Notes on Number Theory and Discrete Mathematics

Print ISSN 1310-5132, Online ISSN 2367-8275

2022, Volume 28, Number 3, Pages 525-532

DOI: 10.7546/nntdm.2022.28.3.525-532

On certain rational perfect numbers, II

József Sándor

Department of Mathematics, Babeş-Bolyai University Cluj-Napoca, Romania

e-mail: jsandor@math.ubbcluj.ro

Received: 4 May 2022 Revised: 31 July 2022

Accepted: 6 August 2022 Online First: 10 August 2022

Abstract: We continue the study from [1], by studying equations of type $\psi(n) = \frac{k+1}{k} \cdot n + a$ $a \in \{0, 1, 2, 3\}$, and $\varphi(n) = \frac{k-1}{k} \cdot n - a$, $a \in \{0, 1, 2, 3\}$ for k > 1, where $\psi(n)$ and $\varphi(n)$ denote the Dedekind, respectively Euler's, arithmetical functions.

Keywords: Arithmetical functions, Dedekind's function, Euler's totient.

2020 Mathematics Subject Classification: 11A25.

1 Introduction

Let $\psi(n)$ denote Dedekind's arithmetical function, defined for the prime factorization of $n=\prod p^a>1$ as

$$\psi(n) = n \cdot \prod_{p|n} \left(1 + \frac{1}{p} \right) = \prod_{p^a||n} (p^a + p^{a-1}). \tag{1}$$

Euler's totient can be defined similarly, namely

$$\varphi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p} \right) = \prod_{p^a||n} (p^a - p^{a-1}).$$
(2)

In the first part ([1]) we have considered equations of type $\sigma(n) = \frac{k+1}{k} \cdot n + a$, where $a \in \{0, 1, 2, 3\}$, and k a positive integer, with $\sigma(n)$ denoting the sum of divisors of n.

The aim of this paper is to study the similar equations for Dedekind's arithmetical function $\psi(n)$, as well as the similar equations

$$\varphi(n) = \frac{k-1}{k} \cdot n - a$$

for Euler's totient function $\varphi(n)$.

2 Auxiliary results

Lemma 1. For any positive integers A, B one has

$$\psi(A \cdot B) \ge A \cdot \psi(B) \tag{3}$$

and

$$\varphi(A \cdot B) \le A \cdot \psi(B). \tag{4}$$

There is equality in (3) and (4), iff A = 1 or for any prime divisor p of A, p is prime divisor of B, too. (i.e., $p \mid A \Rightarrow p \mid B$).

This lemma is well-known (see e.g. [3]), and follows from (1) and (2).

Lemma 2.

- (i) $\psi(n) = n + 1$ iff n = prime;
- (ii) $\psi(n) = n + 2 \text{ iff } n = 4;$
- (iii) $\psi(n) = n + 3 \text{ iff } n = 9;$
- (iv) $\psi(n) = n + 4 \text{ iff } n = 8.$

Proof. Let $n = \prod p^a > 1$. Then $\psi(n) = \prod p^{a-1} \cdot (p+1) \ge \prod (p^a+1) \ge \prod p^a + 1 = n+1$, by $(x_1+1) \dots (x_r+1) \ge x_1 \dots x_r + 1$, with equality only for r=1, i.e., when $n=p^a$ and a=1, i.e., when n is prime. So (i) follows.

Writing (ii) as $\prod p^{a-1} \cdot [\prod (p+1) - \prod p] = 2$, remark that if $a \ge 2$, as $\prod (p+1) - \prod (p) \ge 1$, we get that if $\omega(n) \ge 2$ and n is not squarefree, then the equality is impossible. If $n = p^a$, we get $n = 2^2 = 4$, which is a solution. If n is squarefree, the equation $\prod (p+1) - \prod p = 2$ is impossible if all $p \ge 3$. If $p_1 = 2$, we get $3 \cdot (p_2 + 1) \dots (p_r + 1) - 2p_2 \dots p_r = 2$. If $p_2 \ge 3$, and $r = 2, 3 \cdot (p_2 + 1) - 2p_2 = p_2 + 3 > 3$. If $r \ge 3$,

$$3 \cdot (p_2 + 1) \dots (p_r + 1) - 2p_2 \dots p_r > 3p_2 \dots p_r + 3 - 2p_2 \dots p_r$$
$$= p_2 \dots p_r + 3$$
$$> 2.$$

