Notes on Number Theory and Discrete Mathematics Print ISSN 1310-5132, Online ISSN 2367-8275

2022, Volume 28, Number 2, Pages 380-381

DOI: 10.7546/nntdm.2022.28.2.380-381

Corrigendum to "On upper Hermite-Hadamard inequalities for geometric-convex and log-convex functions" [Notes on Number Theory and Discrete Mathematics, 2014, Vol. 20, No. 5, 25–30]

József Sándor

Department of Mathematics, Babeș-Bolyai University Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania

In paper [1], Lemma 2.3 states that if a, b, p, q > 0 are real numbers and $\frac{q}{p} \ge \frac{b}{a} \ge 1$, then

$$L(pa, qb) \le L(p, q).A(a, b), \tag{1}$$

where L(x,y) and A(x,y) denote, as usual, the logarithmic, respectively arithmetic, means of x,y>0. In fact, inequality (1) holds true with reversed order of inequality (i.e., " \geq " instead of " \leq "). By letting $u=\frac{q}{p}$ and $v=\frac{b}{a}$, it is immediate that it is sufficient to prove that

$$\frac{uv - 1}{\ln(uv)} > \frac{v + 1}{2} \cdot \frac{u - 1}{\ln(u)} \qquad (u > v > 1).$$
 (2)

To prove (2), let

$$k(u) = 2(uv - 1) \ln u - (v + 1)(u - 1) \ln(uv),$$

where v > 1 is fixed. After simple computations, we get

$$k'(u) = (v-1). \left[\ln u + 1 + \frac{1}{u} \right] - (v+1) \ln v.$$

As

$$\left(\ln u + 1 + \frac{1}{u}\right)' = \frac{u - 1}{u^2} > 0$$

for u > 1, it follows that

$$k'(u) > (v-1)(\ln v + 1 + \frac{1}{v}) - (v+1)\ln v = -\ln(v^2) + \frac{v^2 - 1}{v} > 0$$

on the basis of inequality $L(v^2, 1) > \sqrt{v^2.1}$ (i.e., L > G, where G is the geometric mean). Thus we get k(u) > 0 for u > v, and this finishes the proof of (2).

Remark. Therefore, the last inequality in Theorem 2.5 of [1] holds true with reversed order, i.e.,

$$\frac{1}{A(a,b)} L(af(a), bf(b)) \ge L(f(a), f(b)), \tag{3}$$

by assuming the conditions of Theorem 2.5.

Acknowledgements

The author thanks Professors Timothy Nadhomi and Maciej Sablik of University of Silesia, Katowice, Poland, for calling the author's attention to this correction in February 2022.

References

[1] Sándor, J. (2014). On upper Hermite–Hadamard inequalities for geometric-convex and log-convex functions. *Notes on Number Theory and Discrete Mathematics*, 20(5), 25–30.