Notes on Number Theory and Discrete Mathematics Print ISSN 1310-5132, Online ISSN 2367-8275

2022, Volume 28, Number 3, 411–434

DOI: 10.7546/nntdm.2022.28.3.411-434

Bi-unitary multiperfect numbers, IV(c)

Pentti Haukkanen

Faculty of Information Technology and Communication Sciences, FI-33014 Tampere University, Finland

e-mail: pentti.haukkanen@tuni.fi

Dedicated to the memory of Prof. Varanasi Sitaramaiah

Received: 2 June 2022 **Accepted:** 13 July 2022 **Online First:** 13 July 2022

Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d, n/d) = 1; and d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n/d is unity. The concept of a bi-unitary divisor is due to D. Surynarayana (1972). Let $\sigma^{**}(n)$ denote the sum of the bi-unitary divisors of n. A positive integer n is called a bi-unitary multiperfect number if $\sigma^{**}(n) = kn$ for some $k \ge 3$. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers. The present paper is part IV(c) in a series of papers on even bi-unitary multiperfect numbers. In parts I, II and III we determined all bi-unitary triperfect numbers of the form $n = 2^a u$, where $1 \le a \le 6$ and u is odd. In part V we fixed the case a = 8. The case a = 7 is more difficult. In Parts IV(a-b) we solved partly this case, and in the present paper (Part IV(c)) we continue the study of the same case (a = 7).

Keywords: Perfect numbers, Triperfect numbers, Multiperfect numbers, Bi-unitary analogues. **2020 Mathematics Subject Classification:** 11A25.

1 Introduction

Throughout this paper, all lower case letters denote positive integers; p and q denote primes. The letters u, v and w are reserved for odd numbers.

A divisor d of n is called a unitary divisor if gcd(d, n/d) = 1. If d is a unitary divisor of n, we write d||n. A divisor d of n is called a *bi-unitary* divisor if $(d, n/d)^{**} = 1$, where the symbol

 $(a,b)^{**}$ denotes the greatest common unitary divisor of a and b. The concept of a bi-unitary divisor is due to D. Suryanarayana (cf. [11]). Let $\sigma^{**}(n)$ denote the sum of bi-unitary divisors of n. The function $\sigma^{**}(n)$ is multiplicative, that is, $\sigma^{**}(1) = 1$ and $\sigma^{**}(mn) = \sigma^{**}(m)\sigma^{**}(n)$ whenever (m,n) = 1. If p^{α} is a prime power and α is odd, then every divisor of p^{α} is a bi-unitary divisor; if α is even, each divisor of p^{α} is a bi-unitary divisor except for $p^{\alpha/2}$. Hence

$$\sigma^{**}(p^{\alpha}) = \begin{cases} \sigma(p^{\alpha}) = \frac{p^{\alpha+1}-1}{p-1}, & \text{if } \alpha \text{ is odd,} \\ \sigma(p^{\alpha}) - p^{\alpha/2}, & \text{if } \alpha \text{ is even.} \end{cases}$$
 (1.3)

If α is even, say $\alpha = 2k$, then $\sigma^{**}(p^{\alpha})$ can be simplified to

$$\sigma^{**}(p^{\alpha}) = \left(\frac{p^k - 1}{p - 1}\right) \cdot (p^{k+1} + 1). \tag{1.4}$$

From (1.3), it is not difficult to observe that $\sigma^{**}(n)$ is odd only when n = 1 or $n = 2^{\alpha}$.

The concept of a bi-unitary perfect number was introduced by C. R. Wall [12]; a positive integer n is called a bi-unitary perfect number if $\sigma^{**}(n) = 2n$. C. R. Wall [12] proved that there are only three bi-unitary perfect numbers, namely 6,60 and 90. A positive integer n is called a bi-unitary multiperfect number if $\sigma^{**}(n) = kn$ for some $k \ge 3$. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis [1] proved that there are no odd bi-unitary multiperfect numbers. Our present paper is part IV(c) in a series of papers on even bi-unitary multiperfect numbers. In Parts I, II and III (see [2–4]) we found all bi-unitary triperfect numbers of the form $n = 2^a u$, where $1 \le a \le 6$ and u is odd. In part V we fixed the case a = 8. The case a = 7 seems to be more difficult. In parts IV(a-b) we solved partly the case a = 7. In this paper we continue this study and obtain some further results in this case.

For general accounts on various perfect-type numbers, we refer to [8,9].

Note. Investigation of the case c = 2 below bases on notes by Professor Varanasi Sitaramaiah [10]. He sent them to me before he passed away in Oct 2020.

2 Preliminaries

We assume that the reader has Parts I, II, III, IV(a-b), V (see [2–7]) available. We, however, recall Lemmas 2.1–2.3 from these parts because they are so important also here.

Lemma 2.1. (I) If α is odd, then

$$\frac{\sigma^{**}(p^{\alpha})}{p^{\alpha}} > \frac{\sigma^{**}(p^{\alpha+1})}{p^{\alpha+1}}$$

for any prime p.

(II) For any $\alpha \ge 2\ell - 1$ and any prime p,

$$\frac{\sigma^{**}(p^{\alpha})}{p^{\alpha}} \ge \left(\frac{1}{p-1}\right) \left(p - \frac{1}{p^{2\ell}}\right) - \frac{1}{p^{\ell}} = \frac{1}{p^{2\ell}} \left(\frac{p^{2\ell+1} - 1}{p-1} - p^{\ell}\right).$$

(III) If p is any prime and α is a positive integer, then

$$\frac{\sigma^{**}(p^{\alpha})}{p^{\alpha}} < \frac{p}{p-1}.$$

Remark 2.1. (I) and (III) of Lemma 2.1 are mentioned in C. R. Wall [12]; (II) of Lemma 2.1 has been used by him [12] without explicitly stating it.

Lemma 2.2. Let a > 1 be an integer not divisible by an odd prime p, and let α be a positive integer. Let r denote the least positive integer such that $a^r \equiv 1 \pmod{p^{\alpha}}$; then r is usually denoted by $ord_{p^{\alpha}} a$. We have the following properties.

- (i) If r is even, then s = r/2 is the least positive integer such that $a^s \equiv -1 \pmod{p^{\alpha}}$. Also, $a^t \equiv -1 \pmod{p^{\alpha}}$ for a positive integer t if and only if t = su, where u is odd.
 - (ii) If r is odd, then $p^{\alpha} \nmid a^t + 1$ for any positive integer t.

Remark 2.2. Let a, p, r and s = r/2 be as in Lemma 2.2 ($\alpha = 1$). Then $p|a^t - 1$ if and only if r|t. If t is odd and r is even, then r + t. Hence $p + a^t - 1$. Also, $p|a^t + 1$ if and only if t = su, where u is odd. In particular, if t is even and s is odd, then $p + a^t + 1$. In order to check the divisibility of $a^t - 1$ (when t is odd) by an odd prime p, we can confine to those p for which $ord_p a$ is odd. Similarly, for examining the divisibility of $a^t + 1$ by p when t is even we need to consider primes p with $s = (ord_p a)/2$ even.

Lemma 2.3. Let k be odd and $k \ge 3$. Let $p \ne 5$.

- (a) If $p \in [3, 2520] \setminus \{11, 19, 31, 71, 181, 829, 1741\}$, $ord_p 5$ is odd and $p|5^k 1$, then we can find a prime p' (depending on p) such that $p'|\frac{5^k 1}{4}$ and $p' \ge 2521$.
- (b) If $q \in [3, 2520] \setminus \{13, 313, 601\}$, $s = \frac{1}{2} ord_q 5$ is even and $q \mid 5^{k+1} + 1$, then we can find a prime q' (depending on q) such that $q' \mid \frac{5^{k+1} + 1}{2}$ and $q' \ge 2521$.

Lemma 2.4. Let m be odd and $m \ge 3$. Let $p \ne 29$.

- (a) If $p \in [3, 519] \setminus \{7, 13, 67\}$, $ord_p 29$ is odd and $p|29^m 1$, then there exists an odd prime p' such that $p'|\frac{29^m 1}{28}$ and p' > 519.
- (b) If $q \in [3, 519] \setminus \{37, 61, 313, 421\}$, $s = \frac{1}{2} \operatorname{ord}_q 29$ is even and $q \mid 29^{m+1} + 1$, then there exists an odd prime q' such that $q' \mid \frac{29^{m+1} + 1}{2}$ and q' > 519.

Proof. (a) Let $p|29^m - 1$. If $r = ord_p 29$, that is, r is the least positive integer such that $29^r \equiv 1 \pmod{p}$, then r|m. Since m is odd, r must be odd. Also, $29^r - 1|29^m - 1$. Let

$$S_{29} = \{(p, r) : p \in [3, 519], p \neq 29 \text{ and } r = ord_p 29 \text{ odd}\}.$$

From Appendix A, we have

$$S_{29} = \{(7,1), (13,3), (23,11), (59,29), (67,3), (71,35), (83,41), (103,51), (107,53), (139,69), (149,37), (151,25), (167,83), (173,43), (178,89), (181,15), (197,49), (199,99), (223,111), (227,113), (239,119), (283,47), (347,173), (373,93), (383,191), (397,99), (419,209), (431,215), (439,219), (463,231), (487,81), (499,249)\}.$$

Let $p|29^m - 1$ and $p \in [3, 519] \setminus \{7, 13, 67\}$. Then $(p, r) \in S_{29} \setminus \{(7, 1), (13, 3), (67, 3)\}$, where $r = ord_p 29$. Also, $29^r - 1|29^m - 1$. To prove (a), it is enough to show that $\frac{29^r - 1}{28}$ is divisible by a prime p' > 519. From Appendix B, we know the factors of $29^r - 1$. By examining the factors of $29^r - 1$ for $r \notin \{1, 3, 3\} = \{1, 3\}$, which correspond to the primes 7, 13 and 67 respectively, we infer that we can a find a prime $p'|\frac{29^r - 1}{28}|\frac{29^m - 1}{28}$ satisfying p' > 519. This proves (a).

