
441 

Notes on Number Theory and Discrete Mathematics 

Print ISSN 1310–5132, Online ISSN 2367–8275 

2022, Volume 28, Number 3, 441–457 

DOI: 10.7546/nntdm.2022.28.3.441-457 

Number of stable digits of any integer tetration 

Marco Ripà1 and Luca Onnis2 

1 sPIqr Society, World Intelligence Network 

Rome, Italy 

e-mail: marcokrt1984@yahoo.it 

2 Independent researcher 

Cagliari, Italy 

e-mail: luca.onnis02@gmail.com 

Received: 16 February 2022                Revised: 29 June 2022              

Accepted: 21 July 2022  Online First: 24 July 2022 

 

Abstract: In the present paper we provide a formula that allows to compute the number of stable 

digits of any integer tetration base 𝑎 ∈ ℕ0. The number of stable digits, at the given height of 

the power tower, indicates how many of the last digits of the (generic) tetration are frozen. Our 

formula is exact for every tetration base which is not coprime to 10, although a maximum gap 

equal to 𝑉(𝑎) + 1 digits (where 𝑉(𝑎) denotes the constant congruence speed of 𝑎) can occur,  

in the worst-case scenario, between the upper and lower bound. In addition, for every 𝑎 > 1 

which is not a multiple of 10, we show that 𝑉(𝑎) corresponds to the 2-adic or 5-adic valuation 

of 𝑎 − 1 or 𝑎 + 1, or even to the 5-adic order of 𝑎2 + 1, depending on the congruence class of  

𝑎 modulo 20. 
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1 Introduction 

The aim of this paper is to give a general formula which returns the number of stable digits 

[3, 7, 13] of the tetration 

𝑎𝑏 ∶= {
 𝑎                if  𝑏 = 1

 𝑎( 𝑎
(𝑏−1)

)   if  𝑏 ≥ 2
, 
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for any 𝑎 ∈ ℕ0, at any given height 𝑏 ∈ ℕ − {0} [4, 5]. Let us consider the standard decimal 

numeral system (radix-10). Thus, we are interested in an easy way to find the value of 𝑛 ∈ ℕ0 

such that 𝑎𝑏 ≡ 𝑎(mod 10𝑛) 𝑏+1 ∧ 𝑎𝑏 ≢ 𝑎(mod 10𝑛+1)𝑏+1 . 

In order to simplify the notations, let us invoke the definition of the congruence speed of 𝑎𝑏  

from Reference [12], and then (Definition 1.3) we will extend it to the base 𝑎 = 0. 
 

Definition 1.1. Let 𝑛 ∈ ℕ0 and assume that 𝑎 ∈ ℕ − {0, 1} is not a multiple of 10. Then, given 

𝑎𝑏−1 ≡ 𝑎(mod 10𝑛)𝑏  ∧  𝑎𝑏−1 ≢ 𝑎(mod 10𝑛+1)𝑏 , ∀𝑏 > 𝑎, 𝑉(𝑎, 𝑏) returns the strictly 

positive integer such that 𝑎 ≡ 𝑎(mod 10𝑛+𝑉(𝑎,𝑏))𝑏+1𝑏  ∧  𝑎 ≢ 𝑎(mod 10𝑛+𝑉(𝑎,𝑏)+1)𝑏+1𝑏 , and 

we define 𝑉(𝑎, 𝑏) as the “congruence speed” of the base 𝑎 at the given height of its 

hyperexponent 𝑏 ∈ ℕ − {0}. 

Consequently, if 𝑎 = 2, the tetrations for 𝑏 from 1 to 5 are 2 = 21 , 2 = 42 , 2 = 163 , 

2 =4 65536, and 2 =5 . . .19156736 (respectively), so we can see that V(2, 1) = V(2, 2) = 0, 

whereas V(2, 3) = V(2, 4) = 1. 

From [11, 12] we know that, for any given 𝑎 which is not a multiple of 10, exists a unique 

“optimal” value, 𝑏̅ ≔ min𝑏{𝑏 ∈ ℕ − {0} ∶ 𝑉(𝑎, 𝑏) = 𝑉(𝑎, 𝑏 + 𝑘), ∀𝑘 ∈ ℕ0}, of the hyperexpo-

nent which guarantees 𝑉(𝑎, 𝑏̅ + 𝑘) = 𝑉(𝑎) for any 𝑘 ∈ ℕ0 [7], and reaching a height of 𝑎 + 1 

represents a sufficient but not necessary condition for the constancy of the congruence speed, 

since 𝑉(𝑎, 𝑎 + 1) = 𝑉(𝑎) is always true. Improved bounds for 𝑏̅(𝑎) will be introduced in the 

next section. 

Definition 1.2. Let the tetration base 𝑎 ∈ ℕ − {0, 1} not be a multiple of 10, and then let 

𝑏̅ ≔ min𝑏{𝑏 ∈ ℕ − {0} ∶ 𝑉(𝑎, 𝑏) = 𝑉(𝑎, 𝑏 + 𝑘), ∀𝑘 ∈ ℕ0}. We define as “constant congruence 

speed” of 𝑎 the non-negative integer 𝑉(𝑎) ≔ 𝑉(𝑎, 𝑏̅ ). 

Definition 1.3. Let 𝑎 = 1, then 𝑉(1, 1) = 1 and 𝑉(1, 𝑏) = 0 = 𝑉(1) for any 𝑏 ≥ 2. We also 

define 𝑉(0) = 0 for any 𝑏 ∈ ℕ − {0}, since it is possible to extend the domain of tetration by 

considering that lim
𝑎→0

𝑎 ∶= 0𝑏𝑏  implies 0𝑏 = 1 if 𝑏 is even and 0𝑏 = 0 otherwise (see [2]). 

Thus, for any 𝑏 ≥ 1, 0𝑏  does not produce any stable digit, and 𝑉(0, 𝑏) = 𝑉(0) = 0 by 

Definition 1.1. 

Since, in general, 𝑛 depends on 𝑎 and 𝑏 (see Definition 1.1.), from here on, let us denote by 

#𝑆𝑐(𝑎, 𝑏) the number of stable digits of all the bases belonging to the congruence class 

𝑐(mod 10) (e.g., if we consider only tetration bases which have 3 or 7 as their rightmost digit, 

we will indicate the number of their stable digits, at height 𝑏, by #𝑆{3,7}(𝑎, 𝑏)). 

For any given pair (𝑎, 𝑏) of positive integers, and assuming that 𝑐 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, 

by definition, we have that 

  #𝑆𝑐(𝑎, 𝑏) ∶= ∑ 𝑉(𝑎, 𝑖) = {
∑ 𝑉(𝑎, 𝑖)𝑏
𝑖=1                                              if     𝑏 < 𝑏̅

∑ 𝑉(𝑎, 𝑗) + (𝑏 − 𝑏̅ + 1) ∙ 𝑉(𝑎)    if     𝑏 ≥ 𝑏̅𝑏̅−1
𝑗=1

𝑏
𝑖=1  .   (1) 

Now, in the rest of the present paper, let us assume that 𝑎 ∈ ℕ ∶ 𝑎 ≢ 0(mod 10) does not 

belong to the congruence class 0 modulo 10, since, for any 𝑏 ≥ 1, if 𝑎 ≡ 0(mod 10), then the 

number of stable digits of 𝑎𝑏  corresponds to 0 if and only if 𝑎 = 0 (by Definitions 1.1 and 1.3), 



443 

and to the number of trailing zeros which appear at the end of ((𝑘 + 1) ∙ 10)
𝑏

 otherwise  

(e.g., if 𝑘 = 1 and 𝑏 = 2, we have 𝑎𝑏 = 20 = 220 ∙ 10202  so that #𝑆0(20, 2) = 20). 

Section 2 describes how to calculate 𝑉(𝑎) given 𝑎, and consequently #𝑆𝑐(𝑎, 𝑏) at height 𝑏. 

In Subsection 2.1 we present a formula that returns the exact value of #𝑆𝑐(𝑎, 𝑏) for any 𝑐 which 

is not coprime to 10, whereas Subsection 2.2 is devoted to study the four remaining cases. 

Section 3 explains how to find which is the smallest hyperexponent 𝑏 such that 𝑎𝑏  returns any 

desired value of #𝑆𝑐(𝑎, 𝑏), for the chosen base 𝑎. 

2 A formula for the number of stable digits  

of 𝒂𝒃 ∶ 𝒂 ≢ 𝟎(𝐦𝐨𝐝 𝟏𝟎) 

In this section we study #𝑆𝑐(𝑎, 𝑏) assuming that the last digit of the tetration base is not equal to 

zero so that the residues modulo 10 of 𝑐 cover the whole set {1, 2, 3, 4, 5, 6, 7, 8, 9}. 

For this purpose, given a prime number 𝑝, let us indicate the 𝑝-adic order on ℤ by  

𝑣𝑝 ∶  ℤ ⟶ ℕ ∪ {+∞}. 𝑣𝑝 is a valuation on ℤ (since {0} ⊂ ℤ ⊂ ℚ and the statement follows by 

Theorem of Reference [8]) and, given 𝑑 ∈ ℤ, it is defined as the mapping  

𝑣𝑝(𝑑) ∶= {
max{𝑞 ∈ ℕ0 ∶  𝑝

𝑞|𝑑}  if  𝑑 ≠ 0
                 +∞                 if  𝑑 = 0

, 

(i.e., 𝑣𝑝(𝑑) is the function which returns the highest exponent 𝑞 such that 𝑝𝑞 divides 𝑑, so we 

write 𝑣3(18) = 2 since 𝑝 = 3 is a prime, 32|18, and 33 ∤ 18) [9].  

