natural numbers. The functions S_α and S_α^* respectively generalize the functions S_α and S_α^* introduced and studied by J. Sándor [5] as well as the functions S_α and S_α^* considered by N. Anitha [1]. In this paper we obtain several properties of S_α and S_α^* - some of which give the results of Sándor [5] and of Anitha [1] as special cases.

Keywords: Sándor function, Riemann integrable, Riemann–Stieltjes integrable with respect to a function, Prime numbers, Asymptotic result.

2020 Mathematical Subject Classification: Primary: 11A25, 11N37; Secondary: 26A42.

1 Introduction

Suppose $\alpha:[1,\infty)\to[1,\infty)$ is a strictly increasing function. For any real number x, define the functions

$$S_{\alpha}(x) = \min\{m \in \mathbb{N} : \alpha(m) > x\} \tag{1.1}$$

and

$$S_{\alpha}^{*}(x) = \max\{m \in \mathbb{N} : \alpha(m) \le x\},\tag{1.2}$$

where \mathbb{N} is the set of all natural numbers.

Clearly, both $S_{\alpha}(x)$ and $S_{\alpha}^{*}(x)$ are defined for $x \geq 1$, with their values in \mathbb{N} . Also if $x = \alpha(k)$ for some $k \in \mathbb{N}$, then $S_{\alpha}(x) = S_{\alpha}^{*}(x) = k$; and if $\alpha(k) < x < \alpha(k+1)$ for some $k \in \mathbb{N}$, then $S_{\alpha}(x) = k+1$ while $S_{\alpha}^{*}(x) = k$, so that

$$S_{\alpha}(x) = \left\{ \begin{array}{ll} S_{\alpha}^{*}(x), & \text{if } x = \alpha(k) \text{ for some } k \in \mathbb{N} \\ S_{\alpha}^{*}(x) + 1, & \text{if } \alpha(k) < x < \alpha(k+1) \text{ for some } k \in \mathbb{N}. \end{array} \right.$$

Hence

$$S_{\alpha}^{*}(x) \le S_{\alpha}(x) \le S_{\alpha}^{*}(x) + 1 \quad \text{for } x \in [1, \infty). \tag{1.3}$$

Examples:

(a) If F(x) = [x]! for $x \ge 1$, then note that

$$S_F(x) = S(x) \text{ and } S_F^*(x) = S_*(x),$$
 (1.4)

the two functions introduced and studied by J. Sándor [5], who called S(x) as "the additive analogue of the Smarandache function" and $S_*(x)$ as the "dual" of S(x).

(b) If $E(x) = e^x$ for $x \ge 1$, then we observe that

$$S_E(x) = G(x) \text{ and } S_E^*(x) = G_*(x),$$
 (1.5)

the two functions considered by N. Anitha [1].

(c) If I(x) = x for $x \ge 1$, then

$$S_I^*(x) = [x], (1.6)$$

showing that $S_{\alpha}^{*}(x)$ is a generalization of the greatest integer function.

(d) If $I_r(x) = x^r$ for $x \ge 1$ and r > 0, then

$$S_{I_r}^*(x) = [x^{\frac{1}{r}}]. {1.7}$$

In Section 2 of this note, we show that the basic properties proved for $S_*(x)$ in [5] and for $G_*(x)$ in [1] also hold for $S_{\alpha}^*(x)$, in addition to some new discussed here. An asymptotic result proved for $S_{\alpha}^*(x)$ (in Section 3) gives an easy proof for the similar result for $G_*(x)$ established in [1].

2 Properties of $S^*_{\alpha}(x)$

In the rest of the paper $\alpha:[1,\infty)\to[1,\infty)$ is a strictly increasing function and $S^*_{\alpha}(x)$ is the corresponding function defined in (1.2).

Note that, in view of (1.3), it suffices to study $S_{\alpha}^{*}(x)$.