For example, if p = 23, then r = 11. From Appendix B,

$$29^{11} - 1 = \{\{2, 2\}, \{7, 1\}, \{23, 1\}, \{18944890940537, 1\}\}.$$

Thus if $23|29^m - 1$, then $p' = 18944890940537|\frac{29^m - 1}{4}$ and trivially p' > 519.

(b) Let $q|29^{m+1}+1$ and $q\in[3,519]\setminus\{37,61,313,421\}$. Let $r=ord_q29$. If r is odd, then $q+29^{m+1}+1$ (see Remark 2.2 (a=29)). We may assume that r is even. Let s=r/2. Then s is the least positive integer such that $q|29^s+1$. Again from Remark 2.2 (a=29), $q+29^{m+1}+1$ if s is odd. Since $q|29^{m+1}+1$, we have that s is even. Also, m+1=su, where u is odd. This implies that $29^s+1|29^{m+1}+1$.

Let

$$T_{29} = \{(q, s) : q \neq 29, q \in [3, 519] \text{ and } s = \frac{1}{2}ord_q 29 \text{ even}\}.$$

From Appendix A, we have

$$T_{29} = \{(17,8), (37,6), (41,20), (61,6), (73,36), (89,44), (97,48), (101,50), (113,56), (137,68), (157,26), (193,32), (229,114), (241,60), (257,64), (269,134), (293,146), (313,6), (317,158), (337,168), (353,44), (389,194), (409,204), (421,2), (433,216), (449,224), (461,230)\}.$$

Let $q|29^{m+1} + 1$ and $q \in [3, 519] \setminus \{37, 61, 313, 421\}$. Then

$$(q,s) \in T_{29} \setminus \{(37,6), (61,6), (313,6), (421,2)\},\$$

where $s = \frac{1}{2}ord_q 29$. To prove (b), it is enough to show that $\frac{29^s+1}{2}$ is divisible by a prime q' > 519 for all $s \in T' = \{s : (q,s) \in T_{29} \setminus \{(37,6),(61,6),(313,6),(421,2)\}$. This follows by examining the factors of $29^t + 1$ given in Appendix C.

For example, if q = 41, then s = 20. Also,

$$29^{20}+1=\big\{\big\{2,1\big\},\big\{41,1\big\},\big\{353641,1\big\},\big\{6103563899172302171321,1\big\}\big\}.$$

We can take q' = 353641.

The proof of Lemma 2.4 is complete.

3 Partial results on bi-unitary triperfect numbers of the form $n = 2^7 u$

In part IV(a) we solved partly the case $n=2^7u$. We proved that if n is a bi-unitary triperfect number of the form $n=2^7.5^b.17^c.v$, where (v,2.5.17)=1, then $b \ge 2$ and $c \ge 1$. We then solved completely the case b=2. We proved that in this case c=1 and further showed that $n=2^7.3^2.5^2.7.13.17=44553600$ is the only bi-unitary triperfect number of this form. In part IV(b), we presented some partial results concerning the case $b \ge 3$ under the assumption 3 + n and 7|n. The object of the present paper (part IV(c)) is to provide some further results under the assumption 3 + n (which implies that $b \ge 3$).

Let n be a bi-unitary triperfect number divisible unitarily by 2^7 so that $\sigma^{**}(n) = 3n$ and $n = 2^7u$, where u is odd. In addition, assume that 3 + n. Since $\sigma^{**}(2^7) = 2^8 - 1 = 255 = 3.5.17$, we get the following equations:

$$n = 2^7.5^b.17^c.v$$

and

$$2^{7}.5^{b-1}.17^{c-1}.v = \sigma^{**}(5^{b}).\sigma^{**}(17^{c}).\sigma^{**}(v)$$
, where $(v, 2.3.5.17) = 1$.

Here $b \ge 3$ and $c \ge 1$. In fact, the case b = 2 is not possible since it implies that $3 \mid n$.

Theorem 3.1. Assume that n is a bi-unitary triperfect number such that $2^7 \| n$ and $3 \nmid n$. Let $p \not = (\pm 2, 3)$ be a prime divisor of n. Denote by α the largest number such that p^{α} divides n, that is, $p^{\alpha} \| n$. If $3 \nmid (p-1)$, then $\alpha = 2k$, where k is odd and ≥ 1 .

Proof. If α is odd, say $\alpha = 2m - 1$, then

$$\sigma^{**}(p^{\alpha}) = \frac{p^{\alpha+1}-1}{p-1} = \frac{(p^2)^m-1}{p-1}.$$

Since $p^2 \equiv 1 \pmod{3}$ and (by assumption) $3 \nmid (p-1)$, we have $3|\sigma^{**}(p^{\alpha})$. Further, since $\sigma^{**}(p^{\alpha}) \mid n$, we have 3|n. This is not possible, since by our assumption $3 \nmid n$.

If $4 \mid \alpha$, say b = 4m, then

$$\sigma^{**}(p^{\alpha}) = \frac{p^{2m} - 1}{p - 1}(p^{2m+1} + 1).$$

This leads to a contradiction, too. Therefore, $\alpha = 2k$, where k is odd and ≥ 1 .

Theorem 3.2. Assume that n is a bi-unitary triperfect number such that $2^7 || n$ and $3 \nmid n$. Denote $n = 2^7.5^b.17^c.v$, where (v, 2.3.5.17) = 1. Then b = 2k and $c = 2\ell$, where k is odd (≥ 3) and ℓ is odd (≥ 1) .

Proof. We may apply Theorem 3.1 for p = 5 and p = 17, since 3 + (5 - 1) and 3 + (17 - 1). This shows that b = 2k and $c = 2\ell$, where k and ℓ are odd (≥ 1) . The case k = 1 (that is, k = 2) is not possible as noted above.

It appears that the case $\ell = 1$ (that is, c = 2) is not possible if we make an additional assumption 7 + n. The proof seems to be lengthy and is carried out below.

Let n be a bi-unitary triperfect number divisible unitarily by 2^7 so that $\sigma^{**}(n) = 3n$ and $n = 2^7u$, where u is odd. In addition, assume that $3 \nmid n$ and $7 \nmid n$. Then we get the following equations:

$$n = 2^7.5^b.17^c.v (3.1a)$$

and

$$2^{7}.5^{b-1}.17^{c-1}.v = \sigma^{**}(5^{b}).\sigma^{**}(17^{c}).\sigma^{**}(v), \tag{3.1b}$$

where

$$b \ge 3, c \ge 1, (v, 2.3.5.7.17) = 1$$
 and v has not more than five odd prime factors. (3.1c)

The number of prime factors of v is restricted on the basis of parity of the appropriate values of the function σ^{**} .

Theorem 3.3. Assume that n is a bi-unitary triperfect number such that $2^7 || n$, $3 \nmid n$ and $7 \nmid n$. Denote $n = 2^7.5^b.17^c.v$, where (v, 2.3.5.7.17) = 1. Then $c \neq 2$.

Corollary 3.1. Assume that n is a bi-unitary triperfect number such that $2^7 || n$, 3 + n and 7 + n. Denote $n = 2^7.5^b.17^c.v$, where (v, 2.3.5.7.17) = 1. Then b = 2k and $c = 2\ell$, where k and ℓ are odd and ≥ 3 (and thus $b, c \geq 6$).

Corollary 3.2. Let $n = 2^7.5^b.17^c.v$, where (v, 2.3.5.7.17) = 1. Then n is not a bi-unitary triperfect number if $4 \mid b$ or $4 \mid c$ or b is odd or c is odd or b = 2 or c = 2.

Corollary 3.1 follows from Theorems 3.2 and 3.3, and Corollary 3.2 follows from Corollary 3.1.

For the proof of Theorem 3.3, we consider the case c=2 (that is, $\ell=1$). We show that this case is impossible. The rest of this paper is devoted to this case. Let c=2. We have $\sigma^{**}(17^2)=290=2.5.29$. From (3.1b), we see that 29|v. Let $v=29^d.w$. We obtain the following equations from (3.1a)–(3.1c):

$$n = 2^7.5^b.17^2.29^d.w, (3.2a)$$

and

$$2^{6}.5^{b-2}.17.29^{d-1}.w = \sigma^{**}(5^{b}).\sigma^{**}(29^{d}).\sigma^{**}(w),$$

$$416$$
(3.2b)

where

$$(w, 2.3.5.7.17.29) = 1$$
 and w cannot have more than four odd prime factors. (3.2 c)

Remark 3.1. It follows from Theorem 3.1 (with p = 29) that d = 2m, where m is odd, and so $d \ge 2$.

Lemma 3.1. Let c = 2 in (3.1a)–(3.1c) so that the equations (3.2a)–(3.2c) can be used. Then $29^3|n$, that is, $d \ge 3$.

Proof. We need to prove that $d \ge 3$. On the contrary let d = 2.