Assuming 𝑟 ∈ ℤ, the 𝑝-adic valuation is characterized by some interesting properties [1, 8], 

such as 𝑣𝑝(𝑑 ∙ 𝑟) = 𝑣𝑝(𝑑) + 𝑣𝑝(𝑟), 𝑣𝑝(𝑑 + 𝑟) ≥ min{𝑣𝑝(𝑑),  𝑣𝑝(𝑟)} (e.g., given any prime 𝑝, 

min{𝑣𝑝(𝑑 − 1),  𝑣𝑝(𝑑 + 1)} ≤ 𝑣𝑝(2 ∙ 𝑑) holds for any 𝑑). Moreover, if 𝑣𝑝(𝑑) ≠ 𝑣𝑝(𝑟), then 

𝑣𝑝(𝑑 + 𝑟) = min{𝑣𝑝(𝑑),  𝑣𝑝(𝑟)} and, in particular, 𝑣𝑝(𝑑) < 𝑣𝑝(𝑟) ⇒ 𝑣𝑝(𝑑 + 𝑟) = 𝑣𝑝(𝑑). 

Now, from [12], we know that the constant congruence speed of any given base 𝑎 which is not 

congruent to 0 modulo 5 is (always) less than or equal to the 5-adic valuation of 

 𝑎 − 1  if  𝑎 ≡ 1 (mod 5); 

 𝑎2 + 1  if  𝑎 ≡ {2, 3} (mod 5); 

 𝑎 + 1  if  𝑎 ≡ 4 (mod 5); 

while, if 𝑎 ∶ 𝑎 ≡ 5(mod 10), we have that 𝑉(𝑎) + 1 = 𝑣2(𝑎
2 − 1) (see [12], Corollary 2.2,  

pp. 55–56). 

Lemma 2.1. If the tetration base 𝑎 belongs to the congruence class 5 modulo 20, then 

𝑉(𝑎) = 𝑣2(𝑎 − 1). If 𝑎 belongs to the congruence class 15 modulo 20, then 𝑉(𝑎) = 𝑣2(𝑎 + 1). 

Proof. Let 𝑎 be such that 𝑎 ≡ 5 (mod 10). Since 𝑎 = 10 ∙ 𝑘 + 5 is an odd integer for any 

𝑘 ∈ ℕ0, it follows that the argument of 𝑣2(𝑎 ± 1) is even, and by definition we have 

𝑎 ± 1 = 2𝑛 ∙ ℎ1, for some 𝑛 and ℎ1 ∈ ℕ − {0}. Now, let us consider Equation (26) from [12], 

assume 𝑛 ≥ 2 and observe how, for any 𝑚 ∈ ℕ0, the parity of ℎ1̀ ∶= ℎ1̀ (𝑛) does not change 

from  
(2𝑛∙((−1)𝑛−1+2)−𝑖𝑛∙(𝑛−1))+𝑚∙10∙2𝑛±1

2𝑛
= ℎ1̀ to 

(2𝑛∙((−1)𝑛−1+2)−𝑖𝑛∙(𝑛−1))±1

2𝑛
= ℎ1 so that 
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𝑣2(𝑎 − 1) = 𝑛 ⇒ (ℎ1 = 1 iff 𝑛 ∶ 𝑛 ≡ 2(mod 4)  ∧ ℎ1 = 3 iff 𝑛 ∶ 𝑛 ≡ 3(mod 4)), 

while  

𝑣2(𝑎 + 1) = 𝑛 ⇒ (ℎ1 = 1 iff 𝑛 ∶ 𝑛 ≡ 0(mod 4)  ∧  ℎ1 = 3 iff 𝑛 ∶ 𝑛 ≡ 1(mod 4)). 

Similarly, considering any 𝑚 ∈ ℕ0, the other half of the cases are covered by 

(2𝑛∙((−1)𝑛+8)+𝑖𝑛∙(𝑛−1))+𝑚∙10∙2𝑛±1

2𝑛
= ℎ1̀ ⇒

(2𝑛∙((−1)𝑛+8)+𝑖𝑛∙(𝑛−1))±1

2𝑛
= ℎ1, 

and it follows that, for any 𝑛 ∈ ℕ − {0, 1}, ℎ1 = 7 or ℎ1 = 9. 

Consequently, ℎ1̀ is always an odd number (i.e., ℎ1 ∈ {1, 3, 7, 9}), and 𝑎 ∶ 𝑎 ≡ 5 (mod 10) ⇒

𝑉(𝑎) = 𝑣2(𝑎 − 1) ∨ 𝑣2(𝑎 + 1). Now, max{𝑣2(𝑎 − 1), 𝑣2(𝑎 + 1)} = max{1, 𝑉(𝑎)} = 𝑉(𝑎) 

(since, for any given 𝑘 ∈ ℕ0 such that 
𝑎−1

2
=

10∙𝑘+4

2
, if 

10∙𝑘+4

2
 is odd, then 

10∙𝑘+6

2
 is even, and  

vice versa). Thus, 𝑎 ∶ 𝑎 ≡ 5(mod 10) ⇒ (𝑣2(𝑎 − 1) = 1 ∧ 𝑣2(𝑎 + 1) = 𝑉(𝑎)) ∨ (𝑣2(𝑎 − 1) 

= 𝑉(𝑎) ∧ 𝑣2(𝑎 + 1) = 1). Hence (see [9], Definition 2.1), 𝑣2(𝑎 − 1) + 𝑣2(𝑎 + 1) = 𝑉(𝑎) + 1 

⇒ 𝑉(𝑎) + 1 = 𝑣2((𝑎 − 1) ∙ (𝑎 + 1)) ⇒ 𝑉(𝑎) + 1 = 𝑣2(𝑎
2 − 1). Thus, we have proved that  

if 𝑎 belongs to the congruence class 5 modulo 10, then 𝑉(𝑎) = max{𝑣2(𝑎 − 1), 𝑣2(𝑎 + 1)} 

= 𝑣2(𝑎
2 − 1) − 1. 

In order to conclude the proof, we need to show that 𝑉(𝑎) = 𝑣2(𝑎 − 1) if and only if 𝑘 is 

even. Although this result could be easily achieved by observing that if 
𝑎−1

2
= 5 ∙ 𝑘 + 2, then 

22|(𝑎 − 1) if and only if 𝑘 is even so that (𝑣2(𝑎 − 1) ≥ 2) ∧ (𝑣2(𝑎 + 1) = 1) and (since 

𝑉(𝑎) ≥ 2 for any 𝑎 ∶ 𝑎 ≡ 5(mod 10) [11, 12]) 𝑘 ∶ 𝑘 ≡ 0(mod 2) ⇒ 𝑣2(𝑎 − 1) = 𝑉(𝑎), we 

take this opportunity to extend the basic technique that will be used for proving Theorem 2.1. 

For this purpose, let ℎ2 ∈ ℕ − {0} and ℎ1 ∈ ℕ − {0} (as usual) so that (10 ∙ 𝑘 + 5)2 − 1  

= 2𝑛+1 ∙ ℎ2 and 10 ∙ 𝑘 + 5 − 1 = 2𝑛 ∙ ℎ1 (or equivalently, 10 ∙ 𝑘 + 5 + 1 = 2𝑛 ∙ ℎ1). Since we 

have already verified that ℎ1 is odd, we need to find for which values of 𝑘 we get an odd value 

of ℎ2. 

Thus,  

10 ∙ 𝑘 + 5 − 1 = 2𝑛 ∙ ℎ2 ⇒
ℎ2
ℎ1
=

(10 ∙ 𝑘 + 5)2 − 1

2 ∙ (10 ∙ 𝑘 + 5 − 1)
⇒ ℎ2 = (5 ∙ 𝑘 + 3) ∙ ℎ1 

and it follows that ℎ2 is odd if and only if 𝑘 is even (whereas  

10 ∙ 𝑘 + 5 + 1 = 2𝑛 ∙ ℎ2 ⇒
ℎ2
ℎ1
=

(10 ∙ 𝑘 + 5)2 − 1

2 ∙ (10 ∙ 𝑘 + 5 + 1)
⇒ ℎ2 = (5 ∙ 𝑘 + 2) ∙ ℎ1 

so that ℎ2 is odd if and only if 𝑘 is odd). Hence, 𝑘 ≡ 0(mod 2) ⇒ 𝑉(10 ∙ 𝑘 + 5) =

𝑣2(10 ∙ 𝑘 + 4) and 𝑘 ≡ 1(mod 2) ⇒ 𝑉(10 ∙ 𝑘 + 5) = 𝑣2(10 ∙ 𝑘 + 6).  

Therefore, 𝑎 = 20 ∙ 𝑘 + 5 ⇒ 𝑉(𝑎) = 𝑣2(𝑎 − 1) and 𝑎 = 20 ∙ 𝑘 + 15 ⇒ 𝑉(𝑎) = 𝑣2(𝑎 + 1). 

This completes the proof.   

Moreover, it is possible to invert Equations (6), (7), (10), (11), (14)–(17) from Reference [12] 

in order to simplify the computation of the exact value of 𝑉(𝑎) given 𝑎, extending Lemma 2.1 

from 𝑎 ∶ 𝑎 ≡ 5(mod 10) to any tetration base which is not a multiple of 10. 
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Theorem 2.1. For any 𝑎 ∈ ℕ0 such that 𝑎 is not a multiple of 10, the constant congruence speed 

of 𝑎 is given by Equation (2), 

 𝑉(𝑎) =

{
 
 
 
 
 
 

 
 
 
 
 
 

   0                       if  𝑎 ∈ {0, 1}

    min{𝑣2(𝑎 − 1), 𝑣5(𝑎 − 1)}   if   𝑎 ≡ 1(mod 100) ∧ 𝑎 ≠ 1

min{𝑣2(𝑎 + 1), 𝑣5(𝑎 − 1)}   if   𝑎 ≡ 51(mod 100)         

                                   𝑣5(𝑎
2 + 1)   if   𝑎 ≡ {2, 8}(mod 10)          

min{𝑣2(𝑎 + 1), 𝑣5(𝑎
2 + 1)}   if   𝑎 ≡ {7, 43}(mod 100)   

min{𝑣2(𝑎 − 1), 𝑣5(𝑎
2 + 1)}   if   𝑎 ≡ {57, 93}(mod 100) 

                              𝑣5(𝑎 + 1)   if   𝑎 ≡ 4(mod 10)           

          𝑣2(𝑎
2 − 1) − 1   if   𝑎 ≡ 5(mod 10) 

                              𝑣5(𝑎 − 1)   if   𝑎 ≡ 6(mod 10)           

min{𝑣2(𝑎 − 1), 𝑣5(𝑎 + 1)}   if   𝑎 ≡ 49(mod 100)         

min{𝑣2(𝑎 + 1), 𝑣5(𝑎 + 1)}   if   𝑎 ≡ 99(mod 100)         
1                       otherwise 

   

. (2) 

Proof. Although 𝑎 ∈ {0, 1} ⇒ 𝑉(𝑎) = 0 by Definition 1.1, Equation (18) of Reference [12] 

gives us a sufficient condition (relative to the congruence class of 𝑎 modulo 25) for 𝑉(𝑎) = 1. 