Theorem 2.1. (A) $S_{\alpha}^*: [1, \infty) \to \mathbb{N}$ is surjective and monotonic increasing. (B) For $x \ge \alpha(9)$ the interval $\left(S_{\alpha}^*(x), \frac{4}{3}S_{\alpha}^*(x)\right)$ has at least one prime. In other words,

$$\pi\left(\frac{4}{3}S_{\alpha}^{*}(x)\right) - \pi\left(S_{\alpha}^{*}(x)\right) \ge 1 \, \text{for } x \ge \alpha(9),$$

where $\pi(t)$ is the number of primes not exceeding $t \geq 1$

Proof. (A) Given $k \in \mathbb{N}$, then for any $x \in [\alpha(k), \alpha(k+1))$ we have $S_{\alpha}^*(x) = k$, proving S_{α}^* is a surjection.

If $x,y \in [1,\infty)$ with x < y, then there exist $k,l \in \mathbb{N}$ such that $x \in [\alpha(k),\alpha(k+1))$ and $y \in [\alpha(l),\alpha(l+1))$. Since α is strictly increasing it follows that $k \leq l$ giving $S_{\alpha}^*(x) \leq S_{\alpha}^*(y)$.

(B) If $x \geq \alpha(9)$, then, by (A) of the theorem, there is a $n \in \mathbb{N}$ such that $S_{\alpha}^*(x) = n$ and that $n = S_{\alpha}^*(x) \geq S_{\alpha}^*(\alpha(9)) = 9$. That is,

if
$$x \ge \alpha(9)$$
, then there is $n \in \mathbb{N}$ with $S_{\alpha}^*(x) = n$ and $n \ge 9$. (2.1)

Rohrbach and Weiss [4] showed that for any integer $n \ge 118$ the open interval $\left(n, \frac{14}{13}n\right)$ has at least one prime number. Also, by a direct verification, one finds that for any integer n with $9 \le n < 118$ the open interval $\left(n, \frac{4}{3}n\right)$ has at least one prime. Since $\frac{14}{13} < \frac{4}{3}$, it follows that

$$\left(n, \frac{4}{3}n\right)$$
 has at least one prime number for any integer $n \ge 9$. (2.2)

From (2.1) and (2.2), part (B) of the theorem follows.

Remark 2.2. We note that in the special case of $\alpha(x) = F(x) = [x]!$, it has been proved in [3], using estimates for $\ln(n!)$ that the open interval $(S(x), S(x^2))$ has at least one prime for $x > \sqrt{13!}$.

Theorem 2.3. (A) If $D = \{\alpha(k) : k \in \mathbb{N}\}$, then at each point of D the function $S_{\alpha}^*(x)$ is right-continuous but not left-continuous; also $S_{\alpha}^*(x)$ is continuous elsewhere in $[1, \infty)$. More precisely, $S_{\alpha}^*(x)$ is continuous on $[1, \infty) - D$.

(B) On any bounded interval [a,b], the function $S_{\alpha}^{*}(x)$ is Riemann integrable and that $\int_{a}^{b} S_{\alpha}^{*}(x) dx$ is as given in (2.4).

Proof. (A) Observe that

$$S_{\alpha}^*\left(\alpha(k)+0\right) = \lim_{\substack{x \to \alpha(k) \\ x > \alpha(k)}} S_{\alpha}^*(x) = k \text{ and } S_{\alpha}^*\left(\alpha(k)-0\right) = \lim_{\substack{x \to \alpha(k) \\ x < \alpha(k)}} S_{\alpha}^*(x) = k-1,$$

which shows that $S_{\alpha}^*(x)$ is discontinuous at each $\alpha(k)$. Also since $S_{\alpha}^*(\alpha(k)) = k$, we get $S_{\alpha}^*(\alpha(k)+0) = S_{\alpha}^*(\alpha(k)) = k$ and $S_{\alpha}^*(\alpha(k)-0) \neq S_{\alpha}^*(\alpha(k))$. That is, $S_{\alpha}^*(x)$ is right-continuous at each $\alpha(k)$ and not left-continuous at any $\alpha(k)$. Clearly, it is continuous elsewhere.