We have $\sigma^{**}(29^2) = 842 = 2.421$. Taking d = 2 in (3.2b), we see that 421|w. Let $w = 421^e$. w'. From (3.2a) and (3.2b) we get

$$n = 2^{7}.5^{b}.17^{2}.29^{2}.(421)^{e}.w', (3.3a)$$

and

$$2^{5}.5^{b-2}.17.29.(421)^{e-1}.w' = \sigma^{**}(5^{b}).\sigma^{**}((421)^{e}).\sigma^{**}(w'), \tag{3.3b}$$

where

$$(w', 2.3.5.7.17.29.421) = 1$$
 and w' cannot have more than three odd prime factors. (3.3c)

We prove that 11 + w'. On the contrary, let $w' = 11^f \cdot w''$. From (3.3a) and (3.3b), we obtain

$$n = 2^{7}.5^{b}.17^{2}.29^{2}.(421)^{e}.11^{f}.w'', (3.4a)$$

and

$$2^{5} \cdot 5^{b-2} \cdot 17 \cdot 29 \cdot (421)^{e-1} \cdot 11^{f} \cdot w'' = \sigma^{**}(5^{b}) \cdot \sigma^{**}((421)^{e}) \cdot \sigma^{**}(11^{f}) \sigma^{**}(w''), \tag{3.4b}$$

where

$$(w'', 2.3.5.7.11.17.29.421) = 1$$
 and w'' cannot have more than two odd prime factors. (3.4c)

Since $3|11^t - 1$ if and only if t is even, it follows that $3|\sigma^{**}(11^f)$ if and only if f is odd or 4|f. From (3.4b), $3 + \sigma^{**}(11^f)$. Hence we may assume that f = 2u, where u is odd.

We prove that $u \ge 3$. Assume that u = 1 so that f = 2. We have $\sigma^{**}(11^2) = 122 = 2.61$. From (3.4b), 61|w''. Let $w'' = 61^g.w'''$. From (3.4c), w''' is unity or a power of an odd prime. If $w''' = p^{\alpha}$, then from (3.4b), we can assume that $p \ge 13$. Hence form (3.4a), we have $n = 2^7.5^b.17^2.29^2.(421)^e.11^2.61^g.p^{\alpha}$, so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{842}{841} \cdot \frac{421}{420} \cdot \frac{122}{121} \cdot \frac{61}{60} \cdot \frac{13}{12} = 2.784866823 < 3,$$

a contradiction.

We may now assume that f = 2u, where u is odd and $u \ge 3$. We have

$$\sigma^{**}(11^f) = \left(\frac{11^u - 1}{10}\right) \cdot (11^{u+1} + 1).$$

We prove that:

- (A) $\frac{11^u-1}{10}$ is divisible by an odd prime p'|w'' and $p' \ge 23$; and (B) $\frac{11^{u+1}+1}{2}$ is divisible by an odd prime q'|w'' and $q' \ge 31$.

Proof of (A). We observe the following:

- (i) $2||11^u 1$.
- (ii) $7|11^u 1 \iff 3|u \iff 19|11^u 1$. Since 7 + n by our assumption, $7 + 11^u 1$. Hence $19 + 11^u - 1$.
- (iii) $421|11^u 1 \iff 105|u$. In particular, $421|11^u 1$ implies that 3|u. By (ii) above it follows that $7|11^u - 1$. This is not possible. Hence $421 + 11^u - 1$.
- (iv) Since u is odd, $11^u 1$ is not divisible by 3, 13, 17 and 29; trivially not divisible by 11.
- (v) From (i)-(iv) above, it follows that $\frac{11^u-1}{10}$ is odd, > 1 and not divisible by 3, 7, 11, 13, 17, 19, 29 and 421.
- (vi) If $5|\frac{11^u-1}{10}$, then $5^2|11^u-1$, which is equivalent to 5|u. In such a case, $11^5-1|11^u-1$. Also, $11^5 - 1 = 2.5^2.3221$. Hence $3221 \left| \frac{11^u - 1}{10} \right| \sigma^{**} (11^f)$. From (3.4b), $3221 \left| w'' \right|$. So, we may take p' = 3221, and thus (A) holds in this case.
- (vii) Assume that $5 \dotplus \frac{11^u-1}{10}$. Then from (v), $\frac{11^u-1}{10}$ is odd, > 1 and not divisible by 3, 5, 7, 11, 13, 17, 19, 29 and 421. From (3.4b), if $p'|\frac{11^u-1}{10}$, then p'|w'' and $p' \ge 23$.

From (vi) and (vii), it is clear that $\frac{11^u-1}{10}$ is divisible by an odd prime p'|w'' and $p' \ge 23$. The proof of (A) is complete.

Proof of (B). We have the following:

- (viii) $\frac{11^{u+1}+1}{2}$ is odd and > 1.
 - (ix) $11^t + 1$ is not divisible by 3, 5, 7, 11 and 19 for any even positive integer t. In particular, $11^{u+1} + 1$ is so.
 - (x) $13|11^{u+1} + 1 \iff u + 1 = 6u'$. Hence $13|11^{u+1} + 1$ implies that

$$13.61.1117 = \frac{11^6 + 1}{2} \left| \frac{11^{u+1} + 1}{2} \right| \sigma^{**} (11^f).$$

From (3.4b), it follows that w'' is divisible by 13,61 and 1117. This contradicts (3.4c). Hence $13 + 11^{u+1} + 1$.

(xi) $17|11^{u+1} + 1 \iff u + 1 = 8u'$. Hence $17|11^{u+1} + 1$ implies that

$$17.6304673 \left| \frac{11^8 + 1}{2} \right| \frac{11^{u+1} + 1}{2} \left| \sigma^{**} (11^f) \right|.$$

From (3.4b), it follows that 6304673|w''. Already by (A), $p'|\frac{11^u-1}{10}$, p'|w'' and $p' \ge 23$. Also, $p' \ne 6304673$ since $\frac{11^u-1}{10}$ and $11^{u+1} + 1$ are relatively prime. By (3.4c), it follows that $w'' = (p')^g . (6304673)^h$. From (3.4a),

$$n = 2^7.5^b.17^2.29^2.(421)^e.11^f.(p')^g.(6304673)^h$$

so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{842}{841} \cdot \frac{421}{420} \cdot \frac{11}{10} \cdot \frac{23}{22} \cdot \frac{6304673}{6304672} = 2.88394643 < 3,$$

a contradiction. Thus $17 + 11^{u+1} + 1$.

- (xii) $29|11^{u+1}+1$ if and only if u+1=14u'. Also, $11^{14}+1=2.29.61.1933.55527473$. It follows from (3.4b) that if $29|11^{u+1}+1$, then w'' will be divisible by three odd primes, namely 61,1933 and 55527473. This violates (3.4c). Hence $29 \nmid 11^{u+1} + 1$.
- (xiii) $421 + 11^t + 1$ for any positive integer t. In particular $421 + 11^{u+1} + 1$.

From (viii)–(xiii), we can conclude that $\frac{11^{u+1}+1}{2}$ is odd, > 1 and not divisible by 3, 5, 7, 11, 13, 17, 19, 29 and 421. Since $\frac{11^{u+1}+1}{2}|\sigma^{**}(11^f)$ it follows from (3.4b) that if $q'|\frac{11^{u+1}+1}{2}$, then q'|w'' and from (3.4b), $q' \ge 23$. Since $p' \ne q'$, we can assume that $p' \ge 23$ and $q' \ge 31$ as $q' \ne 29$. The proof of (B) is complete.

From (3.4c), it follows that $w'' = (p')^g \cdot (q')^h$. From (3.4a), we have

$$n = 2^7.5^b.17^2.29^2.(421)^e.11^f.(p')^g.(q')^h,$$

so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{842}{841} \cdot \frac{421}{420} \cdot \frac{11}{10} \cdot \frac{23}{22} \cdot \frac{31}{30} = 2.98008 < 3,$$

a contradiction.

Thus 11 + w' in (3.3a) and (3.3b).

By (3.3c), we can assume that (in the most unfavourable situation) w' is divisible by three distinct odd primes say p_1, p_2 and p_3 , where $p_1 \ge 13$, $p_2 \ge 19$ and $p_3 \ge 23$. Hence from (3.3c), $w' = (p_1)^f . (p_2)^g . (p_3)^h$ and so from (3.3a), $n = 2^7.5^b.17^2.29^2.(421)^e.(p_1)^f.(p_2)^g.(p_3)^h$. Hence we obtain

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{842}{841} \cdot \frac{421}{420} \cdot \frac{13}{12} \cdot \frac{19}{18} \cdot \frac{23}{22} = 2.99804148 < 3,$$

a contradiction. This proves that $d \ge 3$. The proof of Lemma 3.1 is complete.

Remark 3.2. By Lemma 3.1 and Remark 3.1, we can assume that d = 2m, where m is odd and $m \ge 3$ (in the case c = 2).

Lemma 3.2. Let c = 2 in (3.1a)–(3.1c) so that the equations (3.2a)–(3.2c) can be used. Then

- (a) n is not divisible by 11 and 13 simultaneously,
- (b) n is not divisible by 11 and 19 simultaneously,
- (c) if 11 + n, then n is not divisible by 13 and 19 simultaneously.