The set of all the tetration bases that are congruent to {2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16,

17, 19, 21, 22, 23} (mod 25) contains the residual values of 𝑎 which satisfy the last line 

of (2). It follows that Equation (2) is true for every 𝑎 such that 𝑉(𝑎) ≤ 1. Thus, we assume 

𝑎 ∶ 𝑉(𝑎) ≥ 2 in the rest of this proof. 

Theorem 2.1 can be proved by combining Equations (6), (7), (10), (11), (14)–(17), (26) from 

Reference [12] and Equation (2) above so that it is possible to extend the method anticipated in 

the proof of Lemma 2.1 (which we will explicitly illustrate here for the symmetrical cases  

𝑎 ≡ 4 (mod 10) and 𝑎 ≡ 6 (mod 10)) to all the congruence classes of 𝑎 modulo 10 (or 100) 

considered by (2). 

First of all, we show that Theorem 2.1 is true for any tetration base belonging to the 

congruence class 4 modulo 10. Thus, let 𝑎 = 4 + 10 ∙ 𝑘, for any 𝑘 ∈ ℕ0. Since Equation (10) 

from Reference [12] (which maps all the bases congruent to 4 modulo 10 that are characterized 

by a constant congruence speed of 𝑛) has already been proven to be true, we only need to 

check that, ∀𝑚 ∈ ℕ0, 𝑉(𝑎) = 𝑣5(𝑎 + 1) ⇒ 5𝑛 − 1 +𝑚 ∙ 2 ∙ 5𝑛 + 1 = 5𝑛 ∙ ℎ if and only if  

𝑚 ≡ {0, 1, 3, 4} (mod 5) and ℎ is not divisible by 5. We immediately see that ℎ is a multiple 

of 5 if and only if ℎ belongs to the congruence class 5 modulo 10, since ℎ ≡ 0 (mod 10) 

⇒ 5𝑛 ∙ ℎ ≡ 0 (mod 10), but this would lead to a contradiction because 5𝑛 ∙ ℎ ≡ 0 (mod 10) 

implies that 5𝑛 ∙ ℎ cannot be written as 5𝑛 − 1 +𝑚 ∙ 2 ∙ 5𝑛 + 1, for the reason that  

𝑚 ∙ 2 ∙ 5𝑛 ≡ 0 (mod 10), and so 5𝑛 +𝑚 ∙ 2 ∙ 5𝑛 ≡ 5 (mod 10). Thus, for any 𝑛 ∈ ℕ − {0, 1}, 

𝑚 ∶ 𝑚 ≡ {0, 1, 3, 4}  (mod 5) represents a necessary and sufficient condition for  

5𝑛 ∙ (2 ∙ 𝑚 + 1) = 5𝑛 ∙ ℎ, since we have previously verified that 5𝑛 − 1 +𝑚 ∙ 2 ∙ 5𝑛 + 1 = 5𝑛 ∙ ℎ 

holds if and only if ℎ ≢ 5 (mod 10). Hence, 2 ∙ 𝑚 + 1 = ℎ (∀𝑚 ∈ ℕ0 ∶ 𝑚 ≢ 2 (mod 5)). 

Similarly, by observing that 5𝑛 + 1 +𝑚 ∙ 2 ∙ 5𝑛 − 1 = 5𝑛 ∙ ℎ ⇒ 2 ∙ 𝑚 + 1 = ℎ, we can verify 

that 𝑚 ≢ 2 (mod 5) is also a necessary and sufficient condition for 𝑉(𝑎 ∶ 𝑎 ≡ 6 (mod 10)) 

= 𝑣5(𝑎 − 1). 
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In order to complete the proof of Theorem 2.1, we note that it is possible to adopt the same 

approach as above for all the congruence classes listed in (2). Although ∃∞𝑎 ∶ 𝑣̃(𝑎) > 𝑉(𝑎), we 

can check that 𝑎 ≡ {2, 4, 5, 6, 8}(mod 10) ⇒ ∄𝑎 ∶ 𝑣̃(𝑎) ≠ 𝑉(𝑎) and (as a direct consequence) 

this reduces the non-strict inequality  

𝑉(𝑎{2,8}(𝑛)) = 𝑛 ≤ 𝑛̂ =

ln (
𝑎{2,8}

2 + 1
ℎ{2,8}

)

ln(5)
, 

stated by Equations (12), (13) from Reference [12], to an identity between 𝑛 and 𝑛̂ (let 5 ∤ ℎ and 

consider that, for any 𝑘 ∈ ℕ0, 𝑎2 + 1 = 5𝑛 ∙ ℎ ⇒ 5𝑛 =
5∙(20∙𝑘2+8∙𝑘+1)

ℎ
 if 𝑎 = 10 ∙ 𝑘 + 2 and 

5𝑛 =
5∙(20∙𝑘2+32∙𝑘+13)

ℎ
 if 𝑎 = 10 ∙ 𝑘 + 8, taking also into account Equations (16), (17) in [12]). 

In order to prove (2), line 8 (from top to bottom), by using the method presented above instead 

of Lemma 2.1, an interesting computational exercise would be to autonomously verify that 𝑎5(𝑛) 

from Equation (26) of Reference [12] is equal to √2𝑛+1 ∙ ℎ + 1 only if ℎ is odd, independently 

confirming that 𝑣2(𝑎
2 − 1) − 1 = 𝑉(𝑎) for any 𝑎 ∶ 𝑎 ≡ 5 (mod 10). 

The next part of this proof is focused on the special subset 𝐸 = {1, 51, 43, 93, 7, 57, 49, 99} 

of the set of all the bases that are coprime to 10. It is easy to verify from [11, 12] that if 𝑎 modulo 

100 does not belong to 𝐸, then 𝑉(𝑎) = 𝑣̃(𝑎) (while 𝑎(mod 100) ∈ 𝐸 ⇏ 𝑉(𝑎) ≠ 𝑣̃(𝑎)). Since 

∃∞𝑎 ∶ 𝑣̃(𝑎) > 𝑉(𝑎) for each of the eight congruence classes of 𝑎 modulo 100 which correspond 

to the eight elements of the set {1, 51, 43, 93, 7, 57, 49, 99}, we anticipate that the same idea 

(already described in the previous paragraphs) can be used to prove the given result for all the 

aforementioned congruence classes (in order to easily find the exact value of the constant 

congruence speed of any 𝑎 ∶ 𝑎 (mod 100) ∈ 𝐸). For brevity, let us show how to apply the usual 

method with reference only to the congruence class 1 of 𝑎 modulo 100. Thus, if 𝑣̃(𝑎) = 𝑉(𝑎) 

is true for any tetration base 𝑎 ∈ ℕ − {1} such that 𝑎 ≡ 1(mod 100), by merging Equation (6), 

Reference [12], line 2, and the first line of (2) from the present Theorem 2.1, we should be able 

to prove that 𝑉(𝑎) = 𝑣5(𝑎 − 1) ⇒ 10𝑛 ∙ (𝑚 + 1) + 1 − 1 = 5𝑛 ∙ ℎ (∀𝑛 ∈ ℕ − {0, 1})  

if and only if 𝑚 ∈ ℕ0 ∶ 𝑚 ≢ 9 (mod 10) (since the constraint ℎ ∶ ℎ ≢ 5 (mod 10) follows from 

the 5-adic valuation definition). This is not possible to do, since ℎ ≢ 5 (mod 10) holds  

for any 𝑚 ≢ 4 (mod 5) too (e.g., if 𝑛 = 2 and 𝑚 = 4, then 𝑉(501) = 2 ≠ 3 = 𝑣5(𝑎 − 1), 

whereas 𝑉(501) = 𝑣2(𝑎 − 1)). Consequently, 𝑉(𝑎 ∶ 𝑎 = 1 + 100 ∙ 𝑘) ≠ 𝑣5(𝑎 − 1) if and  

only if the first digit to the left of the rightmost (trailing) zero(s) is a five, while  

𝑉(1 + 100 ∙ 𝑘)  ≠ 𝑣2(𝑎 − 1) can occur only if that “key digit” (see Definition 2.3 assuming 

𝛼𝑥2𝑥1 = 𝛼01 by Definition 2.2) is even, and the conclusion follows since the sets of odd and even 

numbers have no intersection. 

This technique is enough to confirm that 𝑉(𝑎) = min{𝑣2(𝑎 − 1), 𝑣5(𝑎 − 1)} for any  

𝑎 ≠ 1 ∶ 𝑎 ≡ 1 (mod 100), and similarly showing that 𝑉(100 ∙ 𝑘 − 1) ≠ 𝑣5(𝑎 + 1) and  

𝑉(100 ∙ 𝑘 − 1) = 𝑣2(𝑎 + 1) if and only if the first digit to the left of the rightmost repunit (9’s) 

is a four (see Definitions 2.2 and 2.3 assuming 𝛼𝑥2𝑥1 = 𝛼99). 

Therefore, the statement of Theorem 2.1 can be proved by performing all the basic (tedious) 

calculations which arise when we merge Equations (6), (7), (10), (11), (14)–(18), (26) from 

Reference [12] and Equation (2) of the present paper.  
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Corollary 2.1. If 𝑎 is congruent to 25 modulo 100, then 𝑉(𝑎) = 𝑣2(𝑎 − 1). If 𝑎 is congruent to 

75 modulo 100, then 𝑉(𝑎) = 𝑣2(𝑎 + 1). 