For (iii) we proceed in the same manner: $\prod p^{a-1}[\prod(p+1)-\prod(p)]=3$. If $p_1=2$, this is impossible, so $p_1\geq 3$, $p_2\geq 5$. Now $3^{a-1}\geq 3$ if $a\geq 2$. For r=1 we get $n=3^2=9$, a solution. If $n=p^a$, $\psi(p^a)-p^a=\prod p^{a-1}=3\Leftrightarrow p=3,$ $n=p^2=9$. If $\omega(n)\geq 2$, then $p_1^{a-1}\cdot p_2^{a'-1}\ldots\geq 3^{a-1}\cdot 5^{a'-1}>3$ if a>1, a'>1. If a'=a=1, then $(p_1+1)(p_2+1)-p_1p_2=3$ so $p_1+p_2=2$, impossible.

Finally, for case (iv) one has $\prod p^{a-1} \cdot [\prod (p+1) - \prod p] = 4$ and if all $a \geq 3$, we get $p^{a-1} \geq 2^2 = 4$. So $n = 2^3 = 8$ is a solution. Now $p_1^{a-1} \cdot p_2^{a'-1} \geq 2^{a-1} \cdot 3^{a'-1} > 6$ if $a \geq 2$, $a' \geq 2$. If $a = 1, 3^{a'-1} \cdot (p_1 + p_2 + 1) \geq 3^{a'-1} \cdot 6 > 4$. Generally, $2^{a-1} \cdot 3^{a'-1} \cdot 6 = 2^a \cdot 3^{a'} \geq 6 > 4$. Finally, if $n = p^a$ with $a \in \{1, 2\}$ one has $3^{a-1} > 4$ if $a \geq 2$. If $n = 3, 2, 2^2$, then none is acceptable. Thus n = 8 is the single solution.

Lemma 3.

- (i) $\varphi(n) = n 1$ iff n = prime;
- (ii) $\varphi(n) = n 2 \text{ iff } n = 4;$
- (iii) $\varphi(n) = n 2 \text{ iff } n = 9;$
- (iv) $\varphi(n) = n 2 \text{ iff } n = 6.$

Proof. (i) is well-known.

For (ii), remark that as $n \geq 3$, and since $\varphi(n)$ is even, one must have n = even. Let $n = 2^r \cdot M$, where M is odd. As $2^{r-1} \cdot \varphi(M) = 2^r \cdot M - 2$, we get $2^{r-1} \mid 2$, so $r \in \{1,2\}$. For r = 1 one has k = 2M, so $\varphi(M) = 2 \cdot (M-1)$. As $\varphi(M) \leq M-1$, this is possible only if $2(M-1) \leq M-1$, i.e., M = 1, impossible. If r = 2, one has $n = 4 \cdot M$, so $2\varphi(M) = 4M-2$, i.e., $\varphi(M) = 2M-1$ so M = 1 and we get n = 4.

For (iii), let $n = \prod p^a$, so we get $\prod p^{a-1} \cdot (p-1) = \prod p^a - 3$, which implies that $p^{a-1} \mid 3$, so a = 1 or a = 2 and p = 3. Them n = p or n = 9 and only n = 9 is a solution.

Finally, write equation (iv) as $n=2^a\cdot\prod p^{a'}$, as n must be even. We get $2^{a-1}\cdot\prod p^{a'-1}\cdot(p-1)=2^a\cdot\prod p^{a'}-4$. As p-1 is even, we get $2^a\mid 4$ so $a\in\{1,2\}$.