(B) If [a, b] is a bounded interval, then it has only a finite number of $\alpha(k)$, (since α is strictly increasing) which are discontinuities of $S_{\alpha}^{*}(x)$. Therefore, by Lebesgue's criterion (Theorem 7.48 of [2], p. 171), S_{α}^{*} is Riemann integrable on [a, b].

If $[a,b]\subseteq [\alpha(k),\alpha(k+1))$ for some $k\in\mathbb{N}$, then $S_{\alpha}^*(x)=k$ for all $x\in [a,b]$ so that

$$\int_{a}^{b} S_{\alpha}^{*}(x)dx = k(b-a). \tag{2.3}$$

If [a,b] is any bounded interval with $a\in [\alpha(k),\alpha(k+1))$ and $b\in [\alpha(l),\alpha(l+1))$ for $k,l\in \mathbb{N}$, then

$$\int_{a}^{b} S_{\alpha}^{*}(x)dx = \int_{a}^{\alpha(k+1)} S_{\alpha}^{*}(x)dx + \sum_{t=1}^{l-k-1} \int_{\alpha(k+t)}^{\alpha(k+t+1)} S_{\alpha}^{*}(x)dx + \int_{\alpha(l)}^{b} S_{\alpha}^{*}(x)dx
= k\{\alpha(k+1) - a\} + \sum_{t=1}^{l-k-1} (k+t)\{\alpha(k+t+1) - \alpha(k+t)\} + l\{b - \alpha(l)\}, \quad (2.4)$$

wherein we used (2.3).

Now we show that certain real functions are Riemann–Stieltjes integrable with respect to S_{α}^* on any bounded interval [a,b].

Theorem 2.4. Suppose f is a bounded real-valued function defined on [a,b] such that it is left-continuous at each $\alpha(k) \in D_0 \doteq D \cap [a,b]$. Then f is Riemann–Stieltjes integrable with respect to S^*_{α} on [a,b] and

$$\int_{a}^{b} f(x)d\left(S_{\alpha}^{*}(x)\right) = \sum_{\alpha(k) \in D_{0}} f\left(\alpha(k)\right).$$

Trivially, the theorem holds if f *is continuous on* [a, b].

Proof. Function f is left-continuous at each $\alpha(k) \in D_0$ (by hypothesis) and S_{α}^* is right-continuous at each $\alpha(k) \in D_0$ (by Theorem 2.3 (A)). Therefore, by Theorem 7.11 of [2] (p. 148–149), f is Riemann–Stieltjes integrable with respect to S_{α}^* on [a, b] and the identity of the theorem holds. \square

Corollary 2.5. If f is a bounded real-valued function defined on [a, b] and is left-continuous at each integer in [a, b], then f is Riemann–Stieltjes integrable with respect to [x] and

$$\int_{a}^{b} f(x)d([x]) = \sum_{k \in \mathbb{N} \cap [a,b]} f(k).$$

Proof. Taking $\alpha(x) = I(x) \equiv x$ in Theorem 2.4, the Corollary follows in view of (1.6).

Remark 2.6. Corollary 2.5 is well-known (for instance, see [2], Theorem 7.12., p. 149).

Remark 2.7. If α is also continuous on [a,b], then by Theorem 2.4, α is Riemann–Stieltjes integrable with respect to S^*_{α} on [a,b] and

$$\int_{a}^{b} \alpha(x)d\left(S_{\alpha}^{*}(x)\right) = \sum_{\alpha(k) \in D_{0}} \alpha\left(\alpha(k)\right). \tag{2.5}$$

Taking, for instance $\alpha(x) = I_r(x) = x^r$ in (2.5), we get in view of (1.7), that

$$\int_{a}^{b} x^{r} d\left(\left[x^{\frac{1}{r}}\right]\right) = \sum_{\substack{a \le k^{r} \le b \\ \overline{k} \in \mathbb{N}}} k^{r^{2}} = \sum_{\substack{a^{\frac{1}{r}} \le k \le b^{\frac{1}{r}} \\ \overline{k} \in \mathbb{N}}} k^{r^{2}}.$$
 (2.6)