Proof. We observe that 𝑎 ≡ 25 (mod 100) ⇒ 𝑎 ≡ 5 (mod 20) and 𝑎 ≡ 75 (mod 100) ⇒ 

𝑎 ≡ 15 (mod 20). Then, we invoke Lemma 2.1 once again, and this concludes the proof of 

Corollary 2.1.  

Corollary 2.2. For any 𝑎 ∈ ℕ − {1} such that 𝑎 ≢ 0(mod 10), 

         𝑉(𝑎) =

{
 
 
 
 
 

 
 
 
 
 

 min{𝑣2(𝑎 − 1), 𝑣5(𝑎 − 1)}   if   𝑎 ≡ 1(mod 20)             

 min{𝑣2(𝑎 + 1), 𝑣5(𝑎 − 1)}   if   𝑎 ≡ 11(mod 20)           

                                   𝑣5(𝑎
2 + 1)   if   𝑎 ≡ {2, 8}(mod 10)         

min{𝑣2(𝑎 + 1), 𝑣5(𝑎
2 + 1)}   if   𝑎 ≡ {3, 7}(mod 20)       

min{𝑣2(𝑎 − 1), 𝑣5(𝑎
2 + 1)}   if   𝑎 ≡ {13, 17}(mod 20)  

                              𝑣5(𝑎 + 1)   if   𝑎 ≡ 4(mod 10)          

                    𝑣2(𝑎 − 1)   if   𝑎 ≡ 5(mod 20)

                      𝑣2(𝑎 + 1)   if   𝑎 ≡ 15(mod 20)

                              𝑣5(𝑎 − 1)   if   𝑎 ≡ 6(mod 10)          

min{𝑣2(𝑎 − 1), 𝑣5(𝑎 + 1)}   if   𝑎 ≡ 9(mod 20)             

  min{𝑣2(𝑎 + 1), 𝑣5(𝑎 + 1)}   if   𝑎 ≡ 19(mod 20)             

.      (3) 

Proof. Trivially, 

𝑎 ≡ 1(mod 100) ⇒ 𝑎 ≡ 1(mod 20),  

𝑎 ≡ 51(mod 100) ⇒ 𝑎 ≡ 11(mod 20), 

𝑎 ≡ 43(mod 100) ⇒ 𝑎 ≡ 3(mod 20),..  

𝑎 ≡ 93(mod 100) ⇒ 𝑎 ≡ 13(mod 20), 

𝑎 ≡ 7(mod 100) ⇒ 𝑎 ≡ 7(mod 20), 

𝑎 ≡ 57(mod 100) ⇒ 𝑎 ≡ 17(mod 20), 

𝑎 ≡ 49(mod 100) ⇒ 𝑎 ≡ 9(mod 20),.. 

𝑎 ≡ 99(mod 100) ⇒ 𝑎 ≡ 19(mod 20). 

Incorporating the statement of Lemma 2.1, all the allowed congruence classes of 𝑎 modulo 20 

have been covered so that there is no way and no need to specify when 𝑉(𝑎) is unitary. This 

concludes the proof of Corollary 2.2.  

For the sake of simplicity, Definition 2.1 introduces a compact notation for a general (tight) 

upper bound of the exact value of 𝑉(𝑎), as it follows from Equations (2)&(3). 

Definition 2.1. Let 𝑎 ≠ 1 be such that 𝑎 ≢ 0(mod 10). We define 

𝑣̃(𝑎) ∶=

{
 

 
𝑣5(𝑎 − 1)            iff   𝑎 ≡ 1(mod 5)        

𝑣5(𝑎
2 + 1)          iff   𝑎 ≡ {2, 3}(mod 5)

𝑣5(𝑎 + 1)            iff   𝑎 ≡ 4(mod 5)        

𝑣2(𝑎
2 − 1) − 1  iff   𝑎 ≡ 5(mod 10)     

 

so that 𝑣̃(𝑎) ≥ 𝑉(𝑎) for any 𝑎. 
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2.1 The exact value of #𝑺{𝟐,𝟒,𝟓,𝟔,𝟖}(𝒂, 𝒃) 

Assuming radix-10 [3], as usual, we describe the structure #𝑆(𝑎, 𝑏) by providing an exact 

formula for any pair (𝑎, 𝑏) such that 𝑎 ≡ {2, 4, 5, 6, 8} (mod 10)  ∧  𝑏 ≥ 3, and very tight 

bounds which hold for all the bases 𝑎 ∶ 𝑎 ≡ {1, 3, 7, 9} (mod 10). In particular, if 

𝑎 ≡ {2, 4, 5, 6, 8} (mod 10), then 𝑉(𝑎) = 𝑣̃(𝑎) (see Theorem 2.1 and Definition 2.1). 

Let 𝑘 ∈ ℕ0 and assume that 𝑎 = (20 ∙ 𝑘 + 2 ∨  20 ∙ 𝑘 + 18).  

Then, for any 𝑎 ∶ 𝑎 ≡ {2, 18} (mod 20), 𝑎 ≡ {2, 8} (mod 10)1 , 𝑎 ≡ 4 (mod 10)2 , and 

finally 𝑎3 ≡ 𝑎(mod 10)4  since 𝑎3 ≡ 6(mod 10). It follows that 

             #𝑆{2,8}(20 ∙ 𝑘 + 2 ∨  20 ∙ 𝑘 + 18, 𝑏)  = {
       0                     if     𝑏 = 1
(𝑏 − 2) ∙ 𝑉(𝑎)   if     𝑏 ≥ 2

  

                               = {
        0                                if     𝑏 = 1
(𝑏 − 2) ∙ 𝑣5(𝑎

2 + 1)    if     𝑏 ≥ 2
  .  

(4) 

 

If 𝑎 ∶ 𝑎 ≡ {12, 8}(mod 20), then ∀𝑏 ∈ ℕ − {0} 

 #𝑆{2,8}(20 ∙ 𝑘 + 12 ∨  20 ∙ 𝑘 + 8, 𝑏) = (𝑏 − 1) ∙ 𝑉(𝑎) = (𝑏 − 1) ∙ 𝑣5(𝑎
2 + 1). (5) 

Even if the cases 𝑎 ∶ 𝑎 ≡ 4 (mod 10) and 𝑎 ∶ 𝑎 ≡ 6 (mod 10) have already been fully 

described in References [10, 12], “repetita iuvant”, and so (for any 𝑏) we have 

    #𝑆4(𝑎, 𝑏) = (𝑏 − 1) ∙ 𝑉(𝑎) = (𝑏 − 1) ∙ 𝑣5(𝑎 + 1); (6) 

while 𝑎 ∶ 𝑎 ≡ 6(mod 10) trivially implies 𝑉(𝑎, 1) ≥ 1 ⇒ 𝑉(𝑎, 𝑏) ≥ 1 so that (for any 𝑏) 

 #𝑆6(𝑎, 𝑏 ≥ 2) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 𝑣5(𝑎 − 1) (7) 

immediately follows from 

V(a  6 (mod 10), 1) + V(a  6 (mod 10), 2)  = 3  V(a  6 (mod 10), b  3) = 3  v5(a – 1). 

If 𝑎 ∶ 𝑎 ≡ 5(mod 10), then 𝑉(𝑎) = 𝑣2(𝑎
2 − 1) − 1 (see Lemma 2.1), and 𝑏̅(𝑎) is always 

equal to 3, with the only exception of the base 𝑎 = 5 (i.e., 𝑏̅(5) = 4 ≠ 3 = 𝑏̅(10 ∙ 𝑘 + 15), 

∀𝑘 ∈ ℕ0). It follows that 

    #𝑆5(20 ∙ 𝑘 + 15, 𝑏 ≥ 2)  =  𝑏 ∙ (𝑣2(𝑎
2 − 1) − 1) + 1;  (8) 

    #𝑆5(20 ∙ 𝑘 + 25, 𝑏 ≥ 2)  =  (𝑏 + 1) ∙ (𝑣2(𝑎
2 − 1) − 1); (9) 

    #𝑆5(5, 𝑏)  =  {
1                             iff   𝑏 = 1
4                             iff   𝑏 = 2
8 + 2 ∙ (𝑏 − 3)   iff   𝑏 ≥ 3

 . (10) 

In order to complete the #𝑆(𝑎, 𝑏) map, we need to study all the tetration bases which are 

coprime to 10, and this will be the goal of the next subsection. 
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2.2 Bounding #𝑺{𝟏,𝟑,𝟕,𝟗}(𝒂, 𝒃) from 𝑽(𝒂) 

Let 𝑎 ∶ 𝑎 ≢ 0 (mod 10) ∧ 𝑎 ≠ 1 be given (bearing in mind that 𝑉(1, 1) = 1, whereas 

𝑉(1, 𝑏̅(1)) = 𝑉(1, 2) = 𝑉(1) = 0, and also 𝑉(0, 𝑏̅(0)) = 𝑉(0, 1) = 𝑉(0) = 0) so that 𝑉(𝑎) is 

fully described by Theorem 2.1, and 𝑉(𝑎) ≤ 𝑣̃(𝑎) always holds (Definition 2.1). 

Under the above-mentioned condition 𝑎 ≠ 1, we note that if 𝑉(𝑎 ∶ gcd(𝑎, 10) = 1, 𝑏) = 0, 

then 𝑎 = (20 ∙ 𝑘 + 3 ∨  20 ∙ 𝑘 + 7)  ∧  𝑏 = 1, for any 𝑘 ∈ ℕ0. 