For a=1 we get $\prod p^{a'-1}\cdot (p-1)=2\cdot \prod p^{a'}-4$ which is divisible by 2, but not by 4. So, there is a single prime p, i.e., $n=2\cdot p^a$. If $p^{a-1}\cdot (p-1)=2p^a-4$ if a>1 $p^a\mid 4$ impossible. So a=1. Then n=2p, and $\varphi(2p)=2p-4\Leftrightarrow p-1=2p-4\Leftrightarrow p=3$.

Thus n = 6 is a solution.

If a=2, then the equation becomes $2\cdot\prod p^{a-1}\cdot(p-1)=4\cdot\prod p^a-4$, i.e., $\prod p^{a-1}\cdot(p-1)=2\cdot\prod p^a-2$. If a>1, this is impossible as $p^{a-1}\mid 2$. Thus a=1 in which case $\prod(p-1)=2\prod p-2$, impossible, as $\prod(p-1)<\prod p=2\prod p-2$ and $\prod p>2$.

3 Main results

Theorem 1. The equation

$$\psi(n) = \frac{k+1}{k} \cdot n \tag{5}$$

is solvable for k > 1 only if k = p = p rime and $n = p^{s+1}$ ($s \ge 0$ arbitrary integer).

Proof. Let $n=k\cdot m$, with $m\geq 1$ integer. Then as $\psi(km)=(k+1)\cdot m\geq m\cdot \psi(k)$ by (3). As $\psi(k)\geq k+1$ for k>1 one must have $\psi(k)=k+1$, i.e., k= prime by Lemma 2 (i). There is equality only if $q\mid m\Rightarrow q\mid k$ (q= prime). As k=p= prime, we get q=p and $n=p\cdot p^s=p^{s+1}$.

Theorem 2. Let k > 1. Then the equation

$$\varphi(n) = \frac{k-1}{k} \cdot n \tag{6}$$

is solvable only if k = p = prime and $n = p^{s+1}$ ($s \ge 0$ integer).

Proof. Since (k-1,k)=1, we get $k\mid n$, so let $n=k\cdot m$. Then $\varphi(km)=(k-1)m\leq m\varphi(k)$ by (4).

As $\varphi(k) \le k-1$ for k > 1, we get that $\varphi(k) = k-1$, i.e., k = p = prime by Lemma 3 (i). By Lemma 1 one must have $n = p \cdot p^s = p^{s+1}$, where $s \ge 0$ is arbitrary.

Theorem 3. The equation

$$\psi(n) = \frac{k+1}{k} \cdot n + 1 \tag{7}$$

is solvable for k > 1 only if n = k = 4.

Proof. Let $n = k \cdot m$; then we get the equation $\psi(km) = (k+1)m+1$. As $\psi(km) \ge m\psi(k)$, we get $(k+1)m+1 \ge m\psi(k)$, i.e.

$$m \cdot [\psi(k) - (k+1)] \le 1. \tag{8}$$

There are two possible situations:

- a) $m = \text{arbitrary}, \ \psi(k) (k+1) = 0;$
- b) $m = 1, \psi(k) (k+1) = 1.$

In case b) we get $\psi(k)=k+2$, so by Lemma 2 (ii) we get k=4. As m=1, we get n=4, i.e., n=k=4 is a solution.

In case a) as $\psi(k) = k+1$, k=p = prime, and n can be written as $n=p^a \cdot N$, where (p,N)=1. As $\psi(n)=p^{a-1}\cdot (p+1)\psi(N)$, the equation (7) becomes

$$p^{a} \cdot (p+1)\psi(N) = (p+1) \cdot p^{a-1} \cdot N + p. \tag{9}$$

Let $\psi(N) = N + T$, with $T \ge 0$. Then (9) may be rewritten as

$$N \cdot (p^{a+1} - p^{a-1}) + T \cdot (p^{a+1} + p^a) = p.$$
(10)

Here $p^{a+1}-p^{a-1}=p^{a-1}\cdot (p^2-1)>p$ as $p^{a-1}\geq 1,\, p^2-1>p$ by $p^2-p=p(p-1)\geq 2>1.$ Thus (10) is impossible. \Box

Theorem 4. The equation

$$\varphi(n) = \frac{k-1}{k} \cdot n - 1 \tag{11}$$

is solvable only if k = 4 and n = 2q, where $q \ge 3$ is a prime.