As a particular case of (2.6), we have

$$\int_{1}^{9} x^{2} d\left(\left[\sqrt{x}\right]\right) = \sum_{1 \le k \le 3} k^{4} = 98.$$
 (2.7)

Again, taking $\alpha(x) = E(x) = e^x$ for $x \in [e, \infty)$ in (2.5), we get for any $[a, b] \subseteq [e, \infty)$, that

$$\int_{a}^{b} e^{x} d\left(G_{*}(x)\right) = \sum_{\substack{a \le e^{k} \le b \\ k \in \mathbb{N}}} e^{e^{k}}.$$
(2.8)

3 An asymptotic result

In addition to the strictly increasing nature, if the function α is also continuous on $[1, \infty)$ with range $R = \alpha([1, \infty))$, then it is easy to see that $\alpha: [1, \infty) \to R$ is a bijection and hence has inverse α^{-1} . Moreover, by Theorem 4.53 of [2] (p. 95), α^{-1} is also continuous and strictly increasing on R.

Theorem 3.1. If α is continuous and strictly increasing on $[1, \infty)$, then $S_{\alpha}^*(x) \sim \alpha^{-1}(x)$ as $x \to \infty$.

Proof. For any $x \ge 1$ there is a unique $n \in \mathbb{N}$ such that $\alpha(n) \le x < \alpha(n+1)$. Then $S_{\alpha}^*(x) = n$ and $n \le \alpha^{-1}(x) < n+1$. Therefore

$$\frac{n}{n+1} < \frac{S_{\alpha}^*(x)}{\alpha^{-1}(x)} \le \frac{n}{n},$$

which gives

$$\lim_{n \to \infty} \frac{n}{n+1} < \lim_{x \to \infty} \frac{S_{\alpha}^*(x)}{\alpha^{-1}(x)} \le 1,$$

since $n \to \infty$ as $x \to \infty$. This proves the theorem.

Corollary 3.2. If α is continuous and strictly increasing on $[1, \infty)$, then $S_{\alpha}(x) \sim \alpha^{-1}(x)$ as $x \to \infty$.

Proof. Immediate from (1.3) and Theorem 3.1.

Corollary 3.3. ([1], Equation (2.1)) $G_*(x) \sim \ln x$ as $x \to \infty$.

Proof. Taking $\alpha(x) = E(x) = e^x$ for $x \ge 1$ in Theorem 3.1, the Corollary follows in view of (1.5) and the fact $E^{-1}(x) = \ln x$ for $x \ge e$.

Remark 3.4. Since $I^{-1}(x)=x$ and $I_r^{-1}(x)=x^{\frac{1}{r}}$ for $x\geq 1$, we get two trivial asymptotic results $S_I^*(x)=[x]\sim x$ and $S_{I_r}^*(x)=[x^{\frac{1}{r}}]\sim x^{\frac{1}{r}}$ as $x\to\infty$, from Theorem 3.1.

Remark 3.5. Since F(x) = [x]! for $x \ge 1$, is not continuous, Theorem 3.1 is not applicable for $S_*(x)$, given in (1.4). However Sándor [5] proved that $S_*(x) \sim \frac{\log x}{\log \log x}$ as $x \to \infty$, using Stirling formula.

Acknowledgements

The authors would like to thank the referees for their valuable suggestions.

References

- [1] Anitha, N., (2005). A note on Sándor Type functions. *Journal of Inequalities in Pure and Applied Mathematics*, 6(4), Article 127.
- [2] Apostol, T. M. (1974). *Mathematical Analysis* (Second Edition). Addison Wesley Publishing Company.
- [3] Mincu, G., & Panaitopol, L. (2006). Properties of the Sándor function. *Notes on Number Theory and Discrete Mathematics*, 12(1), 21–24.
- [4] Rohrbach, H., & Weiss, J. (1964). Zum finiten Fall des Bertrandschen Postulats. *Journal für die reine und angewandte Mathematik*, 214/215, 432–440.
- [5] Sándor, J. (2001). On an additive analogue of the function S. Notes on Number Theory and Discrete Mathematics, 7(3), 91–95.