Thus, 

  #𝑆{3,7}(𝑎 = (20 ∙ 𝑘 + 3 ∨  20 ∙ 𝑘 + 7), 𝑏 ≥ 𝑏̅(𝑎) − 1) 

= {
(𝑏 − 1) ∙ 𝑉(𝑎)  iff 𝑉(𝑎, 2) = 𝑉(𝑎)
𝑏 ∙ 𝑉(𝑎) + 1     iff 𝑉(𝑎, 2) > 𝑉(𝑎)

,  
      (11) 

 

 (e.g.,  

𝑉(6907922943, 2) = 11 > 9 = 𝑣5(6907922943
2 + 1) 

⇒ #𝑆3 (𝑎 = (20 ∙ 345396147 + 3), 𝑏 ≥ 𝑏̅(𝑎)) = #𝑆3(6907922943, 𝑏 ≥ 6) 

= 𝑏 ∙ 𝑉(𝑎) + 1, 

while  

𝑉(107, 2) = 2 = 𝑣5(107
2 + 1) 

⇒ #𝑆7(𝑎 = (20 ∙ 5 + 7), 𝑏 ≥ 𝑏̅(𝑎) − 1) = #𝑆7(107, 𝑏 ≥ 1) 

= ((𝑏 − 1) ∙ 𝑉(𝑎))). 

For any 𝑏, the above also implies the bound (12) 

(𝑏 − 1) ∙ 𝑉(𝑎) ≤ #𝑆{3,7}(𝑎 = (20 ∙ 𝑘 + 3 ∨  20 ∙ 𝑘 + 7), 𝑏) 

        ≤ 𝑏 ∙ 𝑉(𝑎) + 1  
      (12) 

and the (weaker) relation (13) follows 

  (𝑏 − 1) ∙ (𝑣5(𝑎
2 + 1)) ≤ #𝑆{3,7}(𝑎 = (20 ∙ 𝑘 + 3 ∨  20 ∙ 𝑘 + 7), 𝑏 ≥ 2) 

      ≤ 𝑏 ∙ (𝑣5(𝑎
2 + 1)) 

      (13) 

Finally, for any 𝑎 ≡ {1, 3, 7, 9}(mod 10) which cannot be written as 20 ∙ 𝑘 + 3 ∨ 20 ∙ 𝑘 + 7, 

the number of stable digits of 𝑎𝑏  at height 𝑏 ≥ 𝑏̅(𝑎) − 1 is 𝑏 ∙ 𝑉(𝑎), or 𝑏 ∙ 𝑉(𝑎) + 1, or  

(𝑏 + 1) ∙ 𝑉(𝑎). 

We can also derive the following general bound which holds for any 𝑏 ≥ 2, 

𝑏 ∙ 𝑉(𝑎) ≤ #𝑆{1,3,7,9}(𝑎 ≠ (20 ∙ 𝑘 + 3 ∨  20 ∙ 𝑘 + 7), 𝑏 ≥ 2) 

≤ (𝑏 + 1) ∙ 𝑉(𝑎),  
      (14) 

and we additionally state that 𝑏̅(𝑎) ≤ 𝑣5(𝑎
2 + 1) + 2 is valid for every tetration base 𝑎 which is 

congruent to {3, 7} (mod 10). The aforementioned limit on 𝑏̅(𝑎) arises by combining the upper 

bounds by Equations (12), (14) with the general constraint from Equation (15) (see Section 3), 

taking also into account that if 𝑎 ≢ {0, 2, 8} (mod 10), then 𝑉(𝑎, 2) always assumes a strictly 

positive value. 

Furthermore, if 𝑎 ≢ {3, 7} (mod 20), then 𝑏̅(𝑎) ≤ 𝑣̃(𝑎) + 1, since we have not to worry 

about the case 𝑉(𝑎, 1) = 0, which cannot happen (the only 𝑎 which is characterized by 

𝑉(𝑎, 2) > 0 and such that 𝑏̅(𝑎) > 𝑣̃(𝑎) + 1 is the base 5, but we already know that 
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𝑏̅(5) = 𝑣̃(5) + 2). In general, assuming 𝑎 ≠ 5, only a maximum of 𝑣̃(𝑎) additional iterations 

can occur from the first time that the congruence speed assumes a strictly positive value  

(i.e., the first step or the second one for any 𝑎 which is coprime to 10) to the last time that 

𝑉(𝑎, 𝑏) > 𝑉(𝑎). Thus, for any 𝑎 which is not congruent to 0 modulo 10, the maximum 

theoretical value of 𝑏̅(𝑎) is bounded above by 1 + 𝑣̃(𝑎) + 1. 

Therefore, 𝑏̅(𝑎) ≤ 𝑣̃(𝑎) + 2 for every 𝑎 ∶ 𝑎 ≢ 0(mod 10) (let us observe that 𝑎 = 1 ⇒

𝑣̃(1) = 𝑣5(0) = ∞ and 𝑏̅(1) = 2 by definition), and this result confirms also Conjecture 1 of 

Reference [12]. 

We can take a look at the congruence speed of the base 𝑎 = 163574218751 as a random 

check on the upper bound provided by (13). 𝑎 = 163574218751 is characterized by 

𝑣̃(163574218751) = 𝑣5(163574218751 − 1) = 13 = 𝑉(163574218751), so we have 

𝑉(𝑎, 1) = 12, 𝑉(𝑎, 2) = 19, 𝑉(𝑎, 3) = 𝑉(𝑎, 4) = 𝑉(𝑎, 5) = 𝑉(𝑎, 6) = 15, and 𝑉(𝑎, 𝑏 ≥ 7) =

𝑉(𝑎) = 13. Hence, by Equation (1),  

#𝑆1(163574218751, 𝑏 ≥ 𝑏̅) = 12 + 19 + 15 ∙ 4 + (𝑏 − (𝑏̅ − 1)) ∙ 13 

   = 91 + (𝑏 − 𝑏̅ + 1) ∙ 13 

            = (6 + 1) ∙ 13 + (𝑏 − 6) ∙ 13 

 = (𝑏 + 1) ∙ 𝑉(163574218751). 

In addition, some more bases from each one of the four critical congruence classes  

modulo 10, whose #𝑆{1,3,7,9}(𝑎, 𝑏 ≥ 𝑏̅(𝑎)) is uniquely given by (𝑏 − 1) ∙ 𝑉(𝑎), or 𝑏 ∙ 𝑉(𝑎), or 

𝑏 ∙ 𝑉(𝑎) + 1, or (𝑏 + 1) ∙ 𝑉(𝑎), are shown below: 

 #𝑆1(74218751, 𝑏 ≥ 3) = 𝑏 ∙ 𝑉(𝑎) + 1 = 𝑏 ∙ 8 + 1, 

 #𝑆1(45215487480163574218751, 𝑏 ≥ 13) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 25; 
 

 #𝑆3(143, 𝑏 ≥ 2) = (𝑏 − 1) ∙ 𝑉(𝑎) = (𝑏 − 1) ∙ 2, 

 #𝑆3(133, 𝑏 ≥ 1) = 𝑏 ∙ 𝑉(𝑎) = 𝑏, 

 #𝑆3(847288609443, 𝑏 ≥ 5) = 𝑏 ∙ 𝑉(𝑎) + 1 = 𝑏 ∙ 2 + 1, 

 #𝑆3(2996418333704193, 𝑏 ≥ 17) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 16; 
 

 #𝑆7(907, 𝑏 ≥ 2) = (𝑏 − 1) ∙ 𝑉(𝑎) = (𝑏 − 1) ∙ 2, 

 #𝑆7(177, 𝑏 ≥ 1) = 𝑏 ∙ 𝑉(𝑎) = 𝑏, 

 #𝑆7(807, 𝑏 ≥ 6) = 𝑏 ∙ 𝑉(𝑎) + 1 = 𝑏 ∙ 3 + 1, 

 #𝑆7(23418092077057, 𝑏 ≥ 15) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 14; 
 

 #𝑆9(599, 𝑏 ≥ 1) = 𝑏 ∙ 𝑉(𝑎) = 𝑏 ∙ 2, 

 #𝑆9(499, 𝑏 ≥ 2) = 𝑏 ∙ 𝑉(𝑎) + 1 = 𝑏 ∙ 2 + 1, 

 #𝑆9(781249, 𝑏 ≥ 4) = (𝑏 + 1) ∙ 𝑉(𝑎) = (𝑏 + 1) ∙ 6. 

Remark 2.1. The laws that let us predict the value of every #𝑆{1,3,7,9}(𝑎, 𝑏 ≥ 𝑏̅(𝑎)) (including 

all the examples above) can be derived from Reference [12], Equation (2) for 𝑖 = 1, 3, 4, 9,

10, 12. 
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Definition 2.2. Let 𝑥1 and 𝑥2 belong to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let 𝑛 ∈ ℕ − {0}. We 

denote by 𝛼𝑥2𝑥1[𝑛] ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the 𝑛-th rightmost digit of the unique decadic 

integer 𝛼𝑥2𝑥1 satisfying the fundamental equation 𝑦5 = 𝑦 (stated in Reference [12], Proposition 6, 

pp. 47–48), such that 𝛼𝑥2𝑥1[1] = 𝑥1 and 𝛼𝑥2𝑥1[2] = 𝑥2 (e.g., if 𝑥2 = 5 and 𝑥1 = 1, then 

𝛼𝑥2𝑥1[2] = 𝛼51[2] = 5 by definition and 𝛼𝑥2𝑥1[3] = 𝛼51[3] = 7 by construction, since  

𝛼𝑥2𝑥1 = 1 − 2 ∙ {2
5𝑛}

∞
=. . .87480163574218751 is the only solution of 𝑦5 = 𝑦 in the ring of 

decadic integers such that 𝑥2 = 5 and 𝑥1 = 1 [6]). For any given pair (𝑥2, 𝑥1), we indicate by 

𝛼𝑥2𝑥1(mod 10
𝑛) ∈

ℤ

10𝑛ℤ
 the (decimal) integer formed by the 𝑛 rightmost digits of 𝛼𝑥2𝑥1 ∈ ℤ10 

(e.g., if 𝑛 = 4 and (𝑥2, 𝑥1) = (9, 9), then the selected solution of 𝑦5 = 𝑦 in the ring ℤ10 is 

 −1 =. . .99999, and we have 𝛼𝑥2𝑥1(mod 10
𝑛) = 𝛼99(mod 10

4) = 9999). 