Proof. (a) We assume that n given in (3.2a)–(3.2c) is divisible by 11 and 13. Hence $w = 11^e.13^f.w'$. From (3.2a) and (3.2b), we obtain the following:

$$n = 2^{7}.5^{b}.17^{2}.29^{d}.11^{e}.13^{f}.w'$$
(3.5a)

and

$$2^{6} \cdot 5^{b-2} \cdot 17 \cdot 29^{d-1} \cdot 11^{e} \cdot 13^{f} \cdot w' = \sigma^{**}(5^{b}) \cdot \sigma^{**}(29^{d}) \cdot \sigma^{**}(11^{e}) \cdot \sigma^{**}(13^{f}) \cdot \sigma^{**}(w'), \quad (3.5b)$$

where

$$(w', 2.3.5.7.17.29.11.13) = 1$$
 and w' has not more than two odd prime factors. (3.5c)

By Lemma 3.1, we have $d \ge 3$. By Remark 3.2, we may assume that d = 2m, where m is odd and $m \ge 3$. We have

$$\sigma^{**}(29^d) = \left(\frac{29^m - 1}{28}\right) \cdot (29^{m+1} + 1).$$

We now prove the following by making use of (b) of Lemma 2.4:

(C) $\frac{29^{m+1}+1}{2}$ is divisible by an odd prime q' > 519 and q'|w'.

Proof of (C). Let

$$T_{29}' = \{q | 29^{m+1} + 1: \ q \in [3, 519] \\ \smallsetminus \{37, 61, 313, 421\} \text{ and } s = \frac{1}{2} ord_q 29 \text{ is even.} \}$$

If T'_{29} is non-empty, by (b) of Lemma 2.4, we can find an odd prime $q'|\frac{29^{m+1}+1}{2}$ and q' > 519. From (3.5b), clearly q'|w'.

Suppose that T'_{29} is empty. Since $q + 29^{m+1} + 1$, if $s = \frac{1}{2}ord_q 29$ is odd, it follows that $q + 29^{m+1} + 1$ for any $q \in [3,519]$ except possibly for $q \in \{37,61,313,421\}$.

We note that $37|29^{m+1}+1 \iff 61|29^{m+1}+1 \iff 313|29^{m+1}+1 \iff m+1=6u$. Assume that $37|29^{m+1}+1$. Then $29^6+1|29^{m+1}+1$. Also, $29^6+1=2.37.61.313.421$. Hence from (3.5b), w' is divisible by 37,61,313 and 421. This violates (3.5c). Thus $37 \nmid 29^{m+1}+1$ and consequently $29^{m+1}+1$ is not divisible by 61 and 313.

If $421 + 29^{m+1} + 1$, then $29^{m+1} + 1$ is not divisible by any prime in [3,519]. This is true with respect to $\frac{29^{m+1}+1}{2}$ also. If $q'|\frac{29^{m+1}+1}{2}$, then q' > 519.

We may assume that $421|\frac{29^{m+1}+1}{2}$. We claim that $\frac{29^{m+1}+1}{2}$ is divisible by an odd prime $q'\neq 421$. If this is not so, then we must have $\frac{29^{m+1}+1}{2}=(421)^{\alpha}$, for some positive integer α . If $\alpha\geq 2$, then $421^2|29^{m+1}+1$. But this is equivalent to m+1=842.u. But $6737|\frac{29^{842}+1}{2}|\frac{29^{m+1}+1}{2}=(421)^{\alpha}$. This is impossible. Hence $\alpha=1$ and so $\frac{29^{m+1}+1}{2}=421$ or m+1=2 or m=1. But $m\geq 3$. This contradiction proves that $\frac{29^{m+1}+1}{2}$ is divisible by an odd prime $q'\neq 421$. Hence $q'\notin [3,519]$ so that q'>519.

This proves (C).

By Lemma 2.1, we have
$$\frac{\sigma^{**}(5^b)}{5^b} \ge \frac{19406}{15625}$$
 $(b \ge 5)$; $\frac{\sigma^{**}(29^d)}{29^d} \ge \frac{731700}{707281}$ $(d \ge 3)$; $\frac{\sigma^{**}(11^e)}{11^e} \ge \frac{15984}{14641}$ $(e \ge 5)$; and $\frac{\sigma^{**}(13^f)}{13^f} \ge \frac{30772}{28561}$ $(f \ge 3)$.

Hence if $e \ge 3$ and $f \ge 3$, using the above results and from (3.5a), we obtain

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{255}{128} \cdot \frac{19406}{15625} \cdot \frac{290}{289} \cdot \frac{731700}{707281} \cdot \frac{15984}{14641} \cdot \frac{30772}{28561} = 3.021234777 > 3,$$

a contradiction.

Hence $e \le 2$ or $f \le 2$. Since e is even, e = 2. Also, if f is odd or 4|f, then $7|\sigma^{**}(13^f)$. This is not possible from (3.5b). Hence f = 2u', where u' is odd. Hence $f \le 2$ implies f = 2. Thus e = 2 or f = 2.

Let e = 2. Since $\sigma^{**}(11^2) = 122 = 2.61$, by taking e = 2 in (3.5b), we see that 61|w'. Already from (C), q'|w'. Hence form (3.5c), $w' = 61^g.(q')^h$. Hence from (3.5a) (e = 2), we have $n = 2^7.5^b.17^2.29^d.11^2.13^f.61^g.(q')^h$, so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{122}{121} \cdot \frac{13}{12} \cdot \frac{61}{60} \cdot \frac{521}{520} = 2.879584826 < 3,$$

a contradiction. Thus e = 2 is not admissible.

We now show that f = 2 is also not admissible. Let f = 2 in (3.5a) and (3.5b). We have $\sigma^{**}(13^2) = 170 = 2.5.17$. Taking f = 2 in (3.5a) and (3.5b), we obtain

$$n = 2^{7}.5^{b}.17^{2}.29^{d}.11^{e}.13^{2}.w'$$
(3.6a)

and

$$2^{5}.5^{b-3}.29^{d-1}.11^{e}.13^{2}.w' = \sigma^{**}(5^{b}).\sigma^{**}(29^{d}).\sigma^{**}(11^{e}).\sigma^{**}(w'), \tag{3.6b}$$

where

(w', 2.3.5.7.17.29.11.13) = 1 and w' has not more than two odd prime factors. (3.6c)

We now prove that (by making use of (a) of Lemma 2.4):

(D) $\frac{29^m-1}{28}$ is divisible by an odd prime p' > 519 and p'|w'.

Proof of (D). Let

$$S_{29}' = \{p | 29^m - 1 : p \in [3, 519] \setminus \{7, 13, 67\} \text{ and } ord_p 29 \text{ is odd}\}.$$

If S'_{29} is non-empty, by (a) of Lemma 2.4, there exists $p'|\frac{29^m-1}{28}$ and p' > 519. From (3.5b), it is clear that p'|w'. Thus (D) holds in this case.

Let S'_{29} be empty. Since $p + 29^m - 1$ when ord_p29 is even, it follows that $p + 29^m - 1$ for any $p \in [3,519]$ except for possibly $p \in \{7,13,67\}$. Since by our assumption 7 + n in (3.5a) or (3.6a), it follows that $7 + \frac{29^m - 1}{28}$.

We may note that $13|29^m - 1 \iff 3|m \iff 67|29^m - 1$. Assume that $13|29^m - 1$. Then $67|\frac{29^m-1}{28}|\sigma^{**}(29^d)$. From (3.6b), 67|w'. From (C), q'|w'. From (3.6c), $w' = 67^g.(q')^h$, and q' > 519. From (3.6a), we have $n = 2^7.5^b.17^2.29^d.11^e.13^2.67^g.(q')^h$ and so we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{11}{10} \cdot \frac{170}{169} \cdot \frac{67}{66} \cdot \frac{521}{520} = 2.91273178 < 3,$$

a contradiction. Hence $13 \nmid 29^m - 1$ and consequently $67 \nmid 29^m - 1$.

Thus $\frac{29^m-1}{28}$ which is odd, > 1 and is not divisible by any prime in [3,519]. If $p'|\frac{29^m-1}{28}$, then p' > 519 and from (3.6b), p'|w'.

The proof of (D) is complete.

Already from (C), q'|w'. Hence from (3.6c), $w' = (p')^g \cdot (q')^h$. Since p' > 519, q' > 519 and $p' \neq q'$, we may assume that $p' \geq 521$ and $q' \geq 523$. From (3.6a), we have

$$n = 2^7.5^b.17^2.29^d.11^e.13^2.(p')^g.(q')^h$$

and so we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{11}{10} \cdot \frac{170}{169} \cdot \frac{521}{520} \cdot \frac{523}{522} = 2.874754834 < 3,$$

a contradiction. This proves that f = 2 is not admissible.

This completes the proof of (a) of Lemma 3.2.

(b) *Proof of Lemma 3.2* (b). Suppose 11 and 19 divide n in (3.2a) and (3.2b) so that $w = 11^e.19^f.w'$. From (3.2a) and (3.2b), we have

$$n = 2^{7}.5^{b}.17^{2}.29^{d}.11^{e}.19^{f}.w', (3.7a)$$

and

$$2^{6} \cdot 5^{b-2} \cdot 17 \cdot 29^{d-1} \cdot 11^{e} \cdot 19^{f} \cdot w' = \sigma^{**}(5^{b}) \cdot \sigma^{**}(29^{d}) \cdot \sigma^{**}(11^{e}) \cdot \sigma^{**}(19^{f}) \cdot \sigma^{**}(w'), \quad (3.7b)$$

where

$$(w', 2.3.5.7.17.29.11.19) = 1$$
 and w' has at most two odd prime factors. (3.7c)

Since $3|\sigma^{**}(11^e)$ if e is odd or 4|e, we may assume that e=2u', where u' is odd; also, in (3.7a) and (3.7b), we can assume that $e\neq 2$. For, let e=2 in (3.7b). Since $\sigma^{**}(11^2)=122=2.61$, from (3.7b), 61|w'. Let $w'=61^f.w''$, where w'' is 1 or a prime power p^α with $p\geq 23$. Hence $\frac{\sigma^{**}(w'')}{w''}<\frac{23}{22}$. Since $n=2^7.5^b.17^2.29^d.11^2.19^f.61^g.w''$, we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{122}{121} \cdot \frac{19}{18} \cdot \frac{61}{60} \cdot \frac{23}{22} = 2.927653275 < 3,$$

a contradiction. Thus we may assume that $e \neq 2$, so that $e \geq 6$ as e = 2u' and u' is odd.