Proof. Let $n=k\cdot m$, then we get $\varphi(km)=(k-1)m-1\leq m\varphi(k)$ by (4) of Lemma 1. Thus we get

$$m \cdot [k - 1 - \varphi(k)] \le 1. \tag{12}$$

Therefore, we can distinguish:

- a) m arbitrary, $k 1 \varphi(k) = 0$;
- b) $m = 1, k 1 \varphi(k) = 1.$

In case b) one has $\varphi(k)=k-2$, so by Lemma 3 (ii) we get k=4. Now n=4 and it can be verified that $\varphi(4)=\frac{3}{4}\cdot 4-1$; i.e., $\varphi(4)=2$.

In case a) $\varphi(k) = k - 1$, so k is a prime; k = p. Let $n = p^a \cdot N$, with (p, N) = 1. Then equation (11) becomes

$$p^{a} \cdot (p-1)\varphi(N) = (p-1) \cdot p^{a} \cdot N - p. \tag{13}$$

Thus $p^a \mid p$ so a = 1; in which case we get

$$p(p-1)\varphi(N) = (p-1) \cdot p \cdot N - p,$$

so $(p-1)\varphi(N)=(p-1)\cdot N-1$, implying that $p-1\mid 1$, i.e., p=2. Then we get $\varphi(N)=N-1$, i.e., N=q= prime. Thus, finally, we get $n=2\cdot q$, where $q\geq 3$ is an odd prime.

Theorem 5. The equation

$$\psi(n) = \frac{k+1}{k} \cdot n + 2 \tag{14}$$

is solvable for k > 1 only if n = k = 9 or n = 8, k = 4.

Proof. Let $n = k \cdot n$, and the equation becomes $\psi(km) = (k+1)m + 2$. As $\psi(km) \ge m\psi(k)$, we get

$$m \cdot [\psi(k) - (k+1)] < 2.$$
 (15)

We have to consider three cases:

- a) *m* arbitrary, $\psi(k) (k+1) = 0$;
- b) $m = 1, \psi(k) = k + 3;$
- c) $m = 2, \psi(k) = k + 2.$

Remark that in case b), by Lemma 2 (iii) one has k=9. As m=1, we get n=9. One can verify that $\psi(9)=\frac{10}{9}\cdot 9+2=12$.

In case c) by Lemma 2 (ii) we get k = 4. As m = 2, we get the solution n = 8.

Finally, in case a) k = p = prime. Let $n = p^a \cdot N$. We get the equation

$$N \cdot (p^{a+1} - p^{a-1}) + T \cdot (p^{a+1} + p^a) = 2p, \tag{16}$$

writing $\psi(N) = N + T$, with $T \ge 0$.

Remark that $p^{a+1}-p^{a-1}=p^{a-1}\cdot(p^2-1)>2p$ if $a\geq 1,\,p\geq 3$. If p=2 one has that $2^{a-1}\cdot 3>4$ for $a\geq 2$. Finally, for $a=1,\,p=2$ as $n=2\cdot N$, we get $3\cdot N+6T=4$, impossible as N is odd.

Theorem 6. The equation

$$\varphi(n) = \frac{k-1}{k} \cdot n - 2 \tag{17}$$

is solvable only if n=8, k=4 or n=k=9 or $n=4\cdot q$ $(q\geq prime)$, k=2 or n=3q $(q\geq 5$ prime), k=3.

