Notes on Number Theory and Discrete Mathematics Print ISSN 1310-5132, Online ISSN 2367-8275

2022, Volume 28, Number 3, 575-580

DOI: 10.7546/nntdm.2022.28.3.575-580

On a new additive arithmetic function related to a fixed integer

Mihoub Bouderbala¹ and Meselem Karras²

¹ Department of Mathematics, University of Djilali Bounaama FIMA Laboratory, Ain Defla, Khemis Miliana, Algeria e-mails: mihoub75bouder@gmail.com, m.bouderbala@univ-dbkm.dz

> ² Department of Mathematics, University of Djilali Bounaama FIMA Laboratory, Ain Defla, Khemis Miliana, Algeria e-mail: m.karras@univ-dbkm.dz

Received: 2 April 2022 **Revised:** 20 September 2022 **Accepted:** 21 September 2022 **Online First:** 27 September 2022

Abstract: The main purpose of this paper is to define a new additive arithmetic function related to a fixed integer $k \ge 1$ and to study some of its properties. This function is given by

$$f_{k}\left(1\right)=0 \text{ and } f_{k}\left(n\right)=\sum_{p^{lpha}\parallel n}\left(k,lpha
ight),$$

such that (a, b) denotes the greatest common divisor of the integers a and b.

Keywords: Arithmetic function, Greatest common divisor. **2020 Mathematics Subject Classification:** 11N37, 11A25.

1 Introduction

For all integers $a, b \ge 1$, we denote by gcd(a, b) = (a, b) the largest common divisor of the integers a and b. Let

$$n = \prod_{i=1}^{r} p_i^{\alpha_i}$$

be the prime factorization of the positive integer n > 1. In [1] Atanassov defined and studied the following function:

$$\underline{mult}(n) = \prod_{i=1}^{r} p_i, \quad \underline{mult}(1) = 1,$$

and in [5], Andrei V. Shubin defined the following two additive arithmetic functions

$$\Omega(k,n) = \sum_{\substack{p^{\alpha} || n \\ \alpha \le k}} \alpha \text{ and } \omega(k,n) = \sum_{\substack{p^{\alpha} || n \\ \alpha > k}} 1.$$

$$(1)$$

The two functions $\Omega(k,n)$ and $\omega(k,n)$ are generalizations of the well-known functions $\Omega(n)$ and $\omega(n)$ are respectively the number of prime divisors and the number of distinct prime divisors of n. The definition and study of the properties of new arithmetic functions is a topic of interest to many researchers (see for example, [2–4]).

In this paper, a new additive arithmetic function will be defined and some of its basic properties are investigated.

2 Main results

Let k be a positive integer. Then we define f_k to be the arithmetic function such that $f_k(1) = 0$ and

$$f_k(n) = \sum_{p^{\alpha} \parallel n} (k, \alpha).$$

We note that the function $f_k(n)$ is equal to the function $\omega(n)$ or to the function $\Omega(n)$ for some particular cases of the integer k.

Indeed, let
$$n = \prod_{i=1}^r p_i^{\alpha_i}$$
. If $k = 1$, then $(k, \alpha_i) = 1$ for all $(1 \le i \le r)$. Thus

$$f_1(n) = \sum_{p_i|n} (1, \alpha_i) = \sum_{p_i|n} 1 = \omega(n), \text{ for all } n,$$

and if $\alpha_i \geq 2$ for all $1 \leq i \leq r$, then

$$f_1(n) = \sum_{\substack{p_i \mid n \\ \alpha_i > 1}} 1 = \omega(1, n).$$

If $k = \text{lcm}(\alpha_1, \alpha_2, \dots, \alpha_r)$, then $(k, \alpha_i) = \alpha_i$ for all $(1 \le i \le r)$. Thus

$$f_k(n) = \sum_{p_i|n} (k, \alpha_i) = \sum_{p_i|n} \alpha_i = \Omega(n),$$

and it can also be noticed that $\alpha_i \leq k$, then

$$f_k(n) = \sum_{\substack{p_i \mid n \\ \alpha_i \le k}} \alpha_i = \Omega(k, n).$$