Remark 3.3. As in (C) after (3.5c), it can be shown exactly in the same manner (see the proof of (a) of Lemma 3.3 below) that $\frac{29^{m+1}+1}{2}$ is divisible by an odd prime q' > 519 and from (3.7b), q'|w'.

We now prove that in (3.7a) and (3.7b), the exponents b, e and f cannot exceed 7 simultaneously. On the contrary, let $b \ge 7, e \ge 7$ and $f \ge 7$. By Lemma 2.1, we have $\frac{\sigma^{**}(29^d)}{29^d} \ge \frac{616042622}{594823321} \ (d \ge 5); \ \frac{\sigma^{**}(11^e)}{11^e} \ge \frac{235780128}{214358881} \ (e \ge 7); \ \frac{\sigma^{**}(19^f)}{19^f} \ge \frac{17926964000}{16983563041} \ (f \ge 7) \ \text{and} \ \frac{\sigma^{**}(5^b)}{5^b} \ge \frac{487656}{390625} \ (b \ge 7).$

Using the above results, from (3.7a), for $b \ge 7$, $e \ge 7$ and $f \ge 7$, we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{255}{128} \cdot \frac{487656}{390625} \cdot \frac{290}{289} \cdot \frac{616042622}{594823321} \cdot \frac{235780128}{214358881} \cdot \frac{17926964000}{16983563041}$$
$$= 3.000891774524 > 3.$$

a contradiction. Thus $b \ge 7$, $e \ge 7$ and $f \ge 7$ cannot hold simultaneously.

Recalling that b and e are even and ≥ 6 , the following cases arise.

(i)
$$b = 6$$
, $e = 6$, $f \ge 7$; (ii) $b = 6$, $e \ge 7$, $f \le 6$; (iii) $b \ge 7$, $e = 6$, $f \le 6$;

(iv)
$$b = 6, e \ge 7, f \ge 7;$$
 (v) $b \ge 7, e = 6, f \ge 7;$

(vi)
$$b \ge 7$$
, $e \ge 7$, $f \le 6$; (vii) $b = 6$, $e = 6$, $f \le 6$.

Since $\sigma^{**}(11^6) = \{\{2,1\}, \{7,1\}, \{19,1\}, \{7321,1\}\}$, we have $7|\sigma^{**}(11^6)$. Taking e = 6 in (3.7b), we see that 7|w'. But w' is prime to 7. Thus e = 6 is not admissible. It follows that we need to only examine the cases (ii), (iv) and (vi).

We now prove that $f \le 6$ is not possible so that the cases (ii) and (vi) would be wiped away.

Let f = 1. We have $\sigma^{**}(19) = 20 = 2^2.5$. Taking f = 1 in (3.7b), it follows that its right hand side is divisible by 2^5 and its left hand side is unitarily divisible by 2^6 . Hence w' is 1 or an odd prime power. Thus by taking f = 1 in (3.7a) and (3.7b), we obtain

$$n = 2^7.5^b.17^2.29^d.11^e.19.w', (3.8a)$$

and

$$2^{4}.5^{b-3}.17.29^{d-1}.11^{e}.19.w' = \sigma^{**}(5^{b}).\sigma^{**}(29^{d}).\sigma^{**}(11^{e}).\sigma^{**}(w'), \tag{3.8b}$$

where

$$(w', 2.3.5.7.11.17.19.29) = 1$$
 and w' has at most one odd prime factor. (3.8c)

By Remark 3.3, $\frac{29^{m+1}+1}{2}$ is divisible by an odd prime q' > 519 and from (3.8b), q'|w'. Consider the factor $\frac{29^m-1}{28}$; we now use Lemma 2.4 to show that this factor is divisible by an odd prime p' > 519 and p'|w'. That w' will be divisible by two distinct primes p' and q' leads to a contradiction in virtue of (3.8c). Let

$$S'_{29} = \{p | 29^m - 1 : p \in [3, 519] \setminus \{7, 13, 67\} \text{ and } ord_p 29 \text{ is odd}\}.$$

If S'_{29} is non-empty, by (a) of Lemma 2.4, there exists an odd prime $p'|\frac{29^m-1}{2}$, p' > 519 and from (3.8b), p'|w'.

Suppose that S'_{29} is empty. Since $p + 29^m - 1$ if ord_p29 is even, it follows that $p + 29^m - 1$ for any prime p in [3,519] except for possible $p \in \{7,13,67\}$. We have $7|29^m - 1$ but $7 + \frac{29^m - 1}{28}$ as 7 + w' in (3.8b) (by our assumption that 7 + n). We note that $13|29^m - 1 \iff 67|29^m - 1$. By (a) of Lemma 3.2, $13 + 29^m - 1$. Hence $67 + 29^m - 1$.

Thus $\frac{29^m-1}{28} > 1$, is odd and not divisible by any prime in [3,519]. Hence if $p'|\frac{29^m-1}{28}$, then p' > 519 and p'|w'. This proves that f = 1 is not admissible.

We now prove that f = 2 is not admissible. Let f = 2. Since $\sigma^{**}(19^2) = 362 = 2.181$, taking f = 2 in (3.7b), we see that 181|w'. By Remark 3.3, q'|w' and q' > 519. Hence w' is divisible by 181 and q'. From (3.7c), we have $w' = (181)^g \cdot (q')^h$. Hence $n = 2^7 \cdot 5^b \cdot 17^2 \cdot 29^d \cdot 11^e \cdot 19^2 \cdot (181)^g \cdot (q')^h$ and so

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{11}{10} \cdot \frac{362}{361} \cdot \frac{181}{180} \cdot \frac{521}{520} = 2.876171965 < 3,$$

a contradiction.

Next we prove that f=3 is not admissible. Let f=3. We have $\sigma^{**}(19^3)=\frac{19^4-1}{18}=2^3.5.181$. Taking f=3 in (3.7b), we see that 2^6 is a factor of its right-hand side and 2^6 is a unitary divisor of its left hand side. Hence w'=1. But by Remark 3.3, q'|w' and q'>519. This is a contradiction.

We note that f = 4 is not admissible since $7|\sigma^{**}(19^4) = 2^4.5^2.7^3$ and from (3.7b) (f = 4), it follows that 7|w' which is false.

Further, f = 5 is not admissible since $7|\sigma^{**}(19^5) = 2^2.5.7^3.381$.

Also, f = 6 is not admissible since $3|\sigma^{**}(19^6) = 2.3.17.127.3833$ and from (3.7b) (f = 6), it follows that 3|w' which is false.

The only case remaining is (vi): b = 6, $e \ge 7$ and $f \ge 7$. Then, we have $\sigma^{**}(5^6) = 2.31.313$, and taking b = 6 in (3.7b), we see that w' is divisible by 31 and 313. Also by Remark 3.3, w' is divisible by q' > 519. Thus w' is divisible by three primes 31, 313 and q'. This is a contradiction to (3.7c).

This proves (b).

(c) *Proof of Lemma 3.2 (c).* Suppose 13 and 19 divide n in (3.2a) and (3.2b) so that $w = 13^e.19^f.w'$. From (3.2a) and (3.2b), we have

$$n = 2^7.5^b.17^2.29^d.13^e.19^f.w', (3.9a)$$

and

$$2^{6} \cdot 5^{b-2} \cdot 17 \cdot 29^{d-1} \cdot 13^{e} \cdot 19^{f} \cdot w' = \sigma^{**}(5^{b}) \cdot \sigma^{**}(29^{d}) \cdot \sigma^{**}(13^{e}) \cdot \sigma^{**}(19^{f}) \cdot \sigma^{**}(w'), \quad (3.9b)$$

where

$$(w', 2.3.5.7.17.29.13.19) = 1$$
 and w' has at most two odd prime factors. (3.9c)

We recall that b = 2k, where k is odd and $k \ge 3$. We have

$$\sigma^{**}(5^b) = \left(\frac{5^k - 1}{4}\right) \cdot (5^{k+1} + 1).$$

We now show that:

- (E) $\frac{5^k-1}{4}$ is divisible by an odd prime P > 2520 and P|w',
- (F) $\frac{5^{k+1}+1}{2}$ is divisible by an odd prime Q > 2520 and Q|w'.

Proof of (E). Let

$$S_5' = \{p|5^k - 1 : p \in [3, 2520] \setminus \{11, 19, 31, 71, 181, 829, 1741\} \text{ and } ord_p 5 \text{ is odd}\}.$$

If S_5' is non-empty, then by (a) of Lemma 2.3, (E) holds. We may assume that S_5' is empty. Since $p + 5^k - 1$ if ord_p5 is even, it follows that $5^k - 1$ is not divisible by any prime $p \in [3, 2520]$ except for possibly $p \in \{11, 19, 31, 71, 181, 829, 1741\}$. We observe the following:

- (i) $11|5^k 1 \iff k = 5u \iff 71|5^k 1$. Since by hypothesis, $11 + 5^k 1$, it follows that $71 + 5^k 1$.
- (ii) $19|5^k-1 \iff k=9u \iff 829|5^k-1$. Assume that $19|5^k-1$ so that $829|5^k-1$. From (3.9a), we have $n=2^7.5^b.17^2.29^d.13^e.19^f.(829)^g.(q')^h$, where q'>519, $q'|\frac{29^{m+1}+1}{2}$ and q'|w' (see Remark 3.3). Hence we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{13}{12} \cdot \frac{19}{18} \cdot \frac{829}{828} \cdot \frac{521}{520} = 2.968808064 < 3,$$

a contradiction. Hence $19 + 5^k - 1$ and consequently $829 + 5^k - 1$.