Proof. By letting n = km, now the relation similar to (12) will be

$$m \cdot [k - 1 - \varphi(k)] \le 2. \tag{18}$$

The following cases showed be considered:

- a) m arbitrary, $k 1 \varphi(k) = 0$;
- b) $m = 1, k 1 \varphi(k) = 1;$
- c) $m = 1, k 1 \varphi(k) = 2;$
- d) $m = 2, k 1 \varphi(k) = 1.$

In case b) $\varphi(k)=k-2$, so by Lemma 3 ii) we get k=4. Then n=4, which is not a solution, as $\varphi(4)\neq \frac{3}{4}\cdot 4-2$.

In case c) $m=1, \varphi(k)=k-3$, so k=9 and we get n=9, which can be verified to be a solution: $\varphi(9)=\frac{8}{9}\cdot 9-2=6$.

In case d) m=2, and $\varphi(k)=k-2$ so k=4 and n=8, which provide a solution, as $\varphi(8)=\frac{3}{4}\cdot 8-2=4$.

Finally, in case a) k = prime = p and let $n = p^a \cdot N$ with (1, N) = 1. We get the equation

$$p^{a-1} \cdot (p-1)\varphi(N) \cdot p = (p-1) \cdot p^a \cdot N - 2p. \tag{19}$$

Subcase 1. p=2. Then $2^a \cdot \varphi(N)=2^a \cdot N-4$, so $2^a \mid 4$, which means that $a \in \{1,2\}$. For a=1 we get $2\varphi(N)=2N-4$, i.e., $\varphi(N)=N-2$ giving N=4, impossible as N is odd.

For a=2 we get $4\varphi(N)=4N-4$ or $\varphi(N)=N-1$, so N=q= prime. Then $n=2^2\cdot q=4q$, where q is an odd prime.

Subcase 2. $p \geq 3$. Then (19) implies $(p-q) \cdot p^a \mid 2p$. If $p-1 \geq 2$ (i.e., $p \geq 3$) and $a \geq 2$, we get a contradiction. Thus a=1, in which case $(p-1) \cdot p \mid 2p$, so $p-1 \mid 2$, possible only for p=3. Then we get the equation $3 \cdot 2 \cdot \varphi(N) = 3 \cdot 2 \cdot N - 6$, i.e., $\varphi(N) = N-1$. Thus N=q= prime. Then k=p=3 and so n=3q, where $q \geq 5$ is a prime. This gives indeed a solution, as $\varphi(3q) = \frac{2}{3} \cdot 3q - 2$, i.e., $2\varphi(q) = 2q - 2$ which is true. So, this subcase is settled, too.

Theorem 7. The equation

$$\psi(n) = \frac{k+1}{k} \cdot n + 3 \tag{20}$$

is solvable for k > 1 only if n = k = 8 and k = 2, n = 18.

Proof. Letting $n = k \cdot m$, we get similarly to (15):

$$m \cdot [\psi(k) - (k+1)] \le 3.$$
 (21)

Logically, six cases are possible:

- a) *m* arbitrary, $\psi(k) (k+1) = 0$;
- b) $m = 1, \psi(k) (k+1) = 1;$
- c) $m = 2, \psi(k) (k+1) = 1;$
- d) m = 3, $\psi(k) (k+1) = 1$;
- e) $m = 1, \psi(k) (k+1) = 2;$
- f) $m = 1, \psi(k) (k+1) = 3.$

In case b) $\psi(k)=k+2$, so k=4 and n=4, which is not a solution, as $6\neq \frac{5}{4}\cdot 4+3=8$.

In case c) $m=2,\,k=4,\,n=8$ and again not a solution, as $12\neq\frac{5}{4}\cdot 8+3$.

In case d) $m=3,\,k=4$ so n=12 and as $\psi(12)=24\neq \frac{5}{4}\cdot 12+3=18.$

In case e) we get m=1, k=9 and n=9 and as $\psi(9)=12\neq \frac{10}{9}\cdot 9+3$ we have no solution.

Finally, in case f) m=1, k=8, n=8 and $18=\frac{9}{8}\cdot 8+3$ a solution.