For sake of clarity, the only decadic integers which satisfy the mentioned fundamental 

equation, 𝑦5 = 𝑦 (and, in general, 𝑦𝑡 = 𝑦 for any 𝑡 ∈ ℤ ∶ 𝑡 ≥ 5), are  

𝛼00 = 0 = . . .00000, 

𝛼01 = 1 =. . .00001, 

𝛼51 = 1 − 2 · {5
2𝑛}

∞
=

 . . .980838272377998885153153538207781991786760045215487480163574218751, 

𝛼32 = {2
5𝑛}

∞
=

 . . .593839649523223304553032451441224165530407839804103263499879186432, 

𝛼93 = {5
2𝑛}

∞
− {25

𝑛
}
∞
=

 . . .915741214287777252870390779454884838576212137588152996418333704193, 

𝛼43 = −{5
2𝑛}

∞
− {25

𝑛
}
∞
=

. . .896579486665776138023544317662666830362972182803640476581907922943, 

𝛼24 = {5
2𝑛}

∞
− 1 =

 . . .509580863811000557423423230896109004106619977392256259918212890624, 

𝛼25 = {5
2𝑛}

∞
=

 . . .509580863811000557423423230896109004106619977392256259918212890625, 

𝛼75 = −{5
2𝑛}

∞
=

 . . .490419136188999442576576769103890995893380022607743740081787109375  

𝛼76 = 1 − {5
2𝑛}

∞
=

 . . .490419136188999442576576769103890995893380022607743740081787109376, 

𝛼07 = −{5
2𝑛}

∞
+ {25

𝑛
}
∞
=

 . . .084258785712222747129609220545115161423787862411847003581666295807 , 

𝛼57 = {5
2𝑛}

∞
+ {25

𝑛
}
∞
=

 . . .103420513334223861976455682337333169637027817196359523418092077057, 

𝛼68 = −{2
5𝑛}

∞
=

 . . .406160350476776695446967548558775834469592160195896736500120813568, 

𝛼49 = 2 · {5
2𝑛}

∞
− 1 =

 . . .161727622001114846846461792218008213239954784512519836425781249, and  

𝛼99 = −1 = . . .999999999999999999999999999999999999999999999999999999999. 
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Definition 2.3. Let 𝑛 ∈ ℕ − {0} and 𝑙 ∈ ℕ − {0, 1}. Let the tetration base 10𝑛−1 < 𝑎 < 10𝑛 be 

such that 𝑎 ≔ ∑ 𝑠𝑗 ∙ 10
𝑗𝑛

𝑗=1 , for 𝑠1 ∈ {1, 3, 7, 9}, 𝑠1<𝑗<𝑛 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and (if 𝑛 is 

not unitary) 𝑠𝑛 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. Given one pair (𝑥2, 𝑥1) as specified by Definition 2.2, 

if 𝑎 ≠ 𝛼𝑥2𝑥1(mod 10
𝑛), then 𝑙 ≤ 𝑛, and we single out 𝑠𝑙 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},  

the 𝑙-th rightmost digit of the given tetration base, as the key-digit of 𝑎 =

𝑠𝑛_𝑠(𝑛−1)_. . . _𝑠𝑙_𝑠(𝑙−1)_. . . _𝑠2_𝑥1 such that 𝑎 ≡ 𝛼𝑥2𝑥1(mod 10
(𝑙−1)) ∧ 𝑎 ≢ 𝛼𝑥2𝑥1(mod 10

𝑙) 

(i.e., ∀𝑗̅ ∈ {1, 2, . . . , 𝑙 − 1}, (𝑠1 = 𝑥1 ∧ 𝑥2 = 𝑥2(𝑥1)) ⇒ (𝛼𝑥2𝑥1[𝑗]̅ = 𝑠𝑗̅ ∧ 𝛼𝑥2𝑥1[𝑙] ≠ 𝑠𝑙), see 

Definition 2.2). If 𝑎 = 𝛼𝑥2𝑥1(mod 10
𝑛), then 𝑙 > 𝑛 and 𝑠𝑙 ∶= 0, since we shall assume  

𝑠(𝑛+𝑤) = 0 for any 𝑤 ∈ ℕ − {0} (e.g., 𝑎 = 57 = 0057 implies 𝑙 = 4 because 𝛼57(mod 10
4) =

7057, and so we have 𝑠𝑙 − 𝛼57[𝑙] =
𝑎−𝛼57(mod 10

𝑙)

10(𝑙−1)
= 𝑠4 − 𝛼57[4] = −7). 

When we take into account only 𝑣̃(𝑎) trying to guess the exact value of 𝑉(𝑎) by Definition 2.1, 

the most obvious critical bases are originated by those digits of 𝛼51, 𝛼43, 𝛼93, 𝛼07, 𝛼57, and 𝛼49 

which are equal to 5 (e.g., ∀𝑙 ∈ ℕ ∶ 𝛼43[𝑙] = 5, 𝑣̃(𝛼43(mod 10
(𝑙−1))) > 𝑉(𝛼43(mod 10

(𝑙−1)))). 

Thus, let us select one of the aforementioned decadic integers, that we will indicate by 𝛼𝑥2𝑥1̅̅ ̅̅ ̅̅ ̅, 

and perform a surgical mod 10𝑛 cut on that string, just at the right of a casual digit 5 (i.e., given 

one pair (𝑥2, 𝑥1) ∈ {(0, 7), (4, 3), (4, 9), (5, 1), (5, 7), (9, 3)}, 𝛼𝑥2𝑥1̅̅ ̅̅ ̅̅ ̅[𝑛 + 1] = 5 shall be 

satisfied for 𝛼𝑥2𝑥1 = 𝛼𝑥2𝑥1̅̅ ̅̅ ̅̅ ̅) so that the decimal integer 𝛼𝑥2𝑥1̅̅ ̅̅ ̅̅ ̅(mod 10
𝑛) we get is a pretty special 

tetration base characterized by 𝑣̃(𝛼𝑥2𝑥1̅̅ ̅̅ ̅̅ ̅(mod 10
𝑛)) > 𝑉(𝛼𝑥2𝑥1̅̅ ̅̅ ̅̅ ̅(mod 10

𝑛)), as long as 

𝛼𝑥2𝑥1̅̅ ̅̅ ̅̅ ̅[1] ≠ 7. At this point, it is important to point out that the tetration base 7 is very peculiar 

(i.e., 𝑣̃(7) = 𝑉(7) despite the trueness of 𝛼07[2] = 5, see (15)&(16)) because 𝑥2 = 5 if and only 

if 𝑥1 = 7 ∨ 𝑥1 = 1, but 𝑉(1) = 0 by definition, so we can see that the choice of the base 7 

implies 𝛼07[𝑙] = 𝛼07[3] = 8 ≠ 5, instead of 𝛼57[𝑙] = 𝛼57[2] = 5, since 7 ≡ 7(mod 20) and 

7 ≢ 17(mod 20) share the common rule 𝑣5(𝑎
2 + 1) = 𝑉(𝑎) as stated by (16), lines 15 and 17 

(from top to bottom). Furthermore, inside the proof of Theorem 2.1, for any 𝑛 ∈ ℕ − {0, 1} and 

𝑙 ∈ ℕ − {0, 1, 2}, we have already spoiled that 𝑎 ∶= 𝛼99(mod 10
𝑛) violates the 𝑉(𝑎) = 𝑣̃(𝑎) 

(wrong) conjecture [7] if and only if 𝛼99[𝑙] = 4 (see Corollary 2.3 and Reference [12] for further 

details). 

To be fair, as stated in Reference [12], Proposition 6, p. 47, there is one last fundamental 

intersection that arises from the solution 𝑦15(𝑡) = 1 of 𝑦𝑡 = 𝑦 over the commutative ring of 

decadic integers, considering the corresponding decimal integers modulo 10𝑛 (by the well-

known ring homomorphism). 

For this purpose, as a clarifying example, let us show how 𝑦15(5): 1
5 = 1 works (see 

[12], pp. 47–48). Given 𝑎(𝑛) ≔ ∑ 𝑠𝑗 ∙ 10
𝑗𝑛

𝑗=1 , assume that 𝑛 ∈ ℕ − {0, 1} and 𝑠𝑗=1 = 1, let  

𝑠1<𝑗<𝑛 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and 𝑠𝑛 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} be defined by Definition 2.3. 

When 𝑠2 = 0, for any given set {𝑠3, 𝑠4, … , 𝑠𝑛−1, 𝑠𝑛} as specified above, we can verify that 

#𝑆1(𝑎(𝑛), 𝑏 ≥ 2) = (𝑏 + 1) ∙ 𝑉(𝑎(𝑛)) is always true, whereas, if 𝑠2 = 𝑠𝑛 is an arbitrary 

element of the set {1, 2, 3, 4, 5, 6, 7, 8, 9}, then #𝑆1(𝑎(2), 𝑏 ≥ 2) = (𝑏 + 1) ∙ 𝑉(𝑎(2)) 

= 𝑏 ∙ 𝑉(𝑎(2)) + 1 if and only if 𝑠2 ≠ 5 (where 5 = 𝛼51[2] by Equation (2) from Reference 

[12]). Since 𝑉(51, 1) = 2, 𝑉(51, 2) = 3, and 𝑉(51, 3) = 𝑉(51) = 2, it follows that  

#𝑆1(51, 𝑏 ≥ 2) = 𝑏 ∙ 𝑉(51) + 1 is not equal to (𝑏 + 1) ∙ 𝑉(51) (i.e., 𝑉(𝑎) ≠ 1 ⇒ 

 𝑏 ∙ 𝑉(𝑎) + 1 ≠ (𝑏 + 1) ∙ 𝑉(𝑎)). 
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In view of the fact that there are many other exceptions to the 𝑣̃(𝑎) = 𝑉(𝑎) rule, let us 

introduce the explanatory Corollary 2.3 which reveals, in details, the general law (involving  

all the tetration bases which are coprime to 10) at the bottom of the universal inequality 

𝑉(𝑎) ≤ 𝑣̃(𝑎). 