(iii) $181|5^k - 1 \iff k = 15u \iff 1741|5^k - 1$. Suppose $181|5^k - 1$. Then $1741|5^k - 1$. Hence from (3.9a), $n = 2^7.5^b.17^2.29^d.13^e.19^f.(181)^g.(1741)^h$, so that we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{13}{12} \cdot \frac{19}{18} \cdot \frac{181}{180} \cdot \frac{1741}{1740} = 2.977087654 < 3,$$

a contradiction. Hence $5^k - 1$ is neither divisible by 181 nor 1741.

- (iv) If $31 + 5^k 1$, then from (i)–(iii) above, it follows that $\frac{5^k 1}{4}$ is not divisible by any prime in [3, 2520]. If $P|\frac{5^k 1}{4}$, then P > 2520 and by (3.9b), P|w'. This proves (E) in this case.
- (v) Suppose that $31|5^k-1$. We show that $\frac{5^k-1}{4}$ is divisible by an odd prime $P \neq 31$. If this is not the case, let $\frac{5^k-1}{4} = 31^{\alpha}$, for some positive integer α . If $\alpha \geq 2$, then $31^2|5^k-1$, which is equivalent to k=93u=31u'. Hence $1861|\frac{5^{31}-1}{4}\frac{5^k-1}{4}=31^{\alpha}$ and this is impossible. Hence $\alpha=1$ so that $\frac{5^k-1}{4}=31$ or k=3 and b=6. We now show that b=6 is not admissible in (3.9b). We have $\sigma^{**}(5^6)=2.31.313$. Taking b=6 in (3.9b), we obtain

$$2^{5}.5^{4}.17.29^{d-1}.13^{e}.19^{f}.31^{g-1}.(313)^{h-1}$$

$$= \sigma^{**}(29^{d}).\sigma^{**}(13^{e}).\sigma^{**}(19^{f}).\sigma^{**}(31^{g}).\sigma^{**}(313^{h}). \tag{3.9d}$$

By Remark 3.3, $q'|\frac{29^{m+1}+1}{2}|\sigma^{**}(29^d)$ and q'>519. From (3.9d), it follows that its left hand side is not divisible by q'. This proves that b=6 is not admissible.

Thus $\frac{5^k-1}{4}$ is divisible by an odd prime $P \neq 31$. Clearly, $P \notin [3,2520]$ so that P > 2520. From (3.9b), P|w'.

The proof of (E) is complete.

Proof of (F). Let

$$T_5' = \{q | 5^{k+1} + 1 : q \in [3, 2520] \setminus \{13, 313, 601\} \text{ and } s = \frac{1}{2} ord_q 5 \text{ is even} \}.$$

If T_5' is non-empty, then by (b) of Lemma 2.3, (F) holds. We may assume that T_5' is

empty. Since $q
mid 5^{k+1} + 1$ if $s = \frac{1}{2}ord_q 5$ is odd, it follows that $5^{k+1} + 1$ is not divisible by any prime $q \in [3, 2520]$ except for possibly $q \in \{13, 313, 601\}$.

We have the following:

(vi) Assume that $313|5^{k+1} + 1$. From (3.9b), it follows that 313|w'. From (E), w' is divisible by P > 2520. Hence from (3.9c) and (3.9a), we have

$$n = 2^7.5^b.17^2.29^d.13^e.19^f.(313)^g.P^h.$$

Therefore we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{13}{12} \cdot \frac{19}{18} \cdot \frac{313}{312} \cdot \frac{2521}{2520} = 2.970199332 < 3,$$

a contradiction. Thus $313
mid 5^{k+1} + 1$.

(vii) Suppose that $601|5^{k+1} + 1$. As in (vi) above, we have

$$n = 2^7.5^b.17^2.29^d.13^e.19^f.(601)^g.P^h$$

and so

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{13}{12} \cdot \frac{19}{18} \cdot \frac{601}{600} \cdot \frac{2521}{2520} = 2.965644393 < 3,$$

a contradiction. Thus $601 + 5^{k+1} + 1$.

- (viii) If $13 + 5^{k+1} + 1$, it follows from (vi) and (viii) that $\frac{5^{k+1}+1}{2}$ is not divisible by any prime in [3,2520]. Consequently, if $Q|\frac{5^{k+1}+1}{2}$, then Q > 2520 and by (b), Q|w'. This proves (F) in this case.
- (ix) Assume that $13|5^{k+1}+1$. We claim that $\frac{5^{k+1}+1}{2}$ is divisible by an odd prime $Q \neq 13$. On the other hand, let $\frac{5^{k+1}+1}{2} = 13^{\alpha}$, for some positive integer α .

If $\alpha \ge 2$, then $13^2|5^{k+1}+1$. This is equivalent to k+1=26u. Hence we have

$$53\left|\frac{5^{26}+1}{2}\right|\frac{5^{k+1}+1}{2}=13^{\alpha},$$

which is not possible.

Therefore, we have $\alpha=1$ so that $\frac{5^{k+1}+1}{2}=13$, i.e, k=1. But $k\geq 3$. It now follows that $\frac{5^{k+1}+1}{2}$ is divisible by an odd prime $Q\neq 13$. Hence $Q\notin [3,2520]$ so that Q>2520 and from (3.9b), Q|w'.

The proof of (F) is complete.

We are now in a position to complete the proof of (c). By (3.9c), (3.9a), (E) and (F), we have

$$n = 2^7.5^b.17^2.29^d.13^e.19^f.(P)^g.(Q)^h,$$

so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{13}{12} \cdot \frac{19}{18} \cdot \frac{2521}{2520} \cdot \frac{2531}{2530} = 2.805991691 < 3,$$

a contradiction.

This proves (c).

The proof of Lemma 3.2 is complete.

Lemma 3.3. Consider the equations (3.2a)–(3.2c) corresponding to the case c = 2. In (3.2b), we can assume that d = 2m, where m is odd and ≥ 3 (see Remark 3.2). Then

- (a) $\frac{29^{m+1}+1}{2}$, a factor of $\sigma^{**}(29^d)$ is divisible by an odd prime q' > 519 and q'|w,
- (b) n is divisible by exactly one of the primes 11, 13 and 19,
- (c) $\frac{29^m-1}{28}$, a factor of $\sigma^{**}(29^d)$ is divisible by an odd prime p' > 519 and p'|w.

Proof. (a) Let

$$T_{29}' = \{q | 29^{m+1} + 1: \ q \in [3, 519] \setminus \{37, 61, 313, 421\} \text{ and } s = \frac{1}{2} ord_q 29 \text{ is even} \}.$$

If T'_{29} is non-empty, then (a) holds by Lemma 2.4(b). We may assume that T'_{29} is empty. Since $s = \frac{1}{2}ord_q29$ is odd implies that $q \nmid 29^{m+1} + 1$, it follows that $29^{m+1} + 1$ is not divisible by any prime q in [3,519] except for possibly $q \in \{37,61,313,421\}$.

We note that $37|29^{m+1} + 1 \iff m + 1 = 6u \iff 61|29^{m+1} + 1 \iff 313|29^{m+1} + 1$.

Assume that $37|29^{m+1} + 1$ so that m + 1 = 6u. Hence $29^6 + 1|29^{m+1} + 1$. But $29^6 + 1 = 2.37.61.313.421$. It follows that $\frac{29^{m+1}+1}{2}$ (a factor of $\sigma^{**}(29^d)$ in (3.2b)) is divisible by the four primes 37,61,313 and 421. By (3.2c), it follows that $w = 37^e.61^f.313^g.421^h$ and so

$$n = 2^7.5^b.17^2.29^d.37^e.61^f.313^g.421^h.$$

Hence we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{37}{36} \cdot \frac{61}{60} \cdot \frac{313}{312} \cdot \frac{421}{420} = 2.71945 < 3,$$

a contradiction.

Hence $37 + 29^{m+1} + 1$. As a consequence $29^{m+1} + 1$ is not divisible by 61 and 313.

If $421 + 29^{m+1} + 1$, it follows that $29^{m+1} + 1$ is not divisible by any prime in [3,519]; the same holds with respect to $\frac{29^{m+1}+1}{2}$. Hence if $q'|\frac{29^{m+1}+1}{2}$, then q' > 519 and q'|w from (3.2b). Suppose $421|29^{m+1}+1$. We claim that $\frac{29^{m+1}+1}{2}$ is divisible by an odd prime $\neq 421$. On the other hand, let $\frac{29^{m+1}+1}{2} = (421)^{\alpha}$, for some positive integer α . If $\alpha \geq 2$, then $421^2|29^{m+1}+1$. But this is equivalent to m+1=842.u. Hence

$$6737 \left| \left(\frac{29^{842} + 1}{2} \right) \right| \left(\frac{29^{m+1} + 1}{2} \right) = (421)^{\alpha},$$

and this is impossible. Hence $\alpha=1$ so that $\frac{29^{m+1}+1}{2}=421$ or m=1. But $m\geq 3$. Thus $\frac{29^{m+1}+1}{2}$ is divisible by an odd prime $q'\neq 421$. Hence $q'\notin [3,519]$ and so q'>519. From (3.2b), q'|w.