Let m be a positive integer such that $m=\prod\limits_{j=1}^sq_j^{\beta_j}$, its canonical decomposition. If (m,n)=1 (i.e., $q_j\neq p_i$ for all $1\leq i\leq r$ and $1\leq j\leq s$), then for all $k\in\mathbb{Z}_{\geq 1}$

$$f_k(nm) = \sum_{p_i|n} (k, \alpha_i) + \sum_{q_j|n} (k, \beta_j) = f_k(n) + f_k(m).$$

On the other hand, if p_1, p_2 and p_3 are different primes, then for all $k \in \mathbb{Z}_{\geq 1}$:

$$f_k(p_1p_2^{k+1}p_3) = (k,1) + (k,k+1) + (k,1) = 3,$$

while

$$f_k(p_1p_2^k) + f_k(p_2p_3) = (k,1) + (k,k) + (k,1) + (k,1) = k+3.$$

Therefore, it can be shown that the function f_k is additive but not completely additive.

We know that for all α_i $(1 \le i \le r)$ and for all $k \in \mathbb{Z}_{\ge 1}$, we have

$$1 \le (k, \alpha_i) \le \alpha_i$$

which implies that

$$\sum_{p_i|n} 1 \le \sum_{p_i|n} (k, \alpha_i) \le \sum_{p_i|n} \alpha_i,$$

i.e.,

$$\omega(n) \le f_k(n) \le \Omega(n) \text{ for all } n > 1.$$
 (2)

Theorem 2.1. For any integer $k \in \mathbb{Z}_{\geq 1}$, $f_k(n) = \omega(n)$ if and only if n is a square-free positive integer.

Proof. Clearly, if n is a square-free positive integer, we have $n = \prod_{i=1}^r p_i^1$. i.e., $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 1$. Then for $k \in \mathbb{Z}_{\geq 1}$, it comes that

$$f_k(n) = \sum_{p_i|n} (k,1) = \sum_{p_i|n} 1 = \omega(n).$$

Conversely, if n is a positive integer such that

$$\forall k \in \mathbb{Z}_{>1}, f_k(n) = \omega(n),$$

then $(k, \alpha_i) = 1$ for all $k \in \mathbb{Z}_{\geq 1}$, and that is true if $\alpha_i = 1$ for all $1 \leq i \leq r$, i.e., only if n is a square-free number.

For a fixed integer $k \in \mathbb{Z}_{\geq 1}$ there is an infinity of positive integers n where $f_k(n) = \omega(n)$. For example if k an odd integer, then all $n = \prod_{i=1}^r p_i^{\alpha_i}$ with α_i are even for all $1 \leq i \leq r$ the property is true.

Corollary 2.1. For any integer $k \in \mathbb{Z}_{>1}$, and for every integer n > 1

$$f_k\left(\underline{mult}\left(n\right)\right) = \omega(n).$$

Theorem 2.2. For any integer $n = \prod_{i=1}^r p_i^{\alpha_i}$, such that $\ell = \text{lcm}(\alpha_1, \alpha_2, \dots, \alpha_r)$, the function $f_k(n)$ of the variable k is ℓ -periodic. In other words,

$$f_{k+\ell}(n) = f_k(n)$$
, for all $k \in \mathbb{Z}_{\geq 1}$.

Proof. Let $\ell = \text{lcm}(\alpha_1, \alpha_2, \dots, \alpha_r)$. So for all α_i $(1 \le i \le r)$ there exists λ_i , such that $\ell = \lambda_i \alpha_i$. It follows that

$$(\alpha_i, k + \ell) = (\alpha_i, k + \lambda_i \alpha_i) = (\alpha_i, k) \quad (1 \le i \le r),$$

by this last property we get

$$f_{k+\ell}(n) = \sum_{p_i|n} (k+\ell, \alpha_i) = \sum_{p_i|n} (k, \alpha_i) = f_k(n).$$