Let us now consider the most difficult case, i.e., a) when k = p = prime. Let $n = p^a \cdot N$ when we get the similar equation to (16):

$$N \cdot (p^{a+1} - p^{a-1}) + T \cdot (p^{a+1} + p^a) = 3p.$$
 (22)

Now, remark that $p^{a+1} - p^{a-1} = p^{a-1} \cdot (p^2 - 1) > 3p$, which is true for $p \ge 5$ as $p^2 - 1 > 3p$, i.e., p(p-3) > 1. If p = 3, then $3^{a-1} \cdot 8 > 9$ for $a \ge 2$. Thus we have to consider p = 3, a = 1. As $\psi(3) = 3 + T$, we must have T = 1, and then (22) is not satisfied, as $3 \cdot (3^2 - 1) + 3^2 + 3 \ne 9$.

If p = 2, then $2^{a-1} \cdot 3 \ge 3$ p = 6 true, if $a \ge 2$. For a = 2, we get T = 0, impossible, and when a = 1, n = 2, N = 2, T = 1, and (22) again is not true, as $2 \cdot (2^2 - 1) + 2^2 + 2 \ne 6$. \square

Theorem 8. The only solution to equation

$$\varphi(n) = \frac{k-1}{k} \cdot n - 3 \tag{23}$$

is n = k = 6.

Proof. The analogue of (18) now is

$$m \cdot [k - 1 - \varphi(k)] < 3. \tag{24}$$

We have to consider six distinct cases, similar to the case of Theorem 7.

In case b) as $\varphi(k)=k-2$ we get k=4 and n=4 and $\varphi(4)\neq \frac{3}{4}\cdot 4-3$.

In case c) m = 2, $\varphi(k) = k - 2$ so k = 4, n = 8 and $\varphi(8) \neq \frac{3}{4} \cdot 8 - 3 = 3$.

In case d) m=3 and k=4, so n=12 and $\varphi(12) \neq \frac{3}{4} \cdot 12 - 3 = 6$ as $\varphi(12)=4$.

In case e) $m=1, \varphi(k)=k-3$ so k=9 and n=9 and $\varphi(9)\neq \frac{8}{9}\cdot 9-3$.

In case f) $m=1, \, \varphi(k)=k-4$, so by Lemma 3 (iv) we get k=6. Then n=6 and as $\varphi(6)=\frac{5}{6}\cdot 6-3=2$, we get a solution.

Finally, in case a) when k=p= prime, let $n=p^a\cdot N.$ Then the equation similar to (19) will be

$$p^{a-1} \cdot (p-1)\varphi(N) \cdot p = (p-1) \cdot p^a \cdot N - 3 \cdot p. \tag{25}$$

If p=2, we get $2^a\cdot \varphi(N)=2^a\cdot N-6$, so $2^a\mid 6$, which is possible only if a=1. Then $2\varphi(N)=2N-6$, so $\varphi(N)=N-3$ and by Lemma 3 (iii), N=9. Then $n=2^1\cdot 9=18$. So k=2 and n=18 is a solution. If $p\geq 3$, then $(p-1)\cdot p^a\mid 3p$. For $a\geq 3$ this would imply $(p-1)p^2\mid 3\cdot p$, so $(p-1)\cdot p\mid 3$ which is impossible as $(p-1)\cdot p>3$. If a=1, then $(p-1)p\mid 3p$, so $(p-1)\mid 3$, thus $(p-1)\mid 3$ and $(p-1)\mid 3$ are impossible.

Remark 1. Other equations involving ψ and φ can be found in [3] and [2].

References

- [1] Sándor, J. (2022). On certain rational perfect numbers. *Notes on Number Theory and Discrete Mathematics*, 28(2), 281–285.
- [2] Sándor, J., & Atanassov, K. T. (2021). *Arithmetic Functions*. Nova Science Publishers, New York.
- [3] Sándor, J., Mitrinović, D. S., & Crstici, B. (2006). *Handbook of Number Theory, I.* Springer, Dordrecht.