This completes the proof of (a).

(b) $Proof \ of \ (b)$. We first prove that n is divisible by at least one of 11, 13 and 19. On the contrary assume that n is divisible by none of 11, 13 and 19. From (3.2b), it follows that every prime factor of w in (3.2b) is at least 23. By (a), q'|w and q' > 519. From (3.2a) and (3.2c), we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{23}{22} \cdot \frac{31}{30} \cdot \frac{37}{36} \cdot \frac{521}{520} = 2.87912 < 3,$$

a contradiction. Thus, n is divisible by at least one of 11, 13 and 19. Now, part (b) follows from Lemma 3.2.

(c) Proof of (c). Let

$$S'_{29} = \{p | 29^m - 1 : p \in [3, 519] \setminus \{7, 13, 67\} \text{ and } ord_p 29 \text{ is odd}\}.$$

We distinguish three cases on the basis of part (b):

Case 1. Suppose that 11|n. Then w in (3.2a) and (3.2b) cannot have more than three other odd prime factors. If S'_{29} is non-empty, by (a) of Lemma 2.4 and (3.2b), the statement in (c) holds. We may assume that S'_{29} is empty. Since $p+29^m-1$ if ord_p29 is even, it follows that 29^m-1 is not divisible by any prime $p \in [3,519]$ except for possibly $p \in \{7,13,67\}$. The same is true with respect to $\frac{29^m-1}{28}$; this is not divisible by 7 as $7|\frac{29^m-1}{28}$ would imply that 7|w|n, from (3.2b). But by our assumption $7 \nmid n$.

By part (b), $13 + 29^m - 1$ since 11|n. Also, $13|29^m - 1 \iff 67|29^m - 1$. Hence $67 + 29^m - 1$. Thus $\frac{29^m - 1}{28}$ is not divisible by 7, 13 and 67. It follows that $\frac{29^m - 1}{28}$ is not divisible by any prime in [3, 519]. Hence if $p'|\frac{29^m - 1}{28}$, then p' > 519 and from (3.2b), p'|w. Thus in this case, (c) holds.

Case 2. Assume that 13|n. Then w in (3.2a) and (3.2b) cannot have more than three other odd prime factors. If S'_{29} is non-empty, by (a) of Lemma 2.4 and (3.2b), the statement in (c) holds. We may assume that S'_{29} is empty. Since $p+29^m-1$ if ord_p29 is even, it follows that 29^m-1 is not divisible by any prime $p \in [3,519]$ except for possibly $p \in \{7,13,67\}$. The same is true with respect to $\frac{29^m-1}{28}$; this is not divisible by 7 as in Case 1.

Assume that $13\left|\frac{29^m-1}{28}\right|$. Then $67\left|\frac{29^m-1}{28}\right|$, since $13\left|29^m-1\right| \iff 67\left|29^m-1\right|$. Hence w is divisible by 67. By (a), w is divisible by q' > 519. Since 19 + n, a possible third

prime factor of w, say r is at least 23. Hence from (3.2a), we have

$$n = 2^7.5^b.17^2.29^d.13^e.67^f.(q')^f.r^g$$

and so we obtain

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{13}{12} \cdot \frac{67}{66} \cdot \frac{521}{520} \cdot \frac{23}{22} = 2.981349246 < 3,$$

a contradiction. Hence $\frac{29^m-1}{28}$ is neither divisible by 13 nor 67.

It follows that $\frac{29^m-1}{28}$ is not divisible by any prime in [3,519]. Hence if $p'|\frac{29^m-1}{28}$, then p' > 519 and from (3.2b), p'|w. This proves (c), in this case.

Case 3. Assume that $19 \mid n$. Then w in (3.2a) and (3.2b) cannot have more than three other odd prime factors. If S'_{29} is non-empty, by (a) of Lemma 2.4 and (3.2b), the statement in (c) holds. We may assume that S'_{29} is empty. Since $p + 29^m - 1$ if ord_p29 is even, it follows that $29^m - 1$ is not divisible by any prime $p \in [3,519]$ except for possibly $p \in \{7,13,67\}$. The same is true with respect to $\frac{29^m-1}{28}$; this is not divisible by 7 as in Case 1. Since by our assumption, $13 + 29^m - 1$, we have $67 + 29^m - 1$. It follows that $\frac{29^m-1}{28}$ is not divisible by any prime in [3,519]. Hence if $p'|\frac{29^m-1}{28}$, then p' > 519 and from (3.2b), p'|w. This proves (c), in this case also.

The proof of (c) is complete.

The proof of Lemma 3.3 is complete.

Proof of Theorem 3.3. Assume that c=2. Then we have the equations (3.2a)–(3.2c). By Lemma 3.3, t|n for exactly one $t \in \{11, 13, 19\}$. By (3.2a)–(3.2c) and Lemma 3.3, we have $w=t^e.(p')^f.(q')^g.(t')^h$, where $p' \geq 521$, $q' \geq 523$ and t' is the possible fourth prime factor of w with $t' \geq 23$. From (3.2a), we have

$$n = 2^7.5^b.17^2.29^d.t^e.(p')^f.(q')^g.(t')^h,$$

so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{255}{128} \cdot \frac{5}{4} \cdot \frac{290}{289} \cdot \frac{29}{28} \cdot \frac{11}{10} \cdot \frac{521}{520} \cdot \frac{523}{522} \cdot \frac{23}{22} = 2.987746535 < 3,$$

a contradiction. Hence $c \neq 2$. The proof of Theorem 3.3 is complete.

Professor Sitaramaiah [10] proposes that the above results lead to the following inequality. The present author has not verified the proof. Therefore the inequality is presented as a conjecture.

Conjecture. Let n be a bi-unitary perfect number of the form $n = 2^7.5^b.17^c.t^d.w$, where $b \ge 3$, $t \in \{11, 13, 19\}$ and w is prime to 2.3.5.7.17.t. (Here w cannot have more than four odd prime

factors.) Then

$$n > \begin{cases} 2.605 \times 10^{134} & \text{if } 5^6 \| n \text{ and } 11 | n, \\ 9.25 \times 10^{167} & \text{if } 5^7 | n \text{ and } 11 | n, \\ 7.65 \times 10^{171} & \text{if } 13 | n, \\ 6.079 \times 10^{180} & \text{if } 19 | n. \end{cases}$$

References

- [1] Hagis, P., Jr. (1987). Bi-unitary amicable and multiperfect numbers. *The Fibonacci Quarterly*, 25(2), 144–150.
- [2] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, I. *Notes on Number Theory and Discrete Mathematics*, 26(1), 93–171.
- [3] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, II. *Notes on Number Theory and Discrete Mathematics*, 26(2), 1–26.
- [4] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, III. *Notes on Number Theory and Discrete Mathematics*, 26(3), 33–67.
- [5] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, IV(a). *Notes on Number Theory and Discrete Mathematics*, 26(4), 2–32.
- [6] Haukkanen, P., & Sitaramaiah, V. (2021). Bi-unitary multiperfect numbers, IV(b). *Notes on Number Theory and Discrete Mathematics*, 27(1), 45–69.
- [7] Haukkanen, P., & Sitaramaiah, V. (2021). Bi-unitary multiperfect numbers, V. *Notes on Number Theory and Discrete Mathematics*, 27(2), 20–40.
- [8] Sándor, J., & Atanassov, K.T. (2021). Arithmetic Functions. Nova Science Publishers.
- [9] Sándor, J., & Crstici, P. (2004). *Handbook of Number Theory II*. Kluwer Academic.
- [10] Sitaramaiah, V. (2020). Personal communication.
- [11] Suryanarayana, D. (1972). The number of bi-unitary divisors of an integer. In: *The Theory of Arithmetic Functions*, Lecture Notes in Mathematics 251: 273–282, New York, Springer–Verlag.
- [12] Wall, C. R. (1972). Bi-unitary perfect numbers. *Proceedings of the American Mathematical Society*, 33(1), 39–42.

Appendix A Table of ord_p29

Let p denote an odd prime $\neq 29$. In the following table, r denotes the smallest positive integer such that $29^r \equiv 1 \pmod{p}$; that is, $r = ord_p 29$, and s denotes the smallest positive integer such that $29^s \equiv -1 \pmod{p}$ if s exists. If s does not exist, that is, if $29^t + 1$ is not divisible by p for any positive integer t, the entry in column s will be filled up by dash sign. If r is even, then s = r/2, and if r is odd, s does not exist.