Corollary 2.3. Let 𝑛 ∈ ℕ − {0, 1} and let 𝑙 ∈ ℕ − {0, 1, 2} be such that 𝑠𝑙, the 𝑙-th rightmost 

digit of the tetration base 𝑎 ≔ ∑ 𝑠𝑗 ∙ 10
𝑗𝑛

𝑗=1 , is outlined by Definition 2.3. For any 𝑎 coprime to 

10, the constant congruence speed is given by 

       𝑉(𝑎) =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑣5(𝑎 − 1)   if  (𝑠2, 𝑠1) = (0, 1) ∧ 𝑠𝑙 ≠ 5                                                   

𝑣2(𝑎 − 1)   if  (𝑠2, 𝑠1) = (0, 1) ∧ 𝑠𝑙 = 5                                                   

  𝑣5(𝑎 − 1)   if  (𝑠2, 𝑠1) = (5, 1) ∧ |𝑠𝑙 − 𝛼51[𝑙]| ≠ 5                                 

  𝑣2(𝑎 + 1)   if  (𝑠2, 𝑠1) = (5, 1) ∧ |𝑠𝑙 − 𝛼51[𝑙]| = 5                                 

𝑣5(𝑎
2 + 1)   if  (𝑠2, 𝑠1) = (4, 3) ∧ |𝑠𝑙 − 𝛼43[𝑙]| ≠ 5                                 

  𝑣2(𝑎 + 1)   if  (𝑠2, 𝑠1) = (4, 3) ∧ |𝑠𝑙 − 𝛼43[𝑙]| = 5                                 

𝑣5(𝑎
2 + 1)   if  (𝑠2, 𝑠1) = (9, 3) ∧ |𝑠𝑙 − 𝛼93[𝑙]| ≠ 5                                 

  𝑣2(𝑎 − 1)   if  (𝑠2, 𝑠1) = (9, 3) ∧ |𝑠𝑙 − 𝛼93[𝑙]| = 5                                 

𝑣5(𝑎
2 + 1)   if  (𝑠2, 𝑠1) = (0, 7) ∧ |𝑠𝑙 − 𝛼07[𝑙]| ≠ 5                                 

  𝑣2(𝑎 + 1)   if  (𝑠2, 𝑠1) = (0, 7) ∧ |𝑠𝑙 − 𝛼07[𝑙]| = 5                                 

𝑣5(𝑎
2 + 1)   if  (𝑠2, 𝑠1) = (5, 7) ∧ |𝑠𝑙 − 𝛼57[𝑙]| ≠ 5                                 

  𝑣2(𝑎 − 1)   if  (𝑠2, 𝑠1) = (5, 7) ∧ |𝑠𝑙 − 𝛼57[𝑙]| = 5                                 

  𝑣5(𝑎 + 1)   if  (𝑠2, 𝑠1) = (4, 9) ∧ |𝑠𝑙 − 𝛼49[𝑙]| ≠ 5                                 

  𝑣2(𝑎 − 1)   if  (𝑠2, 𝑠1) = (4, 9) ∧ |𝑠𝑙 − 𝛼49[𝑙]| = 5                                 

𝑣5(𝑎 + 1)   if  (𝑠2, 𝑠1) = (9, 9) ∧ 𝑠𝑙 ≠ 4                                                   

𝑣2(𝑎 + 1)   if  (𝑠2, 𝑠1) = (9, 9) ∧ 𝑠𝑙 = 4                                                   

    1   if  (𝑠2, 𝑠1) ∉ {(0, 1), (0, 7), (4, 3), (4, 9), (5, 1), (5, 7), (9, 3), (9, 9)}

 .    (15) 

Proof. The last line of (15) trivially follows from (18) of Reference [12]. In order to prove the 

main result of Corollary 2.3, we can verify that the constraints given by (15) on the pairs (𝑠2, 𝑠1) 

represent sufficient conditions for the trueness of the stated 2-adic / 5-adic valuation rules.  

For this reason, let 𝑛, (𝑙 − 1) ∈ ℕ − {0, 1} be as specified by the corollary itself. We note  

that Equation 2 of [12], (by construction) implies that, ∀(𝑠2, 𝑠1) ∈ {(0, 1), (0, 7), (4, 3), (4, 9), 

(5, 1), (5, 7), (9, 3), (9, 9)}, |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| = 5 ⇒ 𝑉(𝑎) + 1 ≤ 𝑣̃(𝑎) and from the proof  

of Theorem 2.1 we immediately deduce that ((𝑠𝑗̅ = 9, ∀𝑗̅ ∈ {1, 2, … , 𝑙 − 1}) ∧ 𝑠𝑙 = 4) ⇒ 

𝑣̃(𝑎) ≥ 𝑉(𝑎) + 1 (at this purpose, we point out that |𝑠𝑙 − 𝛼99[𝑙]| = |4 − 9| = 5 for any  

𝑙 ∈ ℕ − {0, 1, 2}). We can repeat the process for all the given (𝑠2, 𝑠1) pairs, confirming the 

aforementioned relation. 

Now, let 𝑣2(𝑎):= 𝑣2(𝑎 − 1) if 𝑎 ≡ {1, 49, 57, 93} (mod 100) and 𝑣2(𝑎):= 𝑣2(𝑎 + 1) if 

𝑎 ≡ {7, 43, 51, 99} (mod 100). It follows that |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| ≡ 0 (mod 2) ⇒ 𝑉(𝑎) + 1 

≤ 𝑣2(𝑎) always holds, whereas |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| ≡ 1(mod 2) ⇒ 𝑉(𝑎) = 𝑣2(𝑎) is generally true 

(the direct verification can be accomplished through the standard technique, performing simple 

calculations, as described in the proof of Lemma 2.1). 

Basically, given (𝑠2, 𝑠1) ∶ (𝑠1 = 𝑥1 ∧ 𝑠2 = 𝑥2) and assuming that gcd(𝑠1, 10) = 1, it is not 

hard to verify that a sufficient condition which guarantees that the 2-adic valuation rules  
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(by their own) hold is that |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| ∉ {0, 2, 4, 6, 8}, whereas (symmetrically) the stated  

5-adic valuation rules cannot be violated if |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| ≠ 5 (in view of the fact that any issue 

arising from the theoretical collision |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| = 0 ⇒ 5 | |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| is prevented by 

Definition 2.3, which implies 𝑠𝑙 ≠ 𝛼𝑥2𝑥1[𝑙]). 

Since the collision subtended by 2 | |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| and the other one arising from 

|𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| = 5 cannot occur at the same time for any given choice of (𝑎(𝑠1), 𝛼𝑥2𝑠1) (i.e.,  

if |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| = 5, then 𝑎 ∶ |𝑠𝑙 − 𝛼𝑥2𝑥1[𝑙]| ∉ {0, 2, 4, 6, 8}, and vice versa), it is possible to 

opportunistically combine the 5-adic and the 2-adic valuation rules, in order to map the constant 

congruence speed of any selected 𝑎 ∈ ℕ − {0, 1}. Thus, if 𝑎 ∶ gcd(𝑎, 10) = 1, then the constant 

congruence speed of every base which is greater than 10 is described by (15), and this concludes 

the proof of Corollary 2.3.     

A major result of the present paper is that, by combining the statement of Theorem 2.1 and 

(15), we are finally able to provide an explicit, unique and compact, formula that returns the 

exact value of the constant congruence speed of every given tetration base 𝑎 ∈ ℕ0. In order to 

achieve this goal, let 𝑛, 𝑙, 𝛼𝑥2𝑥1, and the elements of the set {𝑠1, . . . , 𝑠𝑛} be defined as in Definition 

2.3 (taking into account that 𝑛 = 1 ⇒ 𝑠2 = 0 = 𝑠𝑙 and that if ∄(𝑥2, 𝑥1) ∶ (𝑥2 = 𝑠2 ∧ 𝑥1 = 𝑠1), 

then 𝑉(𝑎) = 1 for any 𝑎 which does not belong to the congruence class 0 modulo 10). 

In the light of the above, the direct map of 𝑉(𝑎) is given by (16), 

      𝑉(𝑎) =

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

0    if  𝑎 ∶ 𝑎 ∈ {0, 1}                            

𝑣5(𝑎
2 + 1)   if  𝑎 ∶ 𝑎 ≡ {2, 8}(mod 10)                           

𝑣5(𝑎 + 1)   if  𝑎 ∶ 𝑎 ≡ 4(mod 10)                                 

𝑣5(𝑎 − 1)   if  𝑎 ∶ 𝑎 ≡ 6(mod 10)                                 

𝑣2(𝑎 − 1)   if  𝑎 ∶ 𝑎 ≡ 5(mod 20)                                 

𝑣2(𝑎 + 1)   if  𝑎 ∶ 𝑎 ≡ 15(mod 20)                               