Theorem 2.3. For any integer $n = \prod_{i=1}^r p_i^{\alpha_i}$, such that $k = \gcd(\alpha_1, \alpha_2, \dots, \alpha_r)$, we have

$$\frac{f_k(n)}{k} = \omega(n).$$

Proof. Firstly, as we have $k=\gcd{(\alpha_1,\alpha_2,\ldots,\alpha_r)}$ there exist r positive integers $(\alpha_1',\alpha_2',\ldots,\alpha_r')$ such that $\alpha_i=k\alpha_i'$ $(1\leq i\leq r)$. This shows that

$$(k, \alpha_i) = k \quad (1 \le i \le r),$$

from which, we have for every integer n > 1,

$$f_k(n) = \sum_{p_i|n} (k, \alpha_i) = \sum_{p_i|n} k = k\omega(n).$$

Theorem 2.4. Let k_1 and k_2 be positive integers such that k_1 is a multiple of k_2 . For any integer $n = \prod_{i=1}^r p_i^{\alpha_i}$ such that $\left(\frac{k_1}{k_2}, \alpha_i\right) = 1$ $(1 \le i \le r)$. Then

$$f_{k_1}(n) = f_{k_2}(n).$$

Proof. Since k_1 is a multiple of k_2 , then $k_1 = dk_2$ where $d \ge 1$. If $(d, \alpha_i) = 1$ for all $1 \le i \le r$, it comes that

$$(k_1,\alpha_i)=(dk_2,\alpha_i)=(k_2,\alpha_i).$$

Thus

$$f_{k_1}(n) = \sum_{p_i|n} (k_1, \alpha_i) = \sum_{p_i|n} (k_2, \alpha_i) = f_{k_2}(n).$$

Theorem 2.5. Let $k \ge 1$ be an integer. If k is odd, then for every even perfect number n, we have

$$f_k(n) = 2,$$

and if k is even, then for every odd perfect number n (if exists), there exists an integer m such that

$$f_k(n) - f_{k/2}(m) = 1.$$

Proof. We know that every even perfect number n has the form $2^{p-1}(2^p-1)$ where (2^p-1) is a Mersenne prime (therefore, p is prime). So for a prime number p such that $n=2^{p-1}(2^p-1)$ is perfect, we have

$$f_k(n) = f_k(2^{p-1}(2^p - 1))$$

= $f_k(2^{p-1}) + f_k(2^p - 1)$
= $(k, p - 1) + 1$.

The result comes directly if k is odd.

If n is an odd perfect number, then

$$n = p^{4Q+1}m^2,$$

where p is a prime number such that $p \equiv 1 \pmod{4}$ and does not divide Q. Then

$$f_{k}(n) = f_{k}(p^{4Q+1}m^{2})$$

$$= f_{k}(p^{4Q+1}) + f_{k}(m^{2})$$

$$= (4Q+1, k) + \sum_{p^{\alpha}||m} (k, 2\alpha).$$

So, if k even, then

$$f_k(n) = 1 + 2\sum_{p^{\alpha}||m} (k/2, \alpha)$$
$$= 1 + 2f_{k/2}(m).$$

3 Conclusion

In this paper we have defined a new additive arithmetic function related to a fixed integer and studied some of its properties.

We know that

$$\omega(n) \le \frac{\log \tau(n)}{\log 2} \le \Omega(n) \text{ for all } n \ge 1, \tag{3}$$

such that $\tau(n)$ is the number of divisors of n. So, according to (2) it is important to ask ourselves what is the amplitude of the difference

$$\left| f_k(n) - \frac{\log \tau(n)}{\log 2} \right|.$$

This is what can be taken care of later.

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading and valuable suggestions which certainly improved the readability of this paper.

References

- [1] Atanassov, K. (1987). New integer functions, related to φ and σ functions. Bulletin of Number Theory and Related Topics, XI(1), 3–26.
- [2] Atanassov, K., & Sándor, J. (2018). On a new arithmetic function. *Notes on Number Theory and Discrete Mathematics*, 24(1), 3–10.
- [3] Bagdasar, O., & Tatt, R. (2018). On some new arithmetic functions involving prime divisors and perfect powers. *Electronic Notes in Discrete Mathematics*, 70, 9–15.
- [4] Panaitopol, L. (2004). Properties of the Atanassov functions. *Advanced Studies on Contemporary Mathematics*, 8(1), 55–99.
- [5] Shubin, A. V. (2017). Asymptotic behavior of functions $\Omega(k, n)$ and $\omega(k, n)$ related to the number of prime divisors. *Diskretnaya Matematika*, 29(3), 133–143.