SL.No	p	r	s
1	3	2	1
2	5	2	1
3	7	1	_
4	11	10	5
5	13	3	_
6	17	16	8
7	19	18	9
8	23	11	_
9	29	_	_
10	31	10	5
11	37	12	6
12	41	40	20
13	43	42	21
14	47	46	23
15	53	26	13
16	59	29	_
17	61	12	6
18	67	3	_
19	71	35	_
20	73	72	36
21	79	78	39
22	83	41	_
23	89	88	44
24	97	96	48
25	101	100	50
26	103	51	_
27	107	53	_
28	109	54	27
29	113	112	56
30	127	126	63
31	131	130	65
32	137	136	68

SL.No	p	r	s
33	139	69	_
34	149	37	_
35	151	25	_
36	157	52	26
37	163	162	81
38	167	83	_
39	173	43	_
40	179	89	_
41	181	15	_
42	191	190	95
43	193	64	32
44	197	49	_
45	199	99	_
46	211	210	105
47	223	111	_
48	227	113	_
49	229	228	114
50	233	58	29
51	239	119	_
52	241	120	60
53	251	250	125
54	257	128	64
55	263	262	181
56	269	268	134
57	271	6	3
58	277	138	69
59	281	70	35
60	283	47	_
61	293	292	146
62	307	306	153
63	311	310	155
64	313	12	6

SL.No	p	r	s
65	317	316	158
66	331	330	165
67	337	336	168
68	347	173	_
69	349	174	87
70	353	88	44
71	359	358	179
72	367	122	61
73	373	93	-
74	379	126	63
75	383	191	_
76	389	388	194
77	397	99	_
78	401	10	5
79	409	408	204
80	419	209	-
81	421	4	2
82	431	215	_
83	433	432	216
84	439	219	-
85	443	442	221
86	449	448	224
87	457	114	57
88	461	460	230
89	463	231	-
90	467	466	233
91	479	478	239
92	487	81	_
93	491	490	245
94	499	249	-
95	503	502	251
96	509	254	127

Appendix B Factors of $29^t - 1$

```
29^{11} - 1 = \{\{2, 2\}, \{7, 1\}, \{23, 1\}, \{18944890940537, 1\}\}
 29^{15} - 1 = \! \{\{2,2\}, \{7,1\}, \{13,1\}, \{67,1\}, \{181,1\}, \{22111,1\}, \ldots \}
 29^{25} - 1 = \{\{2, 2\}, \{7, 1\}, \{151, 1\}, \{732541, 1\}, \ldots\}
 29^{29} - 1 = \{\{2, 2\}, \{7, 1\}, \{59, 1\}, \{16763, 1\}, \ldots\}
 29^{35} - 1 = \! \{ \{2,2\}, \{7,2\}, \{71,1\}, \{732541,1\}, \ldots \}
 29^{37} - 1 = \{\{2, 2\}, \{7, 1\}, \{149, 1\}, \{13913, 1\}, \ldots\}
 29^{41} - 1 = \{\{2, 2\}, \{7, 1\}, \{83, 1\}, \{2789, 1\}, \ldots\}
 29^{43} - 1 = \! \{\{2,2\}, \{7,1\}, \{173,1\}, \{13933,1\}, \ldots \}
29^{47} - 1 = \{\{2, 2\}, \{7, 1\}, \{283, 1\}, \{659693, 1\}, \ldots\}
 29^{49} - 1 = \{\{2, 2\}, \{7, 3\}, \{197, 1\}, \{88009573, 1\}, \ldots\}
 29^{51} - 1 = \! \big\{ \{2,2\}, \{7,1\}, \{13,1\}, \{67,1\}, \{103,1\}, \{3911,1\}, \ldots \big\}
 29^{53} - 1 = \! \{ \{2,2\}, \{7,1\}, \{107,1\}, \{10601,1\}, \ldots \}
 29^{69} - 1 = \{\{2, 2\}, \{7, 1\}, \{13, 1\}, \{67, 1\}, \{139, 1\}, \{131327761273, 1\}, \ldots\}
 29^{81} - 1 = \! \{\{2,2\}, \{7,1\}, \{13,1\}, \{67,1\}, \{487,1\}, \{14437,1\}, \ldots \}
 29^{83} - 1 = \{\{2, 2\}, \{7, 1\}, \{167, 1\}, \{5118695830412449740993707190291471468836668205\}
                74964078991625754533333873607179556003789915482268910708915779275
                6778513, 1}}
 29^{89} - 1 = \{\{2, 2\}, \{7, 1\}, \{179, 1\}, \{1069, 1\}, \ldots\}
 29^{93} - 1 = \{\{2, 2\}, \{7, 1\}, \{13, 1\}, \{67, 1\}, \{373, 1\}, \{36767, 1\}, \ldots\}
 29^{99} - 1 = \{\{2, 2\}, \{7, 1\}, \{13, 1\}, \{23, 1\}, \{67, 1\}, \{199, 1\}, \{397, 1\}, \ldots\}
29^{111} - 1 = \{\{2,2\}, \{7,1\}, \{13,1\}, \{67,1\}, \{149,1\}, \{223,1\}, \{13913,1\}, \ldots\}
29^{113} - 1 = \{\{2, 2\}, \{7, 1\}, \{227, 1\}, \{2804076605208339275305401070695331526616940696\}\}
                30684961289427326872431929489749753183807662058116475449521522961
                049909031188217178659584119469734915010632321126523, 1\}
29^{119} - 1 = \{\{2, 2\}, \{7, 2\}, \{239, 1\}, \{3911, 1\}, \ldots\}
29^{173} - 1 = \{\{2, 2\}, \{7, 1\}, \{347, 1\}, \{58129, 1\}, \ldots\}
29^{191} - 1 = \{\{2, 2\}, \{7, 1\}, \{383, 1\}, \{40111, 1\}, \ldots\}
29^{209}-1 = \! \{\{2,2\},\{7,1\},\{23,1\},\{419,1\},\{6271,1\},\ldots \}
29^{215} - 1 = \{\{2, 2\}, \{7, 1\}, \{173, 1\}, \{431, 1\}, \{13933, 1\}, \ldots\}\}
29^{219} - 1 = \{\{2,2\}, \{7,1\}, \{13,1\}, \{67,1\}, \{439,1\}, \{6053603111,1\}, \ldots\}
29^{231} - 1 = \{\{2, 2\}, \{7, 2\}, \{13, 1\}, \{23, 1\}, \{67, 1\}, \{463, 1\}, \{6637, 1\}, \ldots\}
29^{249} - 1 = \{\{2, 2\}, \{7, 1\}, \{13, 1\}, \{67, 1\}, \{167, 1\}, \{499, 1\}, \{2971220541375663902834967\}\}
                56148014971356023682195637782598641448348945531698896651105600856
                10522473351082608322557539966718721333911128435649453801835929153
                09037448135277050496366602273118845884172456898001890113591563896
                18091337806216112763277573768925208737895405732317891162357626325
                34094201009245510500265082025644139231, 1}}.
```

Appendix C Factors of $29^t + 1$

```
29^6 + 1 = \{\{2, 1\}, \{37, 1\}, \{61, 1\}, \{313, 1\}, \{421, 1\}\}
 29^8 + 1 = \{\{2, 1\}, \{17, 1\}, \{26209, 1\}, \ldots\}
29^{20} + 1 = \{\{2, 1\}, \{41, 1\}, \{353641, 1\}, \{6103563899172302171321, 1\}\}
29^{26} + 1 = \{\{2, 1\}, \{157, 1\}, \{421, 1\}, \{6917, 1\}, \ldots\}
29^{32} + 1 = \{\{2, 1\}, \{193, 1\}, \{63354497, 1\}, \ldots\}
29^{36} + 1 = \{\{2, 1\}, \{73, 1\}, \{9001, 1\}, \ldots\}
29^{44} + 1 = \{\{2,1\}, \{89,1\}, \{353,1\}, \{617,1\}, \{353641,1\}, \ldots\}
 29^{48} + 1 = \{\{2, 1\}, \{97, 1\}, \{80779687587600790135409621794092473189789604476398339\}
                              268267830745473, 1\}
 29^{50} + 1 = \{\{2, 1\}, \{101, 1\}, \{421, 1\}, \{1061, 1\}, \ldots\}
 29^{56} + 1 = \{\{2, 1\}, \{17, 1\}, \{113, 1\}, \{26209, 1\}, \ldots\}
29^{60} + 1 = \{\{2, 1\}, \{41, 1\}, \{241, 1\}, \{9001, 1\}, \ldots\}
29^{64} + 1 = \{\{2, 1\}, \{257, 1\}, \{641, 1\}, \{7937, 1\}, \ldots\}
29^{68} + 1 = \{\{2, 1\}, \{137, 1\}, \{132329, 1\}, \{353641, 1\}, \ldots\}\}
29^{114} + 1 = \{\{2,1\}, \{37,1\}, \{61,1\}, \{229,1\}, \{313,1\}, \{421,1\}, \{131101,1\}, \ldots\}
29^{134} + 1 = \{\{2, 1\}, \{269, 1\}, \{421, 1\},
           2557197391099291642318406711490210523652835313142583804949561622260\\
           4242907529468849630911488133406834061825422209051664115309, 1\}
29^{146} + 1 = \{\{2, 1\}, \{293, 1\}, \{421, 1\}, \{139999693, 1\}, \ldots\}
29^{158} + 1 = \{\{2, 1\}, \{317, 1\}, \{421, 1\},
           1237324030732627347577996363252523654348272312548929299582663172416
           40306506159684903775682733, 1}}
29^{168} + 1 = \{\{2, 1\}, \{17, 1\}, \{113, 1\}, \{337, 1\}, \{673, 1\}, \ldots\}
29^{194} + 1 = \{\{2, 1\}, \{389, 1\}, \{421, 1\}, \{1553, 1\}, \ldots\}
29^{204} + 1 = \{\{2, 1\}, \{137, 1\}, \{409, 1\}, \{9001, 1\}, \ldots\}
29^{216} + 1 = \{\{2, 1\}, \{17, 1\}, \{433, 1\}, \{673, 1\}, \ldots\}
29^{224} + 1 = \{\{2, 1\}, \{193, 1\}, \{449, 1\}, \{63354497, 1\}, \ldots\}
29^{230} + 1 = \{\{2, 1\}, \{421, 1\}, \{461, 1\}, \{829, 1\}, \ldots\}.
```