𝑣5(𝑎 − 1)   if  𝑎 ∶ 𝑎 ≡ 1(mod 20) ∧ 𝑠𝑙 ≠ 5 ∧ 𝑎 ≠ 1 

𝑣2(𝑎 − 1)   if  𝑎 ∶ 𝑎 ≡ 1(mod 20) ∧ 𝑠𝑙 = 5                 

     𝑣5(𝑎 − 1)   if  𝑎 ∶ 𝑎 ≡ 11(mod 20) ∧ |𝑠𝑙 − 𝛼51[𝑙]| ≠ 5

     𝑣2(𝑎 + 1)   if  𝑎 ∶ 𝑎 ≡ 11(mod 20) ∧ |𝑠𝑙 − 𝛼51[𝑙]| = 5

 𝑣5(𝑎
2 + 1)   if  𝑎 ∶ 𝑎 ≡ 3(mod 20) ∧ |𝑠𝑙 − 𝛼43[𝑙]| ≠ 5

   𝑣2(𝑎 + 1)   if  𝑎 ∶ 𝑎 ≡ 3(mod 20) ∧ |𝑠𝑙 − 𝛼43[𝑙]| = 5

   𝑣5(𝑎
2 + 1)   if  𝑎 ∶ 𝑎 ≡ 13(mod 20) ∧ |𝑠𝑙 − 𝛼93[𝑙]| ≠ 5

     𝑣2(𝑎 − 1)   if  𝑎 ∶ 𝑎 ≡ 13(mod 20) ∧ |𝑠𝑙 − 𝛼93[𝑙]| = 5

 𝑣5(𝑎
2 + 1)   if  𝑎 ∶ 𝑎 ≡ 7(mod 20) ∧ |𝑠𝑙 − 𝛼07[𝑙]| ≠ 5

   𝑣2(𝑎 + 1)   if  𝑎 ∶ 𝑎 ≡ 7(mod 20) ∧ |𝑠𝑙 − 𝛼07[𝑙]| = 5

   𝑣5(𝑎
2 + 1)   if  𝑎 ∶ 𝑎 ≡ 17(mod 20) ∧ |𝑠𝑙 − 𝛼57[𝑙]| ≠ 5

     𝑣2(𝑎 − 1)   if  𝑎 ∶ 𝑎 ≡ 17(mod 20) ∧ |𝑠𝑙 − 𝛼57[𝑙]| = 5

   𝑣5(𝑎 + 1)   if  𝑎 ∶ 𝑎 ≡ 9(mod 20) ∧ |𝑠𝑙 − 𝛼49[𝑙]| ≠ 5

   𝑣2(𝑎 − 1)   if  𝑎 ∶ 𝑎 ≡ 9(mod 20) ∧ |𝑠𝑙 − 𝛼49[𝑙]| = 5

   𝑣5(𝑎 + 1)   if  𝑎 ∶ 𝑎 ≡ 19(mod 20) ∧ 𝑠𝑙 ≠ 4                 

    𝑣2(𝑎 + 1)   if  𝑎 ∶ 𝑎 ≡ 19(mod 20) ∧ 𝑠𝑙 = 4                  
                   ∅ ⟺ 𝑎 ∶ 𝑎 ≡ 0(mod 10) ∧ 𝑎 ≠ 0                     

 .                 (16) 
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Given the standard system of counting, radix-(2 ∙ 5) (since most human beings are born with 

two hands and five fingers on each hand), we have shown which is the law at the bottom of the 

congruence speed constancy, the special property of tetration that describes the asymptotic 

behavior of #𝑆𝑐(𝑎, 𝑏). 

Now, it is not hard to figure out how our result can be naturally extended to many different 

numeral systems, radix-𝑔. Thus, if we simply assume that 𝑔 is a “valid square-free base” (see 

[13], Definition, p. 3, and also the Remarks, p. 4) satisfying the condition stated in Proposition 1 

of Reference [3], then 𝑉(𝑎, 𝑏) = 𝑉(𝑎) must necessarily hold for sufficiently large 𝑏 ∶= 𝑏(𝑎), as 

long as 𝑎 is a nontrivial base such that 𝑎 ≢ 0(mod 𝑔). 

3 Some useful properties of the congruence speed 

The regularity features of the congruence speed [11, 12] can be very useful when performing 

peculiar mental calculations, finding also the precise value of #𝑆(𝑎, 𝑏) by Equation (1). 

We start by saying that, for any 𝑎 ∶ 𝑎 ≢ 0(mod 10) ∧  𝑎 ≠ 1, 𝑉(𝑎, 1) ≤ 𝑉(𝑎, 2) always 

holds, so let 𝑎 be such that 𝑉(𝑎, 2) = 0 (i.e., assuming 𝑎 > 1, 𝑉(𝑎, 2) = 0 ⟺ 

𝑎 = ((20 ∙ 𝑘 + 2)  ∨ (20 ∙ 𝑘 + 18)), ∀𝑘 ∈ ℕ0). Thus, 

 𝑉(𝑎, 𝑏) ≥ 𝑉(𝑎, 𝑏 + 1), ∀𝑏 ≥ 3 .   (17) 

If 𝑎 ∶ 𝑎 ≢ {0, 2, 10, 18}(mod 20)  ∧  𝑎 ≠ 5 (i.e., 𝑎 ≢ {0, 2, 10, 18}(mod 20) ⇒ 𝑉(𝑎, 2) ≠ 0), 

then 

 𝑉(𝑎, 𝑏) ≥ 𝑉(𝑎, 𝑏 + 1), ∀𝑏 ≥ 2  .   (18) 

A general rule which is very easy to keep in mind is that 𝑉(𝑎, 1) + 𝑉(𝑎, 2) ≤ 3 ∙ 𝑉(𝑎) 

≤ 3 ∙ 𝑣̃(𝑎), with the unique exception represented by the very special base 𝑎 = 1 (since 𝑉(1) = 0, 

whereas 𝑉(1, 1) > 0). Furthermore, for any 𝑘 ∈ ℕ0, let us underline that 𝑉(𝑎, 𝑏) = 0 if and  

only if 𝑏 = 1 and 𝑎 ≡ {2, 3, 7, 12, 4, 14, 8, 18} (mod 20)  ∨  𝑎 = 0, or if 𝑏 = 2 and 

𝑎 ≡ {2, 18} (mod 20)  ∨  𝑎 = 1 ∨ 𝑎 = 0, or if 𝑏 ≥ 2 and 𝑎 = 1 ∨  𝑎 = 0 (see Equations  

(4)–(6), (11)). 

Moreover, for any 𝑎 ∶ 𝑎 ≢ 0(mod 10)  ∧  𝑎 ≠ 1, the periodicity properties of 𝑉(𝑎) (see 

Equation (3)) let us immediately detect whether 𝑉(𝑎) is greater than 1 or not, by simply checking 

the congruence 𝑎 ≡ {2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23} (mod 25) [12]; if so, 

𝑉(𝑎) = 1, and 𝑉(𝑎) ≥ 2 otherwise. We can go even further and try to memorize the next set of 

900 values, 1 ≤ 𝑎 ≢ 0(mod 10) < 1000, in order to answer in less than one second (without 

writing or calculating anything) whether 𝑉(𝑎) = 0, 𝑉(𝑎) = 1, 𝑉(𝑎) = 2, or even 𝑉(𝑎) ≥ 3  

(see [11], p. 252). Thus, knowing that 𝑉(1) = 0 by definition, ∀𝑎 ∈ ℕ − {1} ∶ 𝑎 ≢ 0(mod 10), 

we have 
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{
 
 
 
 

 
 
 
 

𝑉(𝑎) = 1 ⇔ 𝑎(mod 25) ∈ ℂ∁,

where ℂ∁ ∶= {2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23};

𝑉(𝑎) = 2 ⇔ 𝑎(mod 40) ∈ {5, 35} ∨

(𝑎(mod 25) ∈ {1, 7, 18, 24}  ∧  𝑎(mod 1000) ∉ ℚ∁);

𝑉(𝑎) ≥ 3 ⇔ 𝑎(mod 40) ∈ {15, 25}  ∨  𝑎(mod 1000) ∈ ℚ∁,

where ℚ∁ ∶= {
1, 57, 68, 124, 126, 182, 193, 249, 318, 374, 376, 432, 568,
 624, 626, 682, 751, 807, 818, 874, 876, 932, 943, 999

} .

        (19) 

We can also take #𝑆𝑐(𝑎, 𝑏) and check the stable digits ratio of any integer tetration whose 

base is not congruent to 0 modulo 10. For any given 𝑎𝑏 , the stable digits ratio of is 

 𝑅(𝑎, 𝑏) ∶=
#𝑆𝑐(𝑎,𝑏)

⌈log10( 𝑎𝑏 )⌉
 ,   (20) 

where the ceiling ⌈𝑞⌉ denotes the function which takes the rational number 𝑞 as input and returns 

as output the least integer greater than or equal to 𝑞. 

In conclusion, given any tetration base 𝑎 ∶ 𝑎 ≢ 0(mod 10)  ∧  𝑎 ≠ 1, if we choose 

beforehand the desired number of stable digits (let us indicate it by #𝑇(𝑎) ∈ ℕ0) of 𝑎𝑏 , we will 

easily compute which is the smallest hyperexponent  

𝑏̿(𝑎) ∶= min𝑏 {𝑏 ∈ ℕ − {0} ∶ ∑𝑉(𝑎, 𝑖) ≥ #𝑇(𝑎)

𝑏

𝑖=1

} 

such that 𝑎𝑏̿  originates at least #𝑇(𝑎) stable digits (see [10], pp. 13–14). 

Thus, 𝑎 ≡𝑏 𝑎𝑏̿ (mod 10#𝑇(𝑎)) for any 𝑏(𝑎) ≥ 𝑏̿(𝑎), and ∑ 𝑉(𝑎, 𝑖)𝑏
𝑖=1  can be simplified using 

the relations shown in the present paper, e.g., by Equation (5), for any 𝑘 ∈ ℕ0,  

𝑎 = 10 ⋅ 𝑘 + 4 ⇒∑𝑉(𝑎, 𝑖)

𝑏

𝑖=1

= (𝑏 − 1) ∙ 𝑣5(𝑎 + 1)                  

⇒ 𝑏̿(𝑎) = min𝑏 {𝑏 ∈ ℕ − {0} ∶ 𝑏 ≥ ⌈
#𝑇(𝑎)

𝑣5(𝑎+1)
⌉ + 1}. 

4 Conclusion 

The number of stable digits of every integer tetration 𝑎𝑏  such that 𝑎 is not a multiple of 10 is 

strongly related to the constant congruence speed of the base, and 𝑏̅(𝑎) ≤ 𝑣̃(𝑎) + 2 is a sufficient 

condition to guarantee the constancy of the congruence speed of 𝑎 for any hyperexponent at or 

above 𝑏̅(𝑎) so that 𝑉(𝑎, 𝑏̅(𝑎) + 𝑘) = 𝑉(𝑎) for any 𝑘 ∈ ℕ0. For this purpose, Theorem 2.1 

provides an easy way to calculate the constant congruence speed of any 𝑎 ≥ 2 that is not a 

multiple of 10, while (16) let us see in details the intrinsic structure of 𝑉(𝑎). Finally, by 

combining the 𝑉(𝑎) inverse map, as shown in Reference [12], with a compact set of equations 

which allows an accurate calculation of #𝑆(𝑎, 𝑏), we are starting to see some symmetrical 

harmony in the fascinating, chaotic, behavior of hyper-4. 
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